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Abstract

We prove Leavitt path algebra versions of the two uniqueness theorems of graph C∗-algebras. We use
these uniqueness theorems to analyze the ideal structure of Leavitt path algebras and give necessary and
sufficient conditions for their simplicity. We also use these results to give a proof of the fact that for any
graph E the Leavitt path algebra LC(E) embeds as a dense ∗-subalgebra of the graph C∗-algebra C∗(E).
This embedding has consequences for graph C∗-algebras, and we discuss how we obtain new information
concerning the construction of C∗(E).
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1. Introduction

In the late 1950s Leavitt constructed examples of rings R that do not have the “Invari-
ant Basis Number” property; i.e., RRm ∼= RRn as left R-module with m �= n [20–22]. It can
be shown that if R is a unital ring, then RR1 ∼= RRn for n > 1 if and only if there exist
elements x1, . . . xn, y1, . . . , yn ∈ R such that xiyj = δij 1R for all i, j and

∑n
i=1 yixi = 1R .

For a given field K , Leavitt considered the unital K-algebra L(1, n) generated by elements
{x1, . . . , xn, y1, . . . , yn} satisfying these relations.
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In 1977 Cuntz, independent of Leavitt’s work, introduced a class of C∗-algebras generated by
non-unitary isometries [11]. Specifically, if n > 1 the Cuntz algebra On is the C∗-algebra gen-
erated by isometries {s1, . . . , sn} satisfying s∗

i sj = δij I and
∑n

i=1 sis
∗
i = I . The Cuntz algebras

were the first examples of C∗-algebras that exhibited torsion in their K-theory [12] and have been
shown to arise in many seemingly unrelated situations. Consequently, the Cuntz algebras have
been studied extensively, and their theory is now a standard part of the toolkit of C∗-algebraists.

A generalization of the Cuntz algebras was introduced in 1980 by Cuntz and Krieger [13],
where they considered C∗-algebras, now called Cuntz–Krieger algebras, associated to finite
matrices with entries in {0,1}. Approximately seventeen years later, in 1997, Kumjian, Pask,
Raeburn and Renault [18,19] considered a generalization in which they associate a C∗-algebra to
a (possibly infinite) directed graph. These graph C∗-algebras have proven to be very important
objects of study for C∗-algebraists.

For a given graph E, the graph C∗-algebra C∗(E) is the universal C∗-algebra generated by
partial isometries satisfying relations determined by the graph E. Remarkably, it has also been
found that much of the structure of the C∗-algebra C∗(E) is reflected in the graph E. This results
in a beautiful and elegant theory in which one may translate C∗-algebraic properties into graph
theoretic properties and vice versa.

Furthermore, graph C∗-algebras have proven useful for a number of reasons. A short list of
which include: (1) the graph C∗-algebras include many known examples of C∗-algebras and
thereby they help to organize many prior known theories under a common rubric, (2) the use
of a directed graph as a tool allows one to translate many complicated C∗-algebra properties
into graph theoretic properties that can be visualized and examined combinatorially, (3) many
intricate C∗-algebra computations (e.g., for Ext and K-theory) can be reformulated as graph
computations that are typically easier to deal with, (4) one can produce examples and (coun-
terexamples) of C∗-algebras with given properties simply by producing directed graphs with the
corresponding properties.

Initially, graph C∗-algebras were considered only for row-finite graphs (i.e., graphs in which
each vertex emits at most a finite number of edges), and in fact it was unclear how to extend the
definition of C∗(E) to non-row-finite graphs. Later, in 2000, it was determined how to appro-
priately define C∗(E) for arbitrary graphs [15]. The C∗-algebras of non-row-finite graphs were
found to include examples of C∗-algebras not included in the row-finite case, and it was also
discovered that non-row-finite graph C∗-algebras exhibited behavior that was different from the
row-finite case. Consequently, descriptions of the C∗-algebraic properties of C∗(E) in terms of
the properties of E had to be modified significantly from the row-finite case, and new techniques
had to be developed to extend results from the row-finite case to the general case. Nonethe-
less, this program has been fairly successful, and today there exists an extensive theory of graph
C∗-algebras which has found applications to many other areas of operator algebra.

Inspired by the success of graph C∗-algebras, G. Abrams and G. Aranda-Pino sought to create
algebraic analogues of the graph C∗-algebras that generalize the relationship between the Leavitt
algebra L(1, n) and the Cuntz algebra On. In 2005, Abrams and Aranda-Pino defined the Leavitt
path algebra LK(E) to be the universal K-algebra generated by elements satisfying relations
similar to those of the generators for the graph C∗-algebra of E [1]. As with graph C∗-algebras,
this initial definition was given only in the case that E is a row-finite graph. Abrams and Aranda-
Pino established basic properties of these Leavitt path algebras, and soon after there was a flurry
of activity as many other authors [2–8] investigated their structure and found applications to var-
ious topics in algebra. As with graph C∗-algebras, it was found that much of the structure of
the algebra LK(E) is reflected in the graph E. Furthermore, and to many researchers’ surprise,
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it was often the case that when certain graph properties of E correspond to C∗-algebraic proper-
ties of C∗(E), the same graph properties of E correspond to the analogous algebraic properties
of LK(E). A few examples of this are the following: the conditions on E that correspond to
simplicity of C∗(E) are the same as the conditions on E that correspond to simplicity of LK(E);
the conditions on E that correspond to C∗(E) being simple and purely infinite are the same as
the conditions on E that correspond to LK(E) being simple and purely infinite; and the gauge-
invariant ideals of C∗(E) correspond to saturated hereditary subsets of vertices of E in much the
same way that the graded ideals of LK(E) correspond to saturated hereditary subsets of E.

