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certain symmetric groups.
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1. Introduction

The Birman–Murakami–Wenzl algebra Bn was introduced independently by Birman, Wenzl [1] and Murakami [11] in
order to study the link invariants. It is cellular over a commutative ring [19] in the sense of [7]. Further, Xi classified its
irreducible modules over an arbitrary field [19].

Recently, Enyang [6] constructed the Jucys–Murphy basis for each cell module of Bn. We lifted Enyang’s basis to get the
Jucys–Murphy basis for Bn [14]. Over certain fields, we use Jucys–Murphy basis of Bn to construct its orthogonal basis. This
enables us to compute the Gram determinant associated to each cell module of Bn. Therefore, we determine explicitly the
semi-simplicity of Bn over an arbitrary field [14]. We remark that Wenzl has got some partial results in [18].

We also use our results on Gram determinants to classify the blocks of Bn over certain fields [15]. Via such results, we
determine explicitlywhether the Gramdeterminant associated to a cellmodule is equal to zero or not [15]. This is equivalent
to saying that a cell module of Bn is equal to its simple head or not.

Morton andWassermann [10] proved thatBn is isomorphic to the Kauffman tangle algebra [8]. Further, by specialization,
they proved that the Kauffman tangle algebra is isomorphic to the Brauer algebra [2]. Therefore, the Brauer algebra [2] can
be considered as the classical limit of Bn.

In [9], König and Xi [9] proved that the Brauer algebra can be obtained from some inflations of the group algebras of
certain symmetric groups along certain vector spaces. They introduced the notion of singular parameters and proved that
the Brauer algebra is Morita equivalent to the direct sum of such group algebras if the defining parameter is not singular.
However, there is no criterion to determine whether the defining parameter is singular or not.

The aim of this paper is to give a criterion to determine the singular parameters for the Brauer algebra. In fact, we will
deal with Bn instead of the Brauer algebra.

We introduce the notion of singular parameters for Bn over an arbitrary field. Via some results on the inflations in [9], we
prove thatBn is Morita equivalent to the direct sum of Hecke algebras associated to certain symmetric groups if the defining
parameters are not singular. Further, we give an explicit criterion on the singular parameters for Bn over an arbitrary field.
By specialization, we also obtain the explicit criterion on the singular parameters for Brauer algebras over an arbitrary field.

We organize our paper as follows. In Section 2, after recalling the inflation of an algebra along a vector space in [9], we
give Theorems 2.17 and 2.19, the main results of this paper, which are the criterions on the singular parameters for Bn and
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the Brauer algebra, respectively. In Section 3, we recall some of our results on the representations of Bn over an arbitrary
field. We will use them to prove Theorem 2.17 in Section 4.

2. The main results

In this section,we state the results on the classification of singular parameters forBn andBrauer algebras over an arbitrary
field. We start by recalling some results on the inflation of an algebra along a vector space in [9].

Throughout, we assume that κ is a field with characteristic char(κ) either zero or p with p > 0. When char(κ) = 0, we
set p = ∞. Let q ∈ κ be an invertible element with q2 ≠ 1. We define the quantum characteristic

e = min{i ≥ 2 | 1 + q2 + · · · + q2i−2
= 0} (2.1)

if q2 is a root of unity and ∞, otherwise.
Given a finite dimensional κ-space V , a κ-algebra B, and a κ-bilinear form φ : V ⊗ V → B, König and Xi [9] define a

κ-algebra Awhich is equal to V ⊗ V ⊗ B as κ-vector space. The multiplication of A is defined on basis elements as follows:
(a ⊗ b ⊗ x) · (c ⊗ d ⊗ y) = a ⊗ d ⊗ xφ(b, c)y. (2.2)

König and Xi [9] called this A the inflation of B along V if there is a κ-linear involution σ on Bwith σ(φ(b, c)) = φ(c, b) such
that this σ can be extended to the κ-linear involution τ on A satisfying

τ(a ⊗ b ⊗ x) = b ⊗ a ⊗ σ(x). (2.3)
In the remainder of this paper, we will use σ instead of τ if there is no confusion. It has been pointed out in [9] that A may
not have a unit.

If B is a simple κ-algebra, there is a unique irreducible B-module which is denoted by L. Let v1, v2, . . . , vℓ be a κ-basis of
V with dim V = ℓ. König and Xi [9] considered the left A-module

P(L, i) = V ⊗ vi ⊗ L, (2.4)
for some basis element vi of V and its κ-subspace

Nφ(L, i) =

 
v∈V ,l∈L

v ⊗ vi ⊗ l ∈ P(L, i)
 

v,l

φ(w, v)l = 0,∀w ∈ V


. (2.5)

They proved that Nφ(L, i) is an A-submodule of P(L, i) and the corresponding quotient module P(L, i)/Nφ(L, i) is
irreducible [9, Lemma 3.2]. If Nφ(L, i) ≠ 0, the bilinear form φ is called singular [9]. The following definition can be found in
[9].
Definition 2.6 ([9]). Given a κ-algebra B, let RadB be its Jacobson radical. Let φ = π ◦ φ where π : B → B/RadB is the
canonical epimorphism. The bilinear form φ is called singular ifNφ(L, i) ≠ 0 for some irreducible B-module L and some basis
element vi ∈ V .

The key point is the following theorem, which follows from Corollary 3.5 and Proposition 4.2 in [9].
Theorem 2.7 ([9]). Given the κ-algebra V ⊗ V ⊗ B which is the inflation of the κ-algebra B along the κ-vector space V . If

φ : V ⊗ V → B, the corresponding bilinear form, is non-singular, then V ⊗ V ⊗ B
Morita
∼ B.

We are going to state our main result on Bn. Throughout, we assume that R is a commutative ring which contains the
multiplicative identity 1R and invertible elements q, r and q − q−1.
Definition 2.8 ([1,11]). The Birman–Murakami–Wenzl algebraBn with defining parameters r and q is the unital associative
R-algebra generated by Ti, 1 ≤ i < n subject to the relations:
(a) (Ti − q)(Ti + q−1)(Ti − r−1) = 0, for 1 ≤ i < n,
(b) TiTj = TjTi if |i − j| > 1,
(c) TiTi+1Ti = Ti+1TiTi+1, for 1 ≤ i < n − 1,
(d) EiTi = r−1Ei = TiEi, for 1 ≤ i ≤ n − 1,
(e) EiT±

j Ei = r±Ei, for j = i ± 1,

where Ei = 1 − (q − q−1)−1(Ti − T−1
i ) for 1 ≤ i ≤ n − 1.

