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Extensions and improvements of a recent paper, “On Digit Expansions with 
Respect to Linear Recurrences” by A. Petho and R. F. Tichy (J. Number Theory 33 
(1989), 243-256) are established. Furthermore distribution properties mod 1 of the 
sequence @a(n)) are investigated, where so(n) denotes the sum-of-digits function 
with respect to the linear recurrence G. a 1990 Academic Press, Inc. 

1. INTRoDUcTIoN 

For every non-negative integer n, so(n) denotes the sum of the G-ary 
digits of n, where G is a suitable linear recurring sequence (for short 1.r.s.). 
In [8] it is proved that 

where cG is a constant depending on the l.r.s., CI is the dominating charac- 
teristic root of G, and F is a bounded, Riemann integrable, nowhere 
differentiable function of period 1. In the following we consider 1.r.s. of the 
type 

Gk+d=a,Gk+d--l +a,G,+,-,+ ... +adGk (1.2) 

with integral coefficients and integral initial values. For d = 1 we assume 
GO=1 and a,>l. 

For d> 2 we assume that the coefficients a, 2 a2 2 . . . 2 ad > 0 are 
non-increasing and 

l=G,,, Gk2a,G,-,+ .a. +akG,+ 1 for k = 1, . . . . d- 1. (1.3) 
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If equality holds in (1.3) for all k = 1, . . . . d- 1, we call the initial values 
G 0, ..., Gd- 1 canonical. For an arbitrary positive integer n define L = L(n) 
by 

G,<ncG,., (1.4) 

and put L(0) = 0. Set ([t] denoting the integral part of t) nL = n, 

and njel =n,-G,.&, (1 <.i<L) 
(1.5) 

Hence we obtain a well-defined representation of any positive integer n in 
the form 

L(n) 

n= 1 E~.G~, (1.6) 
j=O 

the so-called G-ary representation of n with digits aj = El(n). Furthermore 
we define 

L(H) 

s(n) = s&n) = C Ed, (1.7) 
j=O 

the sum of G-ary digits of n. 
In Theorem 1 of [ 81 (see also Fraenkel [3] ) it is proved that a (I + l)- 

tuple (so, . . . . E,) E Nb+ ’ is the sequence of G-ary digits of an integer if and 
only if 

and 

f EiGi<Gk+l for all Odk-cd- 1 (1.8) 
i=O 

(E/o . ..> &k-I+ 1) < (a,, . . . . a,) forall d+l-l<k<t, l<l<d, (1.9) 

where < in (1.9) denotes the lexicographic order. In the canonical case the 
two conditions (1.8) and (1.9) can be replaced by 

(E k, ..*, &k-l+ 1) < (al, . . . . a,) for all 1 - 1 < k < t, 1 < 1~ d. (1.10) 

In Section 2 of this article we show that in the case of canonical initial 
values the remainder function F of (1.1) is periodic with period 1 and 
continuous. If the initial values are noncanonical, then there is no periodic 
remainder function of this type. The different results in [8] are due to some 
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computational errors. In Section 3 we prove that for irrational x, the 
sequence (xs~(II)) is uniformly distributed modulo 1. This result remains 
true if x = (xi, . . . . x,) is a vector, where 1, x1, . . . . x, are linearly inde- 
pendent over the rationals. 

2. ANALYTICAL PROPERTIES OF THE REMAINDER FUNCTION 

We set N = If= ,, &jGj in G-ary representation. Then we have 

this formula is a slightly changed version of (3.5) in [8]. Now by Lemma 4 
of [8] we obtain the explicit formulas 

Gj=A;a;+ ... +A&al, 

S(Gj)=(A,j+B,)a:‘+ es. +(A,j+B,)a$, 
(2.2) 

where a=a,>a,>l>Ia,l~ ... > (adI are the characteristic roots of the 
1.r.s. G. Setting X=~iL_o~ja/ A’=A;, A=AI, and B=B,, we define 

c 
j-ck<L 

X-log x 
Q(X) = S*(X) - A -. 

log a 

(2.3) 

As in [S] we derive 

S(N) - S*(X) = O(log N) 

@(ax) -a@(X) = S*(aX) - as*(X) - aAX= 0 (2.4) 

if and only if the initial values are canonical. Hence in the canonical case 
X-‘@(X) is a periodic function of log X/log a with period 1. 