What is even more astonishing is that neither the graph C∗-algebra results nor the Leavitt path
algebra results are obviously logical consequences of the other. Often different methods are used
in the proofs, and moreover, neither result can easily be seen to imply the other. This has left
many researchers wondering exactly what the relationship is between the Leavitt path algebras
and the graph C∗-algebras.

We also mention that Abrams and Aranda-Pino have very recently (September, 2006) ex-
tended the definition of the Leavitt path algebra to include non-row-finite graphs [3, Definition 1].
As with graph C∗-algebras, this has resulted in new examples of Leavitt path algebras not in-
cluded in the row-finite case, and many of these new algebras exhibit behavior different from the
Leavitt path algebras of row-finite graphs. At the time this paper was written, [3] is the only other
paper which has proven results about Leavitt path algebras of non-row-finite graphs.

The purpose of this paper is to establish analogues for Leavitt path algebras of the two main
uniqueness theorems of graph C∗-algebras, to use these theorems to deduce facts about the ideal
structure of Leavitt path algebras, and to examine the relationship between Leavitt path algebras
and graph C∗-algebras. In doing this we hope to establish techniques that will be useful for future
authors as they study Leavitt path algebras. We will make no assumption of row-finiteness of our
graphs, and will prove all results in the general case. As described earlier, this will involve a more
in-depth analysis and will require techniques different from those used in the row-finite case.

There are two main uniqueness theorems for graph C∗-algebras: The Gauge-Invariant Unique-
ness Theorem and the Cuntz–Krieger Uniqueness Theorem. Each of these theorems gives condi-
tions under which homomorphisms on C∗(E) are injective. They are fundamental results in the
subject and are used extensively in identifying the isomorphism class of a particular graph C∗-
algebra as well as deducing many general results about the structure of all graph C∗-algebras.
Consequently, from the graph C∗-algebraists perspective, it is rather surprising that the alge-
braists who have worked on Leavitt path algebras have not explicitly stated and proven versions
of these theorems. Often in papers on Leavitt path algebras the authors have used ad hoc meth-
ods to prove that a particular homomorphism is injective, and in deeper results a version of the
uniqueness theorem is often hidden in their proofs. (E.g., [1, Corollary 3.3] can be interpreted
as a weak version of the Cuntz–Krieger Uniqueness Theorem for Leavitt algebras of row-finite
graphs; the proof of [6, Theorem 5.3] involves showing that every graded ideal is generated by
idempotents, which is essentially an analogue of the Gauge-Invariant Uniqueness Theorem in the
row-finite case.) In the author’s opinion, it would be useful for the study of Leavitt path algebras
if these uniqueness theorems were explicitly stated and proven, so that they can be used in a more
forthright manner and be more accessible to other researchers.

After some definitions and preliminary results in Sections 2 and 3, we proceed in Section 4
to prove a Graded Uniqueness Theorem for Leavitt path algebras. This is an analogue of the
Gauge-Invariant Uniqueness Theorem for graph C∗-algebras, but because the grading on LK(E)

plays the role of the gauge action on C∗(E), we change the name.
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In Section 5 we use the Graded Uniqueness Theorem to analyze the ideal structure of a Leavitt
path algebra, and to give a complete description of the lattice of graded ideals of LK(E) in terms
of E. This result generalizes [6, Theorem 5.3], and (as with graph C∗-algebras) we will need to
consider new phenomena that arise in the non-row-finite case. Whereas graded ideals of Leavitt
path algebras of row-finite graphs correspond to saturated hereditary subsets of vertices of E, the
graded ideals of a general Leavitt path algebra correspond to admissible pairs (H,S), where H

is a saturated hereditary set of vertices and S is a special subset of vertices that emit infinitely
many edges. We also use the Graded Uniqueness Theorem to identify the quotient of a Leavitt
path algebra by a graded ideal as a Leavitt path algebra, and to show that any graded ideal of a
Leavitt path algebra is Morita equivalent to a Leavitt path algebra.

In Section 6 we prove a version of the Cuntz–Krieger Uniqueness Theorem for Leavitt path
algebras. We use this theorem to show that, in analogy with the graph C∗-algebra theory, a
graph E satisfies Condition (K) if and only if all ideals of LK(E) are graded. We then use
the Graded Uniqueness Theorem and the Cuntz–Krieger Uniqueness Theorem together to give
necessary and sufficient conditions on E for LK(E) to be simple.

Finally, in Section 7 we look at the relationship between Leavitt path algebras and graph
C∗-algebras. It is easy to see that if E is a graph, then the universal property of LK(E) implies
there is a homomorphism φ :LC(E) → C∗(E) taking generators to generators, and the image
of φ is a dense ∗-subalgebra of C∗(E). It has been asserted by many authors that for row-
finite graphs this homomorphism is injective, but a proof has never been written down in the
literature. We discuss some of the subtleties of this statement and argue that it is not immediately
obvious. (It is, of course, obvious when LC(E) is simple — so L(1, n) embeds into On, for
example — but it is not clear when LC(E) is not simple.) Nonetheless, we are able to show
that the injectivity of φ follows from the Graded Uniqueness Theorem we prove in Section 4.
Thus the result is true, but seemingly non-trivial. We also show that the injectivity of φ has
consequences for the construction of C∗(E). Typically C∗(E) is constructed by taking a free
algebra kE with generators corresponding to edges and vertices of E, forming a quotient kE/J to
ensure the necessary relations hold, and then defining a semi-norm on kE/J . One then defines K

to be all elements in kE/J for which this semi-norm equals zero, and C∗(E) is equal to the
completion (kE/J )/K . We show in Corollaries 7.5 and 7.6 that this semi-norm is actually a
norm, so that K = {0} and C∗(E) = kE/J . In addition, we show that by viewing LC(E) as a
∗-subalgebra of C∗(E), we obtain a correspondence I �→ I between graded ideals of LC(E) and
gauge-invariant ideals of C∗(E).