It is known that there is an R-linear anti-involution ∗ : Bn → Bn which fixes Ti. If we denote by ⟨E1⟩ the two-sided
ideal of Bn generated by E1, then Bn/⟨E1⟩ is isomorphic to the Hecke algebra Hn associated to the symmetric group Sn. We
denote by

εn : Hn → Bn/⟨E1⟩ (2.9)
the corresponding isomorphism.

Note that Hn is the R-algebra with generators gi, 1 ≤ i ≤ n − 1 subject to the defining relations
(gi − q)(gi + q−1) = 0, for 1 ≤ i ≤ n − 1,
gigj = gjgi, if |i − j| > 1,
gigjgi = gjgigj, if |i − j| = 1.

It is known that there is an R-linear anti-involution ∗ on Hn which fixes gi, 1 ≤ i ≤ n − 1.
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Recall that the symmetric group Sn in n letters is the Coxeter group with distinguished generators si, 1 ≤ i ≤ n − 1
subject to the defining relations

s2i = 1, if 1 ≤ i ≤ n − 1,
sisj = sjsi, if |i − j| > 1,
sisjsi = sjsisj, if j = i ± 1.

It is known that si can be identifiedwith the basic transposition (i, i+1). For eachw ∈ Sn with reduced expression si1 · · · sik ,
let Tw := Ti1Ti2 · · · Tik ∈ Bn. It is well known that Tw is independent of a reduced expression ofw.

Given a non-negative integer f ≤ ⌊n/2⌋, let B
f
n be the two sided ideal of Bn generated by E f ,n, where

E f ,n
= En−1En−3 · · · En−2f+1. (2.10)

When f = 0, we denote E0,n by the identity of Bn. It is known that

Bn = B0
n ⊃ B1

n ⊃ · · · ⊃ B⌊n/2⌋
n ⊃ 0

is a filtration of two-sided ideals of Bn. Let

si,j =


sisi+1 · · · sj−1, if i < j,
si−1si−2 · · · sj, if i > j,
1, if i = j.

Enyang [5] proved that B
f
n/B

f+1
n is free over R with basis S where

S = {T ∗

u E
f ,nTwTv mod Bf+1

n | u, v ∈ Df ,n, w ∈ Sn−2f }, (2.11)
and

Df ,n =


sn−2f+1,if sn−2f+2,jf · · · sn−1,i1sn,j1

 1≤if<···<i1≤n;
1≤ik<jk≤n−2k+2;1≤k≤f


. (2.12)

Let κ be a field which is an R-algebra. Let

Bn,κ = Bn ⊗R κ.

By abusing notation, we will use Bn instead of Bn,κ in the remaining part of this paper.
Via the κ-basis S for B

f
n/B

f+1
n in (2.11), we will prove that B

f
n/B

f+1
n is the inflation of Hn−2f along the vector space

Vf spanned by Tu, u ∈ Df ,n. We remark that the corresponding anti-involution σ on Hn−2f is the anti-involution ∗ on Hn.
Further, σ can be extended to B

f
n/B

f+1
n , which is the same as the anti-involution induced by ∗ on Bn. The bilinear form

φf : Vf ⊗ Vf → Hn−2f (2.13)
can be defined via the multiplication of Bn. Details will be given in Proposition 3.10.

The following definition is motivated by König and Xi’s work on Brauer algebras in [9].
Definition 2.14. The defining parameters r and q are said to be singular if there is a positive integer f ≤ ⌊n/2⌋ such that
the bilinear form φf in (2.13) is singular in the sense of Definition 2.6.

The following result follows from Theorem 2.7 and [9, Lemma 7.1], immediately.
Proposition 2.15. Let Bn be the Birman–Murakami–Wenzl algebra over κ . Then

Bn
Morita
∼ ⊕0≤f≤⌊n/2⌋Hn−2f

if the defining parameters r and q are not singular.
Recall that e is the quantum characteristic in (2.1). The following result, which is the main result of this paper, gives the

classification of singular parameters r and q for Bn over an arbitrary field κ . We define
S = ∪

n
k=3{q

3−2k,±q3−k,−q2k−3,±qk−3
}, for n ≥ 2. (2.16)

Theorem 2.17. Let Bn be the Birman–Murakami–Wenzl algebra over the field κ .
(a) Suppose e > n − 2.

(1) If r ∉ {q−1,−q}, then r and q are singular if and only if r ∈ S,
(2) If r ∈ {q−1,−q}, then r and q are singular if and only if one of the following conditions holds:

(i) n is even or odd with n ≥ 7,
(ii) n = 3, and q4 + 1 = 0.
(iii) n = 5, and 2(q4 + 1)(q6 + 1)(q8 + 1) = 0.

(b) If e ≤ n − 2, then r and q are singular if and only if r ∈ {qa,−qb | a, b ∈ Z}.
Recall that Morton and Wassermann proved that Bn is isomorphic the Kauffman tangle algebra [10]. Morton and

Wassermann defined Bn over the commutative ring Z[r±, ω, δ]/⟨r − r−1
− ω(δ − 1)⟩. In their definition, they do not

need the invertibility of ω. By specializing ω and r to 0 and 1, respectively, they proved that Kauffman tangle algebra is
isomorphic to the Brauer algebra Bn(δ) [2], which is the associative algebra over Z[δ] generated by si, ei, 1 ≤ i ≤ n − 1
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subject to the following relations:

(a) s2i = 1, for 1 ≤ i < n.
(b) sisj = sjsi if |i − j| > 1,
(c) sisi+1si = si+1sisi+1,

for 1 ≤ i < n − 1,
(d) e2i = δei, for 1 ≤ i < n.
(e) siej = ejsi, if |i − j| > 1,
(f) eiej = ejei, if |i − j| > 1.