If we put y= apLX with L= L(N) it is clear that 1 < y < a. Then we 
have 

s*w -- 
X 

AlogX 1 
==;WA’E (2.5) 
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with 

where 

It/(y)= ~ bjCl-’ A’ C h,+A’~+B-A,), 
j=O kcj 

b, 62 y=bo+r*+-I+ ... 
a 

(2.6 1 

(2.7 1 

in a-adic representation (cf. Lemma 5 in [8], Theorem 3 in [7]). 
In the following we prove the continuity of the remainder function F in 

the canonical case. It is sufficient to prove the continuity of + in the 
interior of [ 1, a) and to show that J/ approaches the correct values at the 
boundary. For simplicity we consider 

g(y)= f b,ia-‘(A’ 1 
j=O k-cj 

b,+A$+Aj)=$(y)-(B-G), 

and define the infinite sequence (co, cr, . ..). 

cj-1= 
i 

ui(mod d) if if0 (mod d) 
ad- 1 if i-0 (mod d). 

For the proof of continuity it is enough to consider $ at the points 

y= i b,a-j=L~lb,a-j+(bL-l)a-L+a~L-I f cka-k (2.8) 
.I = 0 j=O k=O 

(cf. [8, Sect. 41 in the second order case). Thus we have to show 

i b,a-j(At c b,+$b.,+Aj) 
,i=O kcj 

= ‘f’bja-‘(A’ C bk+$bj-Aj) 
j=O kc/ 

+(bL-l)apL A’ c b,+$tb,-I)--AL 
k<L 

+a-Lpl f ckavk 
k=O ( 

A’BL-A’+A’ c Cl++&A(L+k+l) , 
I<k 

where B, = 6, + ... + b,. By elementary but lengthy calculations this is 
equivalent to 

(al + ... +a,-,)+: i , a2 ad--l-- 
I= 1 

;‘)--Aapt( 

where p is the characteristic polynomial of G. 

641’36’2.3 



164 GRABNERANDTICHY 

Obviously I& 1) = A’/2 and (l/a) $(a) = A + A’/2 by the same computa- 
tions as above. Hence the function on the right hand side of (2.5) attains 
the same values for y = 1 and y = CC 

Thus the continuity of $ is equivalent to 

with 

“’ +a,,)+; : 
1 alfad-k-- ad . (2.9) 

k=l 2 

In order to prove this equation we consider the frequency of an a-adic digit 
z given by 

where x, denotes the characteristic function of an interval and ~3,~ is the 
usual Kronecker symbol (cf. Parry [7]). 

From this we obtain for the expected value 

Since 

++AlogN A’ log o! + O(l)> (2.10) 

this expected value of the digits is also equal to A/A’, hence Eq. (2.9) is 
proved. Thus we have shown 

THEOREM 1. Let G be a I.r.s. with canonical values: then 

$1 s,(n)=,,~~+F(~~+O(l~~, 
n<N 

where co is a constant depending on the I.r.s. given by (2.9) and a is the 
dominating characteristic root of G. The remainder function F is periodic 
with period 1, continuous, and nowhere differentiable. 
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Remark 1. If the initial values are non-canonical, then we have seen 
above that the function F is not periodic of period 1 in log N/log U. It can 
easily be seen that it is not periodic in any period. Nevertheless in this 
non-canonical case we have proved the asymptotic relation (2.10) with the 
same constant cG as in the canonical case. 

Remark 2. The coefficient A’ of the dominating characteristic root can 
be computed explicitly in any case. For instance in the canonical case we 
obtain 

ad--l 
!I’= (a- 1) p’(x)’ 

COROLLARY 1. Let G be a second order 1.r.s. Gn+2 = a, G,, , + a,G, 
with GO = 1 and G1 > a,. Then the remainder .function F in Theorem 1 is 
periodic with period 1 and continuous, if and only if G, = a, + 1. In the case 
a, = a2 = 1 this characterizes the sequence of Fibonacci numbers. 

Remark 3. A different proof of Theorem 1 will be given in a subsequent 
paper by J.-M. Dumont. The special case of Fibonacci numbers was 
considered by J. Coquet and P. Van Den Bosch [ 11, see also Dumont [2]. 

3. DISTRIBUTION PROPERTIES OF (xsG(n)) 

Let us recall the definition of the discrepancy DN(~x,) of a sequence of 
real numbers : 

I, = sup 
o<o</I<1 

x~~.&, - Cx,l) - W- 4 . (3.1) 

A sequence is called uniformly distributed mod 1 if 

lim DN(.x,) = 0. (3.2) 
N- r 

By Weyl’s criterion (cf. [S, 6-j) this is equivalent to 

lim i 1 e2nib = 0 
N - cc n<N 

for all integers h # 0. We will prove the following theorem. 

(3.3) 

THEOREM 2. Let G be a 1.r.s. as in (1.2) satisfying (1.3) and let x be an 
irrational number. Then the sequence (xso(n)) is unzformly distributed mod 1. 