After this paper was written, it was brought to the author’s attention that Iain Raeburn had
proven special cases of the uniqueness theorems for Leavitt path algebras [24, §1.3]. In his work,
however, there are hypotheses on the underlying field K (viz. that K is a ∗-field, and that the
∗-operation is “positive definite”) as well as a standing hypothesis that all graphs are row-finite.
In the uniqueness theorems of this paper, Theorems 4.8 and 6.8, we are able to circumvent the
need for any of these hypotheses.

Notation and Conventions. Since our audience is both algebraists and C∗-algebraists, we do
our best to make this paper accessible to both groups. Because we are working with rings and
K-algebras throughout this paper, we discuss preliminaries and establish basic facts in Section 3.
While much of this may seem pedantic to our algebraist readers, it will be of more interest to
C∗-algebraists since we focus on those aspects of rings and algebras that are different from what
occurs in the C∗-algebra setting. Throughout this paper we will also make attempts to compare
our results for Leavitt path algebras to the graph C∗-algebra theory.
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In addition, we will use the following conventions: all of our rings are not necessarily commu-
tative and do not necessarily have identity; all ideals are two-sided; our graphs are not necessarily
row-finite; the symbol K denotes a field; Mn(K) denotes the n × n matrices with entries in K ;
and M∞(K) denotes the infinite N × N matrices with all but a finite number of entries equal to
zero — thus if we include Mn(K) ↪→ Mn+1(K) by mapping to the upper left corner, we have
M∞(K) = ⋃∞

n=1 Mn(K).

2. The definition of the Leavitt path algebra

In this paper when we refer to a graph, we shall always mean a directed graph E :=
(E0,E1, r, s) consisting of a countable set of vertices E0, a countable set of edges E1, and
maps r :E1 → E0 and s :E1 → E0 identifying the range and source of each edge.

Definition 2.1. Let E := (E0,E1, r, s) be a graph. We say that a vertex v ∈ E0 is a sink if
s−1(v) = ∅, and we say that a vertex v ∈ E0 is an infinite emitter if |s−1(v)| = ∞. A singular
vertex is a vertex that is either a sink or an infinite emitter, and we denote the set of singular
vertices by E0

sing. We also let E0
reg := E0 \ E0

sing, and refer to the elements of E0
reg as regular

vertices; i.e., a vertex v ∈ E0 is a regular vertex if and only if 0 < |s−1(v)| < ∞.

Definition 2.2. If E is a graph, a path is a sequence α := e1e2 . . . en of edges with r(ei) = s(ei+1)

for 1 � i � n− 1. We say the path α has length |α| := n, and we let En denote the set of paths of
length n. We consider the vertices in E0 to be paths of length zero. We also let E∗ := ⋃∞

n=0 En

denote the paths of finite length, and we extend the maps r and s to E∗ as follows: For α :=
e1e2 . . . en ∈ En, we set r(α) = r(en) and s(α) = s(e1).

Definition 2.3. We let (E1)∗ denote the set of formal symbols {e∗: e ∈ E1}, and for α =
e1 . . . en ∈ En we define α∗ := e∗

ne
∗
n−1 . . . e∗

1 . We also define v∗ = v for all v ∈ E0. We call the
elements of E1 real edges and the elements of (E1)∗ ghost edges.

Definition 2.4. Let E be a directed graph, and let K be a field. The Leavitt path algebra of E

with coefficients in K , denoted LK(E), is the universal K-algebra generated by a set {v: v ∈ E0}
of pairwise orthogonal idempotents, together with a set {e, e∗: e ∈ E1} of elements satisfying

(1) s(e)e = er(e) = e for all e ∈ E1,
(2) r(e)e∗ = e∗s(e) = e∗ for all e ∈ E1,
(3) e∗f = δe,f r(e) for all e, f ∈ E1,
(4) v = ∑

{e∈E1: s(e)=v} ee∗ whenever v ∈ E0
reg.

Remark 2.5. When we say that LK(E) is universal, we mean that it is universal for the relations
listed in the definition. In other words, if A is a K-algebra containing a set of pairwise orthogonal
idempotents {av: v ∈ E0} and a set of elements {be, be∗ : e ∈ E1} satisfying the relations listed
above, then there exists an algebra homomorphism φ :LK(E) → A with φ(v) = av for all v ∈ E0

as well as φ(e) = be and φ(e∗) = be∗ for all e ∈ E1.

Remark 2.6 (The Construction of LK(E)). To show that LK(E) exists, begin by constructing
the free algebra K[E0 ∪ E1 ∪ (E1)∗] subject to the relations
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(i) vw = δvwv for every v,w ∈ E0,
(ii) e = er(e) = s(e)e for every e ∈ E1,

(iii) e∗ = e∗s(e) = r(e)e for every e ∈ E1.

(As pointed out in [1, Definitions 1.2 and 1.3], this is the path algebra of the extended graph Ê

formed from E by adding a “ghost edge” e∗ for every e ∈ E1 with s(e∗) = r(e) and r(e∗) = s(e).)
We then let I be the ideal in this algebra generated by the elements {e∗f − δef r(e): e, f ∈
E1} ∪ {v − ∑

s(e)=v ee∗: v ∈ E0
reg}. We define LK(E) to be the quotient of this algebra by the

ideal I . We see that in LK(E) the following relations hold:

(CK1) e∗f = δef r(e) for e, f ∈ E1,
(CK2) v = ∑

s(e)=v ee∗ for v ∈ E0
reg.