(g) eisi = ei = siei,
for 1 ≤ i ≤ n − 1,

(h) siei+1ei = si+1ei,
ei+1eisi+1 = ei+1si,
for 1 ≤ i ≤ n − 2.

(i) ei+1eiei+1 = ei+1 and
eiei+1ei = ei, for 1 ≤ i ≤ n − 2.

Note that the relationship between Morton–Wassermann’s notations and our notations is

δ =
(q + r)(qr − 1)
r(q + 1)(q − 1)

.

Therefore, the Brauer algebra can be obtained from Bn by specializing q, r to 1.
We have limitq→1δ ∈ Z if r ∈ S and n ≥ 2 where

Z = {1, 2, . . . , n − 2} ∪ {−2,−4, . . . , 4 − 2n} ∪ {−1,−2, . . . , 4 − n}. (2.18)

When n ≤ 2, both S and Z are empty since we are assuming δ ≠ 0 for both Bn and Bn(δ) in Theorem 2.17(a)(1)
and Theorem 2.19(a)(i). If r = ±qa, we have limitq→1δ ∈ Z. Therefore, by Theorem 2.17, we have the following result
immediately.

Theorem 2.19. Let Bn(δ) be the Brauer algebra over the field κ . Let p = char κ if char κ > 0 and let p = ∞ otherwise.

(a) Suppose p > n − 2.
(i) If δ ≠ 0, then δ is singular if and only if δ = a · 1κ and a ∈ Z,
(ii) If δ = 0, then δ is singular if and only if one of the following conditions holds:

(1) n is either even or odd with n > 7,
(2) n = 3 and p = 2.

(b) Suppose p ≤ n − 2. Then δ is singular if and only if δ = a · 1κ and a ∈ Z.

By comparing Theorems 2.17–2.19, we find that 0 is not singular for B5(0) if p > 3. The reason is that limitq→12(q4 +

1)(q6 + 1)(q8 + 1) ≠ 0 in κ if p > 3.
König and Xi pointed out that the singular parameter δ is dependent of δ only [9, p1502]. This is not correct. One can find

the counter-example by considering the cell module∆(1, (1))when p = 2 and δ = 0.
Finally, we remark that Theorem 2.19 can be proved by similar arguments for Bn. In order to give the detailed proof, we

need results which are similar to Theorem 3.3, Definition 3.5, Theorem 3.6 and Lemma 4.3 etc, which can be found in [3,7,
12,13,16] etc. We leave the details to the reader.

3. Representations of Birman–Murakami–Wenzl algebras

In this section, we recall some results on the representations of Bn over a field . We will use them to prove Theorem 2.17
in Section 4. We start by recalling some combinatorics.

Recall that a partition of n is a weakly decreasing sequence of non–negative integers λ = (λ1, λ2, . . . ) such that
|λ| := λ1 + λ2 + · · · = n. In this case, we write λ ⊢ n. Let Λ+(n) = {λ | λ ⊢ n}. Then Λ+(n) is a poset with dominance
order E as the partial order on it. More explicitly, λ E µ for λ,µ ∈ Λ+(n) if

i
j=1 λj ≤

i
j=1 µj for all possible i. Write

λ ▹ µ if λ E µ and λ ≠ µ.
Suppose that λ and µ are two partitions. We say that µ is obtained from λ by adding a box if there exists an i such that

µi = λi + 1 and µj = λj for j ≠ i. In this situation we will also say that λ is obtained from µ by removing a box and we
write λ → µ and µ \ λ = (i, λi + 1). We will say that the pair (i, λi + 1) is an addable node of λ and a removable node of
µ. Note that |µ| = |λ| + 1.

The Young diagram [λ] for a partitionλ = (λ1, λ2, . . .) is a collection of boxes arranged in left-justified rowswithλi boxes
in the i-th row of [λ]. A λ-tableau s is obtained by inserting i, 1 ≤ i ≤ n into [λ] without repetition. The symmetric group
Sn acts on s by permuting its entries. Let tλ be the λ-tableau obtained from the Young diagram Y (λ) by adding 1, 2, . . . , n
from left to right along the rows. For example, for λ = (4, 3, 1),

tλ =

1 2 3 4
5 6 7
8

If tλw = s, writew = d(s). Note that d(s) is uniquely determined by s.
A λ-tableau s is standard if the entries in s are increasing both from left to right in each row and from top to bottom in

each column. Let T std
n (λ) be the set of all standard λ-tableaux.
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For λ ⊢ n − 2f , let Sλ be the Young subgroup of Sn−2f generated by sj, 1 ≤ j ≤ n − 2f − 1 and j ≠
i

k=1 λk for all
possible i.

Let Λn = { (f , λ) | λ ⊢ n − 2f , 0 ≤ f ≤ ⌊
n
2⌋ }. Given (k, λ), (f , µ) ∈ Λn, define (k, λ) E (f , µ) if either k < f or k = f

and λ E µ. Write (k, λ) ▹ (f , µ), if (k, λ) E (f , µ) and (k, λ) ≠ (f , µ).
Let I(f , λ) = T std

n (λ)× Df ,n where Df ,n is defined in (2.12). Define

C (f ,λ)(s,u)(t,v) = T ∗

u T
∗

d(s)MλTd(t)Tv, (s, u), (t, v) ∈ I(f , λ) (3.1)

where Mλ = E f ,nXλ, E f ,n
= En−1En−3 · · · En−2f+1, Xλ =


w∈Sλ

ql(w)Tw , and l(w), the length ofw ∈ Sn.

Theorem 3.2 ([5]). Let Bn be the Birman–Murakami–Wenzl algebra over R. Let ∗ : Bn → Bn be the R-linear anti-involution
which fixes Ti, 1 ≤ i ≤ n − 1. Then

(a) Cn =


C (f ,λ)(s,u)(t,v) | (s, u), (t, v) ∈ I(f , λ), λ ⊢ n − 2f , 0 ≤ f ≤ ⌊

n
2⌋


is a free R-basis of Bn.