For the proof we need three auxiliary results. The first one is a special 
case of a general method due to Coquet-Rhin-Tofftn. 
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LEMMA 1. Let g: N,H C be a function with g(O)= 1, Ig(n 1, and 

L(n) 
g(n)= n dck(n) GA 

k=O 

for n = ck(_nb &(n) Gk. Assume further that 

for k = 1, 2, . . . . 

where f: [I, co) H (0, co) is a continuous nondecreasing function with 
f(u) ,< u. Then 

with a suitable constant C satisfying 

a” d G, < Ca”. 

PrOOf: Let N= ci,o & & E G be the G-ary representation N (.sL # 0), and 
set 

NW= i E&G& for j = 0, . . . . L. 
k=j 

We split the sum into two parts: 

N-l N(L)-1 L-l N(j) - 1 

Cs(n)= 1 g(n)+C C g(n). 
II=0 n=O j=O n=N(j+l) 

Then we have 

N(L)- 1 EL-I (/tl)G~-I 

c g(n)= /z. ZGL g(n) 
n=O 

EL- 1 CL--l 

= ,:. gWL) c g(n) 
II=0 

and 

NW ~ 1 E,G,- 1 

c g(n)= NW+ 1)) c g(n) 
n=N(j+ 1) n=O 

E.- 1 G.- 1 

= g(N(.i+ 1)) ‘x g(lGj) ok g(n). 
I=0 PI=0 

(3.4) 

(3.5) 

(3.6) 
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By (3.4), (3.5), and (3.6) we obtain 

B i cjGj$, Gf’ g(n) 
j=O I I I n=o 
r-l 1 

< 1 ejGj+ f E.G.----- 
N 

- 
J=O j=r ’ ‘f(Gj) ‘G’+f(G,) 

for all 1 < r < L. 
Let t be the uniquely determined number satisfying (t/a) f( t/a) = N. We 

choose r such that CC’+ I > t 2 CC and derive 

N N N 

Gr+f(G,)-‘+f~‘Cf+f?t!‘a) 

CaN N (Ca + 1)N 

=.f(++f(’ f(&) ’ 

Thus the proof of Lemma 1 is complete. 

Because of this lemma it is sufficient to consider sums of the type 

s,=c , e2nihs& 1.~ 

ll=O 

where we use the lemma with g(s,G,) = e2rrihak.‘. 
Furthermore we need the following elementary results. 

LEMMA 2. For real a and integral q >/ 2 we have 

Y--l 

I I 
ce 

Zrriaj < .q-2~l/aI12, 
j=O 

where /la]] = min( (a}. 1 - (a}). 

LEMMA 3. The sequence S, satisfies the recursion 

s k+d=AlSk+d-,+ ... +A,S,, 
where 

a,- I 
~,=~2nih(a~+ +a,-])r Znihmr 

with suitable initial values. 
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In the case that a, > 2 we have, by Lemma 2 and Lemma 3, 

I~k+dI~(al-2~ll~xl12)I~k+d-11+ ... +(ad-241W2)ISkI. 

Therefore ISkI is less than a suitable solution of the recurrence 

T k+d=(a,-2n(lhx1(2) Tk+d--l+ ... +(a,-22nl[hxl12) Tk. 

Hence we have to consider the dominating roots of the equation 

p(z)=zd-(a,-227111hx1J2)Zd-l- ... -(a,-2n~~hx~12)=0. (3.7) 

An application of RouchC’s theorem shows the existence of a uniquely 
determined dominating real root /I < a. Thus 

Sk = O(Pk), 

and in the case a,> 2 the assertion of Theorem 1 follows by Weyl’s 
criterion and an application of Lemma 1. In the case that at least one 
coefficient of G is 22 an easy modification of the above argument yields 
the result. 

In the remaining case all coefficients are equal to 1. 
The recursion of Lemma 3 is in this case given by 

S k+d- k+d-l+e -S 2nih.r 
Sk+d-2+ .” +e 

Znih(d - 1 ).xs 
k. 

In order to estimate (Sk1 we need more precise information on the roots of 

Zd- Zd- 1 _ e21rih.yZd-2 _ . . . _ e2nih(d- lb; 

thus after the substitution ~=e-~“‘~“z we have to consider 

p(w)=~~-e*~~~~‘(ly~-~ + . . . + l)=O. 

Again by an application of Rouche’s theorem there is a uniquely deter- 
mined dominating root /I with IpI <a, hence 

ISkl = o(bk). 

Thus the assertion of Theorem 1 follows by Weyl’s criterion and Lemma 1. 

Remark 4. In [4] an estimate for the discrepancy is obtained in the 
case a, 22: 

C(G, x, ~1 
D&sG(n)) = (log N)(1/2q)-~ 
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for all N > 1, E > 0 and any real number x of approximation type q. The 
proof is essentially based on Erdijs and Turin’s inequality. For the usual 
q-ary digit system see [9]. In [4] also the Hausdorff dimension of sets 
defined by digital properties with respect to Parry’s a-expansion is 
computed. 
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