The relations (CK1) and (CK2) are often called the “Cuntz–Krieger relations” after the relations
introduced by Cuntz and Krieger for their eponymous C∗-algebras. We can see that LK(E) as
defined here satisfies the relations in Definition 2.4, and has the appropriate universal property.
Furthermore, it can be shown that the elements {v: v ∈ E0} ∪ {e, e∗: e ∈ E1} are all non-zero
in LK(E). Finally, we mention that the universal property implies that LK(E) is unique (up to
isomorphism).

3. Basic results for Leavitt path algebra

In this section we establish some basic results for Leavitt path algebras that will later be
useful for us. We shall try to compare and contrast these results to the corresponding facts for
C∗-algebras.

3.1. Involution and self-adjoint ideals

We see that elements of LK(E) will be linear combinations of words in {v: v ∈ E0} ∪
{e, e∗: e ∈ E1} with coefficients from the field K . From the relations in Definition 2.4 can see
the following.

Lemma 3.1. If E is a graph and LK(E) is the associated Leavitt path algebra, then for any
α,β, γ, δ ∈ E∗ we have

(αβ∗)(γ δ∗) =

⎧⎪⎨⎪⎩
αγ ′δ∗ if γ = βγ ′,
αδ∗ if β = γ,

αβ ′ ∗δ∗ if β = γβ ′,
0 otherwise.

This result shows us that any word in {v: v ∈ E0} ∪ {e, e∗: e ∈ E1} may be written in the
form αβ∗, where α,β ∈ E∗ and r(α) = r(β).

Corollary 3.2. If E is a graph and LK(E) is the associated Leavitt path algebra, then

LK(E) = span
{
αβ∗: α,β ∈ E∗ and r(α) = r(β)

}
.
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Consequently, any element x ∈ LK(E) can be written in the form x = ∑n
k=1 λkαkβ

∗
k , where

λk ∈ K and αk,βk ∈ E∗ with r(αk) = r(βk) for 1 � k � n.

Definition 3.3. We say that x ∈ LK(E) is a polynomial in all real edges if x = ∑n
k=1 λkαk for

λk ∈ K and αk ∈ E∗. We say that x ∈ LK(E) is a polynomial in all ghost edges if x = ∑n
k=1 λkβ

∗
k

for βk ∈ K and αk ∈ E∗.

Remark 3.4. If E is a graph and LK(E) is the associated Leavitt path algebra, we may define
a linear involution x �→ x̄ on LK(E) as follows: If x = ∑n

k=1 λkαkβ
∗
k , then x̄ = ∑n

k=1 λkβkα
∗
k .

Note that this operation is linear, involutive ( ¯̄x = x), and anti-multiplicative (xy = ȳx̄).
When K = C we may also define a conjugate-linear involution ∗ on LC(E) by setting x∗ :=∑n
k=1 λkβ

∗
k αk , where λk denotes the complex conjugate of λk . This ∗-operation is conjugate-

linear, involutive, and anti-multiplicative.

Definition 3.5. If LK(E) is a Leavitt path algebra, an ideal I of LK(E) is self-adjoint if I = I .

Remark 3.6. As described in [1, Remark 3.5], unlike ideals in C∗-algebras, the ideals in Leavitt
path algebras need not be self-adjoint. If E is the graph

•

consisting of a single vertex and a single edge, then LK(E) ∼= K[x, x−1]. If we let p := 1 + x +
x3, and I := 〈p〉, then we can show I is not self adjoint as follows: If p̄ = 1 + x−1 + x−3 ∈ I ,
then 1 + x2 + x3 = x3(1 + x−1 + x−3) ∈ I . But then, since K[x, x−1] is commutative, we must
have q(1 + x + x3) = 1 + x2 + x3 for some q ∈ K[x, x−1]. A degree argument then shows that
degq = 0, and q = a0 ∈ K , which is absurd. Hence p̄ /∈ I , and I is not self-adjoint.

3.2. Rings with local units

The Leavitt path algebras that we look at will not necessarily have a unit. However, every
Leavitt path algebra does have a set of local units. We mention that every C∗-algebra has an
approximate unit, which can often play the role of a unit when a unit does not exist. A set of
local units plays a similar role in the ring setting.

Definition 3.7. A set of local units for a ring R is a set E ⊆ R of commuting idempotents with
the property that for any x ∈ R there exists t ∈ E such that tx = xt = x.

By induction we obtain the following fact.

Proposition 3.8. If R is a ring with a set of local units E, then for any finite number of elements
x1, . . . , xn ∈ R, there exists t ∈ E such that txi = xit = xi for all 1 � i � n.

Definition 3.9. (See [16].) We say that a ring R has enough idempotents if there exists a collection
of mutually orthogonal idempotents {eα}α∈Λ such that R = ⊕

eαR = ⊕
Reα .
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Note that if we let S = {eα}α∈Λ be the mutually orthogonal idempotents of the above defini-
tion, then E := {∑n

k=1 ek: e1, . . . , en ∈ S} is a set of local units for R. Thus rings with enough
idempotents are rings with local units.

Remark 3.10. If E is a graph and LK(E) is the associated Leavitt path algebra, then

LK(E) =
⊕
v∈E0

vLK(E) =
⊕
v∈E0

LK(E)v

so LK(E) is a ring with enough idempotents. Furthermore, if we list the vertices of E as E0 =
{v1, v2, . . .}, let

Λ :=
{ {1,2, . . . , |E0|} if E0 is finite,

{1,2, . . .} if E0 is infinite

and set tn := ∑n
k=1 vk , then {tn}n∈Λ is a set of local units for LK(E).

In general, if A is a K-algebra, then a ring ideal of A is not necessarily an algebra ideal of A.
However, when A has a set of local units, the ring ideals and algebra ideals coincide.

Lemma 3.11. If A is an algebra that is also a ring with a set of local units, then I is a ring ideal
of R if and only if I is an algebra ideal of A.