(b) ∗(C (f ,λ)(s,u)(t,v)) = C (f ,λ)(t,v)(s,u).
(c) For any h ∈ Bn,

h · C (f ,λ)(s,u)(t,v) ≡


(u,w)∈I(f ,λ)

au,wC
(f ,λ)
(u,w)(t,v) mod B◃(f ,λ)

n

where B
◃(f ,λ)
n is the free R-submodule generated by C (k,µ)

(s̃,ũ)(t̃,ṽ) with (k, µ) ◃ (f , λ) and (s̃, ũ), (t̃, ṽ) ∈ I(k, µ). Moreover,
each coefficient au,w is independent of (t, v).

Theorem 3.2 shows that Cn is a cellular basis of Bn in the sense of [7]. We remark that Xi [19] first proved that Bn is
cellular in the sense of [7]. The cellular basis Cn was constructed by Enyang in [5].

In this paper, we will only consider left modules for Bn. By general theory about cellular algebras in [7], we know that,
for each (f , λ) ∈ Λn, there is a cell module∆(f , λ) of Bn, spanned by

{ T ∗

v T
∗

d(t)Mλ mod B◃(f ,λ)
n | (t, v) ∈ I(f , λ) } .

Further, there is an invariant form φf ,λ on∆(f , λ). Let

Rad∆(f , λ) = { x ∈ ∆(f , λ) | φf ,λ(x, y) = 0 for all y ∈ ∆(f , λ) } .

Then Rad∆(f , λ) is a Bn–submodule of∆(f , λ). Let

Df ,λ
= ∆(f , λ)/Rad∆(f , λ).

Recall that e is the order of q2 if q2 is a root of unity. Otherwise, e = ∞. We say that the partition λ is e-restricted if
λi − λi+1 < e for all possible i.

Theorem 3.3 ([19]). Let Bn be the Birman–Murakami–Wenzl algebra over the field κ which contains non-zero parameters r, q,
and q − q−1.

(a) Suppose r ∉ {q−1,−q}. The non-isomorphic irreducible Bn-modules are indexed by (f , λ) and λ is e-restricted.
(b) Suppose r ∈ {q−1,−q}.

(i) If n is odd, then the non-isomorphic irreducible Bn-modules are indexed by (f , λ), 0 ≤ f ≤ ⌊n/2⌋. λ ∈ Λ+(n− 2f ) and
λ is e-restricted.

(ii) If n is even, then the non-isomorphic irreducible Bn-modules are indexed by (f , λ), 0 ≤ f < ⌊n/2⌋. λ ∈ Λ+(n − 2f ), λ
is e-restricted.

By general results on cellular algebras in [7],Bn is (split) semisimple over κ if and only ifDf ,λ
= ∆(f , λ) for all (f , λ) ∈ Λn.

We remark that the authors have given the necessary and sufficient conditions for Bn being seimisimple over an arbitrary
field [14]. However, we will not need this result in this paper. What we need is the explicit criterion for∆(f , λ) being equal
to its simple head Df ,λ. In other words, we give a criterion to determine when the Gram determinant detGf ,λ ≠ 0. Here Gf ,λ
is the Gram matrix associated to the invariant form φf ,λ. We need some combinatorics to state this result.

For each box p = (i, j) ∈ [λ], define p+
= (i, j + 1), p−

= (i + 1, j), and

cλ(p) = rq2(j−i). (3.4)

We will use c(p) instead of cλ(p).
Given two partitions λ and µ, we write λ ⊃ µ if λi ≥ µi for all possible i. In this case, the corresponding skew Young

diagram [λ/µ] can be obtained from [λ] by removing all nodes in [µ].
We recall the definition of (f , µ)-admissible partition λ in [15]. In the Definition 3.5, we assume that q2 is not a root of

unity and the ground field κ is the complex field C although we give this definition with loose restrictions in [15].
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(a) (b)
Fig. 1.

Definition 3.5 ([15]). Given λ ∈ Λ+(n) and µ ∈ Λ+(n − 2f ), we say λ is (f , µ)-admissible over the field κ if

(a) λ ⊃ µ,
(b) there is a pairing of nodes pi, p̃i, 1 ≤ i ≤ f in [λ/µ] such that c(pi)c(p̃i) = 1. We call {pi, p̃i} an admissible pair. Further,

there are two possible configurations of nodes in [λ/µ] as follows.
(c) the number of columns in Fig. 1(b) is even if c(p) = q and {p, p−

} is an admissible pair which is contained in Fig. 1(b).
(d) the number of rows in Fig. 1(a) is even if c(p) = −q−1 and {p, p+

} is an admissible pair which is contained in Fig. 1(a).

Given a λ ∈ Λ+(n) and a node (i, j) ∈ [λ], let

hλij = λi − j + λ′

j − i + 1,

where λ′ is the dual partition of λ. This hλij is known as the (i, j)-hook length in [λ].
Recall that e is the order of q2 if it is a root of unity. Otherwise, e = ∞. Let p = char(κ) if char(κ) > 0 and let p = ∞ if

char(κ) = 0. For each integer h, define

νe,p(h) =


νp(

h
e ), if e < ∞ and e|h;

−1, otherwise

where νp(h) is the largest power of p dividing h if p is finite and ν∞(h) = 0 if p = ∞,
In the following result, κ is an arbitrary field.

Theorem 3.6 ([15]). Suppose κ is a field which contains invertible q, r and q − q−1. For each (f , λ) ∈ Λn, let detGf ,λ be the
Gram determinant associated to the cell module∆(f , λ). Then detGf ,λ ≠ 0 if and only if the following conditions hold:

(a) r ≠ ±qa where the integer a and the sign of qa are determined by (f − ℓ, λ)-admissible partitions over C with q ∈ C,
o(q2) = ∞ and 0 ≤ ℓ ≤ f − 1,

(b) λ is e-restricted,
(c) νe,p(hλac) = νe,p(hλab),∀(a, c), (a, b) ∈ [λ].

We are going to prove that Bn can be obtained from Hn−2f , 0 ≤ f ≤ ⌊n/2⌋ by inflations along certain vector spaces Vf .
When f = ⌊n/2⌋, we denote by Hn−2f the ground field κ .