Proof. If I is an algebra ideal, then I is trivially a ring ideal. If I is a ring ideal, then to show
I is an algebra ideal it suffices to show that I is closed under scalar multiplication by elements
of K . Let x ∈ I and k ∈ K . Choose an idempotent t ∈ R such that tx = x. Since I is a ring ideal,
kx = k(tx) = (kt)x ∈ I . �

The above lemma will be useful when we discuss Morita equivalence of Leavitt path algebras.
Since the ring ideals and algebra ideals coincide, we will not have to worry about which we are
discussing when we use the term ideal.

3.3. Z-graded rings

All Leavitt path algebras have a natural Z-grading. As we shall see in Section 4, this grading
plays a role analogous to that of the gauge action for graph C∗-algebras.

Definition 3.12. If R is a ring, we say R is Z-graded if there is a collection of additive subgroups
{Rn}n∈Z of R with the following two properties.

(1) R = ⊕
n∈Z

Rn.
(2) RmRn ⊆ Rm+n for all m,n ∈ Z.

The subgroup Rn is called the homogeneous component of R of degree n.
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If E is a graph, then we may define a Z-grading on the associated Leavitt path algebra LK(E)

by setting

LK(E)n :=
{

l∑
k=1

λkαkβ
∗
k : αk,βk ∈ E∗ and |αk| − |βk| = n for 1 � k � l

}
.

The fact that this is a grading follows from Lemma 3.1 and Corollary 3.2. Note that, in fact,
each LK(E)n is closed under scalar multiplication by elements of K . Hence LK(E) is actually a
graded algebra. However, in this paper we will be primarily concerned with the fact that LK(E)

is a graded ring.

Definition 3.13. If R is a graded ring, then an ideal I of R is a Z-graded ideal if I =⊕
n∈Z

(I ∩ Rn). If φ :R → S is a ring homomorphism between Z-graded rings, then φ is a
graded ring homomorphism if φ(Rn) ⊆ Sn for all n ∈ Z.

Note that the kernel of a Z-graded homomorphism is a Z-graded ideal. Also, if I is a Z-
graded ideal in a Z-graded ring R, then the quotient R/I admits a natural Z-grading and the
quotient map R → R/I is a Z-graded homomorphism. In this paper we will be concerned only
with Z-gradings, and hence we will often omit the prefix Z and simply refer to rings, ideals,
homomorphisms, etc. as graded.

Definition 3.14. A ring R is idempotent if R2 = R; that is, if every x ∈ R can be written as
x = ∑n

k=1 akbk for a1, . . . , an, b1, . . . , bn ∈ R.

Remark 3.15. We see that if R is a ring with a set of local units, then R is idempotent: If x ∈ R,
then there exists an idempotent t ∈ R with x = tx. Consequently, the Leavitt path algebra LK(E)

is an idempotent ring.

3.4. Morita equivalence

Throughout this paper we will need to discuss Morita equivalence for rings that do not neces-
sarily have an identity element. We establish the necessary definitions and results here.

Definition 3.16. If R is a ring, we say that a left R-module is unital if RM = M . We also
say that M is non-degenerate if for all m ∈ M we have that Rm = 0 implies that m = 0. We
let R-Mod denote the full subcategory of the category of all R-modules whose objects are unital
non-degenerate R-modules. (Note that if R is unital, R-Mod is the usual category of R-modules.)
When R and S are rings, and RMS is a bimodule, we say M is unital if RM = M and MS = M .

Definition 3.17. Let R and S be idempotent rings. A (surjective) Morita context (R,S,M,N,

ψ,φ) between R and S consists of unital bimodules RMS and SNR , a surjective R-module
homomorphism ψ :M ⊗S N → R, and a surjective S-module homomorphism φ :N ⊗R M → S

satisfying

φ(n ⊗ m)n′ = nψ(m ⊗ n′) and m′φ(n ⊗ m) = ψ(m′ ⊗ n)m
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for every m,m′ ∈ M and n,n′ ∈ N . We say that R and S are Morita equivalent in the case that
there exists a Morita context.

It is proven in [17, Proposition 2.5] and [17, Proposition 2.7] that R-Mod and S-Mod are
equivalent categories if and only if there exists a Morita context (R,S,M,N,ψ,φ). In addition,
the following result is obtained in [17].

Proposition 3.18. (See [17, Proposition 3.5].) Let R and S be Morita equivalent idempotent
rings, and let (R,S,M,N,ψ,φ) be a Morita context. If

LR := {I ⊆ R: I is an ideal and RIR = I }

and

LS := {I ⊆ S: I is an ideal and SIS = I },

then there is a lattice isomorphism from LR onto LS given by I �→ φ(NI,M) with inverse given
by I �→ ψ(MI,N).

Remark 3.19. Note that when R is a ring with a set of local units, LR is the lattice of ideals
of R. Similarly when S is a ring with a set of local units. Therefore if each of R and S is a ring
with sets of local units, and if R and S are Morita equivalent, then the lattice of ideals of R is
isomorphic to the lattice of ideals of S.

Remark 3.20. Recall that, unlike C∗-algebras, the property of being a ring ideal is not transitive;
i.e., if R is a ring, I is an ideal of R, and J is an ideal of I , then it is not necessarily true that
J is an ideal of R. (To see that this is the case, let K be a field and let R := K[x]. If we let
I := {p(x) ∈ R: a0 = a1 = 0} and let J := {p(x) ∈ R: a0 = a1 = a3 = 0}, then I � R, and J � I .
However, J is not an ideal of R since x2 ∈ J and x ∈ R, but xx2 = x3 /∈ J .)

Despite this fact, there is a special case when the implication does hold, and this will be of
use to us.

Lemma 3.21. Let R be a ring and let I be an ideal of R with the property that I has a set of
local units. If J is an ideal of I , then J is an ideal of R.

Proof. Let r ∈ R and x ∈ J . Since I has a set of local units, there exists t ∈ I with tx = x.
Because I is an ideal, we have that rt ∈ I . Hence rx = r(tx) = (rt)x ∈ J . A similar argument
shows that xr ∈ I . �
4. The Graded Uniqueness Theorem

In this section we prove a Graded Uniqueness Theorem for Leavitt path algebras. This result
is analogous to the Gauge-Invariant Uniqueness Theorem for graph C∗-algebras ([9, Theo-
rem 2.1] and [10, Theorem 2.1]). The main difference is that the grading on the Leavitt path
algebra LK(E) replaces the gauge action of the graph C∗-algebra C∗(E). Consequently, the
homogeneous component of degree zero LK(E)0 replaces the fixed point algebra of the gauge
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action C∗(E)γ , and the hypothesis that our homomorphism is graded replaces the hypothesis
that the homomorphism is equivariant with respect to the gauge actions.

Lemma 4.1. Let I be a graded ideal of LK(E). Then I is generated as an ideal by the set
I0 := I ∩ LK(E)0.

Proof. Let n > 0. Given x ∈ In := I ∩ LK(E)n, we may write x = ∑m
k=1 αkxk where xk ∈

LK(E)0 for all k, αk ∈ En for all k, and αi �= αj for i �= j . Then for any 1 � i � m we have

xi = α∗
i

(
m∑

k=1

αkxk

)
= α∗

i x ∈ I.

Thus xi ∈ I0 and In = LK(E)nI0. Similarly, I−n = I0LK(E)−n. Since I is a graded ideal, I =⊕
n∈Z

In, and I is generated as an ideal by I0. �
Definition 4.2. For the Leavitt path algebra LK(E), and for each n ∈ N define the following
subalgebras of LK(E)0:

Gn := span
{
αβ∗: α,β ∈ En, r(α) = r(β)

}
,

Fn := span
{
αβ∗: α,β ∈ Ek, r(α) = r(β), 0 � k � n

}
.

Remark 4.3. It follows from the above definitions that Fn+1 = Gn+1 + Fn for each n ∈ N. We
also see that Fn ⊆ Fn+1 for all n ∈ N and LK(E)0 = ⋃∞

n=0 Fn. Furthermore, Gn is an ideal of
the subalgebra Fn.

Lemma 4.4. For any Leavitt path algebra LK(E) we have G0 ∩G1 = span{v: v ∈ E0
reg}. Further-

more, if π :LK(E) → A is a ring homomorphism with the property that π(v) �= 0 for all v ∈ E0,
then π(G0) ∩ π(G1) = π(span{v: v ∈ E0

reg}).

Proof. We will show that π(G0) ∩ π(G1) = π(span{v: v ∈ E0
reg}). The fact that G0 ∩ G1 =

span{v: v ∈ E0
reg} then follows by taking π equal to the identity map on LK(E).

If v ∈ E0
reg, then v ∈ G0 and v = ∑

s(e)=v ee∗ ∈ G1. Hence v ∈ G0 ∩ G1 and π(span{v: v ∈
E0

reg}) ⊆ π(G0) ∩ π(G1).

Conversely, choose an element x ∈ π(G0) ∩ π(G1). Since G0 = span{v: v ∈ E0}, we
have that x = π(a) where a = ∑n

k=1 λkvk for λk ∈ K . Also, since x ∈ π(G1), we have
x = π(

∑m
j=1 μjejf

∗
j ) where μj ∈ K . Thus π(

∑n
k=1 λkvk) = π(

∑m
j=1 μjejf

∗
j ). For any 1 �

k � n, if we multiply each side of this equation on the left by π(vk) we have π(λkvk) =
π(

∑
s(ej )=vk

μj ejf
∗
j ). Because there exist edges with source equal to vk , the vertex vk is not

a sink. Furthermore, vk is not an infinite emitter, for if it was, we could find an edge e ∈ s−1(v)

not equal to any of the ej ’s, and multiplying each side of the previous equation on the left
by π(ee∗) would yield π(λkee

∗) = 0, which implies that π(r(e)) = π(λ−1
k e∗)π(λkee

∗)π(e) = 0
giving a contradiction. Therefore vk ∈ E0

reg, and since this is true for all 1 � k � n, we have

x = π(
∑n

k=1 λkvk) ∈ π(span{v: v ∈ E0
reg}). �
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Lemma 4.5. If LK(E) is a Leavitt path algebra, then Fn ∩ Gn+1 = Gn ∩ Gn+1 for all n ∈ N.
Furthermore, if π :LK(E) → A is a ring homomorphism, then π(Fn) ∩ π(Gn+1) = π(Gn) ∩
π(Gn+1) for all n ∈ N.

Proof. Let n ∈ N. We will show that π(Fn) ∩ π(Gn+1) = π(Gn) ∩ π(Gn+1). The fact that Fn ∩
Gn+1 = Gn ∩ Gn+1 then follows by taking π equal to the identity map on LK(E).

Since Gn ⊆ Fn, we have π(Gn) ∩ π(Gn+1) ⊆ π(Fn) ∩ π(Gn+1). Conversely, let x ∈ π(Fn) ∩
π(Gn+1). List the elements of En as En = {αi : i ∈ I } where I = {1, . . . ,N} if En is finite,
and I = N if En is infinite. If we define tm := π(

∑m
i=1 αiα

∗
i ), then {tm}m∈I is a set of local

units for π(Gn). Furthermore, since x ∈ π(Gn+1) we may write x = π(
∑

i∈F αixi) for αi ∈ En,
xi ∈ LK(E), and some finite set F ⊆ I . Thus there exists m ∈ I such that tmx = x. Because
tm ∈ π(Gn) and π(Gn) is an ideal in π(Fn), it follows that x = tmx ∈ π(Gn). Thus x ∈ π(Gn) ∩
π(Gn+1). �
Lemma 4.6. For any Leavitt path algebra LK(E), if π :LK(E) → A is a ring homomorphism
with the property that π(v) �= 0 for all v ∈ E0, then π(Fn ∩ Gn+1) = π(Fn) ∩ π(Gn+1).