It is proved in [1] that

En−1BnEn−1 = En−1Bn−2. (3.7)

Therefore, applying (3.7) repeatedly yields

E f ,nBnE f ,n
= E f ,nBn−2 (3.8)

for all positive integers f ≤ ⌊n/2⌋.
Now, let Vf be the free κ-module generated by Tu with u ∈ Df ,n. By (3.8), for any u, v ∈ Vf , we have E f ,nTuT ∗

v E
f ,n

= E f ,nh
for some h ∈ Bn−2f . Note that E f ,nh = 0 for h ∈ Bn−2f if and only if h = 0. This gives rise to a well-defined bilinear form

φf : Vf ⊗ Vf → Hn−2f (3.9)

such that φf (Tu, Tv) = ε−1
n−2f (h) and εn−2f is given in (2.9).

Proposition 3.10. Let Bn be the Birman–Murakami–Wenzl algebra over a field κ . For any non-negative integer f ≤ ⌊n/2⌋, we
have B

f
n/B

f+1
n ∼= Vf ⊗ Vf ⊗ Hn−2f as κ-algebras.

Proof. For any h ∈ Bn−2f , let h′ be the image of h in Bn−2f /⟨E1⟩. Then T ′
w = gw for all w ∈ Sn−2f . For all u, v ∈ Df ,n ,

by (2.11), the κ-linear map sending T ∗
v E

f ,nTwTu mod B
f+1
n to Tv ⊗ Tu ⊗ gw is the required isomorphism. The required anti-

involution onHn−2f is ∗ and the required anti-involution on Vf ⊗Vf ⊗Hn−2f can be defined as that for inflation of an algebra
along a vector space in (2.3). �
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We are going to recall some results on the representations of the Hecke algebra Hn over an arbitrary field κ .
Via the Kazhdan–Lusztig basis for Hn, Graham and Lehrer have proved that Hn is cellular over κ in the sense of [7]. In

this case, the corresponding poset isΛ+(n). We will use the cell module defined via Murphy basis {xts | s, t ∈ T std
n (λ)} for

Hn. We do not need the explicit construction of xts. In fact, what we need is the fact that the cell module∆(0, λ) for Bn with
λ ∈ Λ+(n) can be considered as the cell module for Hn defined via {xts | s, t ∈ T std

n (λ)}. We denote the corresponding
cell module by Sλ. Its κ-basis elements are denoted by {xs | s ∈ T std

n (λ)}. We remark that Sλ is known as the dual Specht
module for Hn.

Let φλ be the invariant form on Sλ and let Rad Sλ be the radical of φλ. Then RadSλ is an Hn-submodule of Sλ. It follows
from general results on cellular algebras in [7] that Dλ = Sλ/Rad Sλ is either zero or absolutely irreducible. It is known that
Dλ ≠ 0 if and only if λ is e-restricted.

By (2.4) and (2.5), the B
f
n/B

f+1
n -modules P(Dλ, ℓ) and Nφf (D

λ, ℓ) are well defined where Dλ is the simple head of Sλ,
1 ≤ ℓ ≤ dim Vf , and Vf , φf are given in (3.9).

The following result which can be verified directly, sets up the relationship between P(Dλ, ℓ),∆(f , λ) etc. Note that for
each (f , λ) ∈ Λn, B

f+1
n acts on∆(f , λ), trivially. Therefore, it can be considered as B

f
n/B

f+1
n -module.

Proposition 3.11. Suppose 0 < f ≤ ⌊n/2⌋ and λ ∈ Λ+(n − 2f ). As B
f
n/B

f+1
n -modules, we have

(a) Vf ⊗ vℓ ⊗ Sλ ∼= ∆(f , λ) for each basis element vℓ ∈ Vf .
(b) Vf ⊗vℓ⊗RadSλ is a submodule of Vf ⊗vℓ⊗ Sλ,∀ e-restricted partitions λ. The corresponding quotient module is isomorphic

to P(Dλ, ℓ).
(c) P(Dλ, ℓ)/Nφf (D

λ, ℓ) ∼= Df ,λ, for all e-restricted partitions λ.
(d) If Dλ = Sλ, then Nφf (D

λ, ℓ) ∼= Rad∆(f , λ).

4. Proof of Theorem 2.17

In this section, we always assume that r, q are defining parameters for Bn. Recall that e is the quantum characteristic in
(2.1).

Proposition 4.1. Suppose e > n − 2.

(1) If r ∉ {q−1,−q}, then r and q are singular if and only if r ∈ S given in (2.16).
(2) Suppose r ∈ {q−1,−q}. Then r and q are singular if and only if one of the following conditions holds

(a) n is either even or odd with n ≥ 7,
(b) n = 3 and q4 + 1 = 0.
(c) n = 5 and 2(q4 + 1)(q6 + 1)(q8 + 1) = 0.

Proof. Since we are assuming e > n−2, Hn−2f is semisimple over κ for any positive integer f ≤ [
n
2 ]. In particular, Sλ = Dλ,

∀λ ∈ Λ+(n− 2f ). By Proposition 3.11(d), Nφf (D
λ, i) ∼= Rad∆(f , λ) for some i, 1 ≤ i ≤ dim Vf . Therefore, r, q are singular if

and only if detGf ,λ = 0 for some (f , λ) ∈ Λn with 0 < f ≤ ⌊n/2⌋.
By [14, Prop. 5.1, Coro. 4.25], we have proved that r ∈ S and r ∉ {q−1,−q} if and only if detG1,(k−2) detG1,(1k−2) = 0 for

some integer k with 2 ≤ k ≤ n. Further, in the proof of [14, Prop. 5.6], we have proved that there is an (f , λ) ∈ Λn with
f > 0 such that detGf ,λ = 0 provided detG1,(k−2) detG1,(1k−2) = 0 for some integer kwith 2 ≤ k ≤ n. Therefore, r and q are
singular. This proves (1).

Suppose r ∈ {−q, q−1
}. In [14, p177], we have given the explicit formulae on detG1,λ for λ ∈ {(1), (3), (13), (2, 1)}, and

detG2,(1) up to some invertible elements in κ . We list these formulae as follows. One can use the Gap program [17] to verify
them easily.

(1) detG1,(1) = (q4 + 1) if r ∈ {q−1,−q}.
(2) detG1,(3) = 25

[2]10[3]14(1 + q8) if r = −q,
(3) detG1,(3) = −[2]10[3]11(1 + q4)6 if r = q−1,
(4) detG1,(1,1,1) = [3](1 + q4)6 if r = −q,
(5) detG1,(1,1,1) = 25

[3]4(1 + q8) if r = q−1,
(6) detG1,(2,1) = −[2]4[3]15(1 + q6)4 if r ∈ {q−1,−q}.
(7) detG2,(1) = −26(1 + q2)(1 + q4)10(1 + q6) if r ∈ {q−1,−q},

where [a] =
qa−q−a

q−q−1 for a ∈ Z.
Since we are assuming that e > n − 2, we have e > 3 if n = 5 and e ≥ 2 if n = 3. In each case, Sλ = Dλ. Therefore,

(2)(b)–(c) follows from these explicit formulae, immediately. In [14, P177], we have also proved that detGn/2,0 = 0 for even
n. This proves the first part of (2)(a).

Suppose that n is odd, with n ≥ 7. We have e > 5 and hence Sλ = Dλ for λ = (3, 2). At the end of the proof of [14, Prop.
5.8], we have proved detG n−5

2 ,(3,2) = 0, which forces r and q being singular. �
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We are going to deal with the case e ≤ n − 2. The following result may be well known. We include a proof here.

Lemma 4.2. Suppose that An are κ-algebras for all positive integers n such that An−1 is a subalgebra of An. If An-modules M and
N have filtrations of An−1-modules

0 = M0 ⊆ M1 ⊆ M2 ⊆ · · · ⊆ Mℓ−1 ⊆ Mℓ = M
0 = N0 ⊆ N1 ⊆ N2 ⊆ · · · ⊆ Nk−1 ⊆ Nk = N,

and if HomAn(M,N) ≠ 0, then there exist some integers i and j, 0 ≤ i ≤ ℓ − 1 and 0 ≤ j ≤ k − 1 such that
HomAn−1(Mi+1/Mi,Nj+1/Nj) ≠ 0.

Proof. Applying the left exact functor HomAn−1(M,−) to the short exact sequence

0 → Ni−1 → Ni → Ni/Ni−1 → 0

and using induction on i, we can find some integer j, 0 ≤ j ≤ ℓ − 1 such that HomAn−1(M,Nj+1/Nj) ≠ 0. Applying the left
exact functor HomAn−1(−,Nj+1/Nj) to the short exact sequence

0 → Mi−1 → Mi → Mi/Mi−1 → 0

and using induction on i, we can find an i, 0 ≤ i ≤ k − 1 such that HomAn−1(Mi+1/Mi,Nj+1/Nj) ≠ 0, as required. �

LetBn-mod be the category of leftBn-modules, by (3.7), En−1BnEn−1 = En−1Bn−2. Therefore, one can define two functors

Fn : Bn-mod → Bn−2-mod, and Gn−2 : Bn−2-mod → Bn-mod

such that

Fn(M) = En−1M and Gn−2(N) = BnEn−1 ⊗Bn−2 N,

for all left Bn-modulesM and left Bn−2-modules N . For the Brauer algebras, such two functors have been studied by Doran
et al. in [4].

For the simplification of notation, we will use F ,G instead of Fn and Gn−2, respectively. Note that F is an exact functor
and G is a right exact functor. We will denote B

f
n/B

f+1
n -module P(Dλ, ℓ) by Pn(Dλ, ℓ).

Lemma 4.3. Suppose that (f , λ) ∈ Λn.

(a) F G = 1.
(b) G(∆(f , λ)) = ∆(f + 1, λ).
(c) F (∆(f , λ)) = ∆(f − 1, λ).
(d) Let λ be e-restricted. Then G(Pn(Dλ, ℓ)) = Pn+2(Dλ, ℓ) for any integer ℓ, 1 ≤ ℓ ≤ dim Vf .
(e) Let λ be e-restricted. Then F (Pn(Dλ, ℓ)) = Pn−2(Dλ, ℓ) for any integer ℓ, 1 ≤ ℓ ≤ dim Vf .
(f) For each Bn-module N, if φ : ∆(f , λ) → N is non-zero, and if f ≥ 1, then F (φ) ≠ 0.

Proof. We have proved (a)–(c) and (f) in [15, 5.1] for right modules. One can use similar arguments to prove (a)–(c) and (f)
for left modules. We leave the details to the reader.

Let εn−2f : Hn−2f → Bn−2f /⟨E1⟩ be the isomorphism in (2.9). Let σf : Hn−2f → B
f
n/B

f+1
n be the κ-linear map defined

by

σf (h) = E f ,nεn−2f (h)+ Bf+1
n .

Enyang [6, Coro. 3.4] proved that σf (hgw) = σf (h)Tw for all h ∈ Hn−2f and w ∈ Sn−2f . Enyang [6] used E1E3 · · · E2f−1 to
define B

f
n. We use En−1En−3 · · · En−2f+1 to define B

f
n. Therefore, we have to make some modification.

It is well known that xstλ + H ◃λ
n−2f can be considered as a κ-basis of Sλ for all s ∈ T std

n−2f (λ). By abusing of notation, we
write xs = xstλ ∈ Hn−2f . Then εn−2f (xs) ∈ Bn−2f /⟨E1⟩.

Let Rad Sλ be the Jacobson radical of Sλ. Since we are assuming that λ is e-restricted, Rad Sλ is the same as the radical of
the invariant form φλ on Sλ. By abusing notation, we denote by εn−2f (Rad Sλ) ⊂ Bn−2f /⟨E1⟩ all elements εn−2f (h) such that
h =


asxs and h + H ◃λ

n−2f ∈ Rad Sλ. Similarly, we define εn−2f (Sλ) ⊂ Bn−2f /⟨E1⟩.

Let M (resp. M1) be the κ-subspace generated by T ∗
u E

f ,nεn−2f (h) + B
◃(f ,λ)
n , u ∈ Df ,n and h ∈ Hn−2f such that

εn−2f (h) ∈ εn−2f (Sλ) (resp. εn−2f (h) ∈ εn−2f (Rad Sλ)). It is routine to check that M ∼= ∆(f , λ) and M1 is a Bn-submodule of
M such that M/M1 ∼= Pn(Dλ, ℓ).