Proof. By Lemma 4.5 it suffices to show that π(Gn ∩ Gn+1) = π(Gn) ∩ π(Gn+1). We trivially
have that π(Gn ∩ Gn+1) ⊆ π(Gn) ∩ π(Gn+1).

For the converse, let x ∈ π(Gn) ∩ π(Gn+1). Since x ∈ π(Gn) we may write x = π(a) where
a = ∑m

k=1 λkαkβ
∗
k for λk ∈ K and αk,βk ∈ En. For any 1 � k � n, if we multiply the equa-

tion π(a) = π(
∑m

k=1 λkαkβ
∗
k ) on the left by π(α∗

k ) and on the right by π(βk) we obtain
π(α∗

k aβk) = π(λkr(αk)) ∈ π(G0). Furthermore, since x ∈ π(Gn+1) it follows that π(α∗
k aβk) =

π(α∗
k )xπ(βk) ∈ π(G1). Therefore, π(α∗

k aβk) ∈ π(G0)∩π(G1). Because π(α∗
k aβk) = π(λkr(αk))

it follows from Lemma 4.4 that r(αk) ∈ E0
reg. Since this is true for all k we have

a =
m∑

k=1

λkαkβk =
m∑

k=1

λkαk

( ∑
s(e)=r(αk)

ee∗
)

βk =
m∑

k=1

∑
s(e)=r(αk)

λk(αke)(βke)
∗

so that a ∈ Gn+1. Hence a ∈ Gn ∩ Gn+1 and x = π(a) ∈ π(Gn ∩ Gn+1). �
Lemma 4.7. Let n ∈ N and π :Fn+1 → A be a ring homomorphism with the property that
π(v) �= 0 for all v ∈ E0. Also let π̃ :Fn+1/Gn+1 → π(Fn+1)/π(Gn+1) and let π̄ :Fn/(Fn ∩
Gn+1) → π(Fn)/π(Fn ∩ Gn+1) be the canonical ring homomorphisms induced by π . Then
there exist isomorphisms φ :Fn/(Fn ∩ Gn+1) → Fn+1/Gn+1 and φ′ :π(Fn)/π(Fn ∩ Gn+1) →
π(Fn+1)/π(Gn+1) making the following diagram commute:

Fn/(Fn ∩ Gn+1)
φ

π̄

Fn+1/Gn+1

π̃

π(Fn)/π(Fn ∩ Gn+1)
φ′

π(Fn+1)/π(Gn+1).

Proof. Define a homomorphism φ :Fn/(Fn ∩ Gn+1) → Fn+1/Gn+1 by φ(x + (Fn ∩ Gn+1)) =
x + Gn+1. Since Fn ∩ Gn+1 ⊆ Gn+1, it follows that φ is well-defined. In addition, φ is injective
because if φ(x + (Fn ∩ Gn+1)) = 0 + Gn+1, then x ∈ Gn+1 and since x ∈ Fn also, we have
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x ∈ Fn ∩ Gn+1 and x + (Fn ∩ Gn+1) = 0 + (Fn ∩ Gn+1). Finally, we see that φ is surjective
because Fn+1 = Gn+1 +Fn.

We define φ′ :π(Fn)/π(Fn ∩ Gn+1) → π(Fn+1)/π(Gn+1) by φ′(x + π(Fn ∩ Gn+1)) = x +
π(Gn+1). By Lemma 4.6, we know that π(Fn ∩ Gn+1) = π(Fn) ∩ π(Gn+1). Using this fact, an
argument as in the previous paragraph shows that φ′ is an isomorphism. It is straightforward to
check that the diagram in the statement of the lemma commutes. �
Theorem 4.8 (Graded Uniqueness Theorem). Let E = (E0,E1, r, s) be a graph and let LK(E)

be the associated Leavitt path algebra with the usual Z-grading. If A is a Z-graded ring, and
π :LK(E) → A is a graded ring homomorphism with π(v) �= 0 for all v ∈ E0, then π is injective.

Proof. It follows from Lemma 4.1 that the ideal kerπ is generated by the set LK(E)0 ∩ kerπ .
Thus it suffices to show that the restriction π |LK(E)0 :LK(E)0 → A is injective. In addition,
since LK(E)0 = ⋃∞

n=0 Fn it suffices to show that the restriction π |Fn
:Fn → A is injective for

all n ∈ N. We shall prove this by induction on n.
If n = 0, then F0 = span{v: v ∈ E0}. Suppose

∑m
k=1 λkvk ∈ F0 and π(

∑m
k=1 λkvk) = 0. Since

the vk’s are mutually orthogonal idempotents, for each 1 � j � m we have

π(λjvj ) =
m∑

k=1

π(vj )π(λkvk) = π(vj )

m∑
k=1

π(λkvk) = π(vj )π

(
m∑

k=1

λkvk

)
= 0.