Let N (resp. N1) be the κ-subspace generated by T ∗
u E

f+1,n+2εn−2f (h) + B
◃(f ,λ)
n+2 , u ∈ Df+1,n+2 and h ∈ Hn−2f such that

εn−2f (h) ∈ εn−2f (Sλ) (resp. εn−2f (h) ∈ εn−2f (Rad Sλ)). It is routine to check thatN ∼= ∆(f +1, λ) andN1 is aBn+2-submodule
of N such that N/N1 ∼= Pn+2(Dλ, ℓ). In order to prove (d), we have to prove

Bn+2En+1 ⊗Bn M/M1 ∼= N/N1.
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We remark that xtλ +H ◃λ
n−2f ∉ Rad Sλ since Sλ is the cyclic Hn−2f -module generated by xtλ +H ◃λ

n−2f . This implies thatM/M1

(resp. N/N1) is also the cyclic module generated by E f ,nεn−2f (xtλ)+ M1 (resp. E f+1,n+2εn−2f (xtλ)+ N1).
By standard arguments, we define the Bn+2-homomorphism

ψ : Bn+2En+1 ⊗Bn M/M1 → N/N1

such that

ψ(hEn+1 ⊗Bn E f ,nεn−2f (xtλ)+ M1) = hE f+1,n+2εn−2f (xtλ)+ N1.

Since N/N1 is the cyclic module generated by E f+1,n+2εn−2f (xtλ)+ N1, ψ is surjective. Write

E = En−2En−4 · · · En−2f .

Then E f ,n
= E f ,nEE f ,n. Therefore,

Bn+2En+1 ⊗Bn M/M1 = Bn+2E f+1,n+2
⊗ EE f ,nεn−2f (xtλ)+ M1.

By [20, 2.7] for Bn+2, each element in Bn+2E f+1,n+2 can be written as a linear combination of T ∗
v E

f+1,n+2Bn−2f and
v ∈ Df+1,n+2 (Yu proved this result for cyclotomic Birman–Murakami–Wenzl algebras Bm,n of type G(m, 1, n). What we
need is the special result form = 1). So,

dimG(Pn(Dλ, ℓ)) ≤ dim Pn+2(Dλ, ℓ),

forcing ψ to be injective. This proves (d). Finally, (e) follows from (a) and (d). �

Proposition 4.4. Suppose e ≤ n − 2. If r, q are singular, then r = ±qa for some a ∈ Z.

Proof. If r, q are singular, then Nφf (D
λ, ℓ) ≠ 0 for some positive integer f ≤ ⌊n/2⌋, some irreducible Hn−2f -module Dλ and

some basis element vℓ ∈ Vf . In fact, the singularity of r and q are independent of vℓ. By Proposition 3.11(b), Rad∆(f , λ) ≠ 0.
Let Dℓ,µ be a composition factor of Nφf (D

λ, ℓ) ≠ 0. Then (ℓ, µ) ▹ (f , λ). Further, there is a submodule M of P(Dλ, ℓ) such
that Hom(∆(ℓ, µ), P(Dλ, ℓ)/M) ≠ 0.

Suppose ℓ = f . Applying the exact functor F to both ∆(f , µ) and P(Dλ, ℓ)/M repeatedly and using Lemma 4.3, we get
a non-zero homomorphism from ∆(0, µ) to Dλ/F f (M). Since we are assuming that Dλ is an irreducible Hn−2f -module,
we have F f (M) = 0. In other words, there is a non-zero epimorphism from ∆(0, µ) to Dλ, forcing µ D λ. This contradicts
(ℓ, µ) ▹ (f , λ). Therefore, ℓ < f .

We use induction on n to prove the result. We have n ≥ 4 since 2 ≤ e ≤ n − 2. The case n = 4 can be verified
directly. Suppose n > 4. By assumption, we have a non-zero homomorphism from Dℓ,µ to ∆(f , λ)/N for some submodule
N ⊂ ∆(f , λ). Applying the exact functor F and using Lemma 4.3, we can assume ℓ = 0.

Suppose f = 1. Enyang [6] defined the Jucys–Murphy elements Li, 1 ≤ i ≤ n forBn such that L1 = r and Li = Ti−1Li−1Ti−1.
Further, he proved that L1, . . . , Ln commute each other and

n
i=1 Li is a central element ofBn. Therefore,

n
i=1 Li acts on each

cell module (and hence its non-zero quotient modules) as a scalar. We use it to act on both D0,µ to∆(1, λ)/N . Since there is
a nonzero homomorphism from D0,µ to∆(1, λ)/N , and since any cell module of a cellular algebra is indecomposable, both
modules belong to the same block. By [15, Theorem 2.2],

p∈[λ]

c(p) =


p∈[µ]

c(p), (4.5)

where c(p) is defined in (3.4). Since λ ∈ Λ+(n − 1) and µ ∈ Λ+(n), we can use the definition of c(p) to solve for r , which
shows that r ∈ {qa,−qa} for some integer a, as required.

Suppose f > 1. AsBn−1-module,D0,µmaybe reducible. Further, each composition factor is of formD0,η for somepartition
η with |η| = |µ| − 1. As Bn−1-module, ∆(f , λ) has ∆-filtration [6, Coro. 5.8]. By Lemma 4.2, D0,η has to be a composition
factor of ∆(f1, λ̃) for some suitable (f1, λ̃) ∈ Λn−1 such that f1 is either f or f − 1. In particular, f1 ≠ 0. Further, in the first
case, λ̃ can be obtained from λ by adding an addable node. In the second case, λ̃ can be obtained from λ by adding an addable
node. By induction assumption on n − 1, r = ±qa for some a ∈ Z. �

Proposition 4.6. If e ≤ n − 2 and r = ±qa for some integer a, then r and q are singular.

Proof. Since e ≤ n − 2, we can assume r = ±qa for some non-negative integer a with a < e. What we want to do is find
some suitable λ ∈ Λ+(n− 2f )with f > 0 such that Sλ = Dλ. We remark that this can be verified by Theorem 3.6 for f = 0.
We will define another (ℓ, µ) ∈ Λn. One can use the Definition 3.5 to verify thatµ is (f − ℓ, λ)-admissible. By Theorem 3.6
and Proposition 3.11, detGf ,λ = 0 and Nφf (D

λ, ℓ) ∼= Rad∆(f , λ) ≠ 0 for some ℓ, 1 ≤ ℓ ≤ dim Vf . So, r and q are singular.
In the remaining part of this proof, we will use Theorem 3.6 to construct (ℓ, µ) and (f , λ) explicitly. We define b = a+1.

So, 1 ≤ b ≤ e ≤ n−2. Since o(q2) = e, we have qe = −1.Wewill use this fact frequently in the remaining part of the proof.

Case 1. r = ±qa and r ∉ {q−1,−q}:



1304 H. Rui, M. Si / Journal of Pure and Applied Algebra 216 (2012) 1295–1305

We define (f , λ) = ( n−b
2 , (1

b)), and (ℓ, µ) = ( n−b−2
2 , (2, 1b)) if n − b is even. Otherwise, there are several subcases we

have to discuss.
Subcase 1. b ∉ {e − 1, e − 2}.
If b ≠ n − 3, then b < n − 3. Otherwise, b = e = n − 2 forcing 2 | n − b, a contradiction. Therefore, n−b−3

2 ≥ 1. We
define (ℓ, µ) = ( n−b−5

2 , (3, 2, 1b)), and (f , λ) = ( n−b−3
2 , (2, 2, 1b−1).

If b = n − 3, we have e = b = n − 3 and r = ±qa = ±q−1. Otherwise, e = n − 2 forcing b = e − 1, a contradiction. If
char(κ) = 2, there is nothing to be proved. Otherwise, since we are assuming r ≠ q−1, we have r = −q−1.

If n is even, then b and e have to be odd. So, e > 2. If n is odd, then b is even forcing b ≥ 2 and n ≥ 5. We define

(ℓ, µ) =

 n−4
2 , (3, 1)


, if 2 | n, n−5

2 , (2
2, 1)


, otherwise,

and

(f , λ) =

 n−2
2 , (2)


, if 2 | n, n−3

2 , (1
3)


, otherwise.

Subcase 2. b = e − 2.We have r = ±q−3, e ≥ 3 and n ≥ 5.
If n is even, then n ≥ 6 and 2 - e. We define

(ℓ, µ) =

 n−6
2 , (5, 1)


, if e > 4, n−3

2 , (2, 1)

, if e = 3,

and

(f , λ) =

 n−4
2 , (4)


, if e > 4, n−1

2 , (1)

, if e = 3.

If n is odd, then n ≥ 7. Otherwise, n = 5 and e = 3, which contradicts 2 - n − b. We define

(ℓ, µ) =

 n−7
2 , (4, 2, 1)


, if e ≠ 5, n−5

2 , (2, 1
3)


, if e = 5,

and

(f , λ) =

 n−5
2 , (3, 1

2)

, if e ≠ 5, n−3

2 , (1
3)


, if e = 5.

Subcase 3. b = e − 1.We have r = ±q−2, e ≥ 2 and n ≥ 4.
Suppose n is odd. We have 2 - e and n ≥ 5. We define

(ℓ, µ) =

 n−5
2 , (3, 2)


, if e ≠ 3, n−5

2 , (2
2, 1)


, if e = 3,

and

(f , λ) =

 n−3
2 , (2, 1)


, if e ≠ 3, n−1

2 , (1)

, if e = 3.

Suppose n is even. We define

(ℓ, µ) =

 n−6
2 , (3

2)

, if n ≥ 6,

(0, (22)), if n = 4,

and

(f , λ) =

 n−2
2 , (1

2)

, if n ≥ 6,

(2, (0)), if n = 4.

This completes the proof of our result for r = ±qa and r ∉ {q−1,−q}.

Case 2. r ∈ {q−1,−q}:

Subcase 1. e = 2. Then n ≥ 4 and r ∈ {q,−q}.
If n is even, we define (ℓ, µ) = ( n−4

2 , (2, 1
2)) and (f , λ) = ( n−2

2 , (1
2)).

If n is odd, then n ≥ 5. We define (ℓ, µ) = ( n−5
2 , (2

2, 1)) and (f , λ) = ( n−1
2 , (1)).
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Subcase 2. e > 2. Then n ≥ 5.
Suppose n is even. Then n ≥ 6. We define

(ℓ, µ) =

 n−4
2 , (3, 1)


, if r = q−1, n−4

2 , (2, 1
2)


, if r = −q,

and

(f , λ) =

 n−2
2 , (2)


, if r = q−1, n−2

2 , (1
2)


, if r = −q.

Suppose n is odd and r = q−1. We define

(ℓ, µ) =


 n−7

2 , (3
2, 1)


, if n ≥ 7, e ≠ 5, n−7

2 , (3, 2
2)


, if n ≥ 7, e = 5,

(0, (2, 13)), if n = 5, e = 3,

and

(f , λ) =


 n−5

2 , (3, 1
2)


, if n ≥ 7 and e ≠ 5, n−5

2 , (2
2, 1)


, if n ≥ 7 and e = 5,

(1, (13)), if n = 5 and e = 3.

Suppose r = −q. If n is even, we define (ℓ, µ) = ( n−4
2 , (2, 1

2)) and (f , λ) = ( n−2
2 , (1

2)).
If n is odd and n ≥ 7, we define

(ℓ, µ) =

 n−7
2 , (3, 2

2)

, if e ≠ 5, n−7

2 , (3
2, 1)


, if e = 5,

and

(f , λ) =

 n−5
2 , (3, 1

2)

, if e ≠ 5, n−5

2 , (3, 2)

, if e = 5.

If n = 5, then e = 3. We define (ℓ, µ) = (0, (15)) and (f , λ) = (1, (13)). This completes the proof of our result for
r ∈ {q−1,−q}. �

Proof of Theorem 2.17. Theorem 2.17 follows from Propositions 4.1 and 4.4–4.6, immediately. �
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