Thus λjvj ∈ I , and by Lemma 3.11 either λj = 0 or vj = λ−1
j (λj vj ) ∈ I . Because π(vj ) �= 0 by

hypothesis, it follows that vj /∈ I and λj = 0. Because j was arbitrary, we have λk = 0 for all k

and
∑m

k=1 λkvk = 0. Hence π |F0 is injective.
For the inductive step assume that π |Fn

:Fn → A is injective. We then have the following
commutative diagram with exact rows

0 Gn+1

π |Gn+1

Fn+1

π |Fn+1

Fn+1/Gn+1

π̃

0

0 π(Gn+1) π(Fn+1) π(Fn+1)/π(Gn+1) 0

where π̃ :Fn+1/Gn+1 → π(Fn+1)/π(Gn+1) is the canonical homomorphism induced by π . We
now consider π |Gn+1 . For each v ∈ E0 let

Gn+1(v) := span
{
αβ∗: α,β ∈ En+1 and r(α) = r(β) = v

}
.

Then Gn+1(v) is orthogonal to Gn+1(w) for v �= w, and Gn+1 = ⊕
v∈E0 Gn+1(v) as rings. Fur-

thermore, for any αβ∗, γ δ∗ ∈ Gn+1(v) we have

αβ∗γ δ∗ =
{

αδ∗ if β = γ,

0 otherwise.

Hence {αβ∗: α,β ∈ En+1 and r(α) = r(β) = v} is a set of matrix units, and Gn+1 ∼= Mm(v)(K)

where m(v) is the (possibly infinite) value m(v) := |{α ∈ En+1: r(α) = v}|. It follows that Gn+1
is simple. If we let I = kerπ |Gn+1 , then I = ⊕

v∈E0 I ∩ Gn+1(v) (since Gn+1 = ⊕
v∈E0 Gn+1(v)
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as rings), and by the simplicity of Gn+1(v) the ideal I ∩ Gn+1(v) is either {0} or all of Gn+1(v).
Furthermore, for each v ∈ E0, we see that if α ∈ E∗ with r(α) = v, then π(α∗α) = π(v) �= 0
implies π(αα∗) �= 0. Thus αα∗ /∈ I ∩ Gn+1(v), and I ∩ Gn+1(v) = {0} for all v ∈ E0. Hence
I = {0} and π |Gn+1 is injective.

In addition, let π̄ :Fn/(Fn ∩ Gn+1) → π(Fn)/π(Fn ∩ Gn+1) be the canonical homomor-
phism induced by π . We showed in the previous paragraph that π |Gn+1 is injective. Hence
π |Fn∩Gn+1 :Fn ∩ Gn+1 → π(Fn ∩ Gn+1) is an isomorphism. Since π |Fn

is injective by hypothe-
sis, it follows that π̄ :Fn/(Fn∩Gn+1) → π(Fn)/π(Fn∩Gn+1) is injective. Therefore Lemma 4.7
implies that π̃ is injective.

Since π |Gn+1 and π̃ are injective, the commutative diagram above together an application of
the Five Lemma shows that π |Fn+1 :Fn+1 → π(Fn+1) is injective. Hence by the Principle of
Mathematical Induction, π |Fn

:Fn → A is injective for all n ∈ N, and π |LK(E)0 :L(K)0 → A is
injective. �
Remark 4.9. Note that in Theorem 4.8 we assumed π was a ring homomorphism and not an
algebra homomorphism.

5. Graded Ideals of LK(E)

We shall use the Graded Uniqueness Theorem to characterize the graded ideals of LK(E).
A characterization of the graded ideals of LK(E) when E is a row-finite graph was obtained
in [6, Theorem 5.3], [8, Lemma 2.3], and [8, Lemma 2.4]. As we shall see, in analogy with
graph C∗-algebras, the description of the graded ideals for Leavitt path algebras of non-row-
finite graphs will be more complicated than in the row-finite case — we will need to use not only
saturated hereditary subsets H of vertices, but admissible pairs (H,S) of vertices.

Furthermore, we mention that our method of proof involves a straightforward application
of the Graded Uniqueness Theorem. This is unlike the proof of [6, Theorem 5.3], which uses
K-theory and the order ideals of a monoid ME

∼= V (LK(E)). Thus in the special case of
row-finite graphs, our techniques yield a simpler method for characterizing the graded ideals
of LK(E) than that found in the proof of [6, Theorem 5.3].

Definition 5.1. A subset H ⊆ E0 is said to be hereditary if for any e ∈ E1 we have that s(e) ∈ H

implies r(e) ∈ H . A hereditary subset H ⊆ E0 is called saturated if whenever 0 < |s−1(v)| < ∞,
then {r(e) ∈ H : e ∈ E1 and s(e) = v} ⊆ H implies v ∈ H .

Definition 5.2. If H is a hereditary set, then we define the saturation of H to be the smallest
saturated hereditary subset H that contains H .

Definition 5.3. If H is a hereditary subset we define the breaking vertices of H to be the set

BH := {
v ∈ E0\H : v ∈ E0

inf and 0 <
∣∣s−1(e) ∩ r−1(E0 \ H

)∣∣ < ∞}
and for any v ∈ BH we let

vH := v −
∑

s(e)=v

ee∗.
r(e)/∈H
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Note that by the definition of BH the sum appearing above is finite. Also note that vH ∈ LK(E)0.

Definition 5.4. We call (H,S) an admissible pair if H is a saturated hereditary subset of E0

and S ⊆ BH . We let LE denote the set of admissible pairs of E, and we order these elements
by (H,S) � (H ′, S′) if and only if H ⊆ H ′ and S ⊆ H ′ ∪ S′. It turns out the ordered set LE is
actually a lattice, with upper and lower bounds given by:

(H1, S1) ∧ (H2, S2) := (
(H1 ∩ H2),

(
(S1 ∪ H1) ∪ (S2 ∪ H2)

) ∩ BH1∩H2

)
,

(H1, S1) ∨ (H2, S2) := (
(H1 ∪ H2) ∪ (

(S1 ∪ S2) ∩ Bc

H1∩H2

)
, (S1 ∪ S2) ∩ BH1∪H2

)
.

Definition 5.5. If H is a saturated hereditary subset of E0 and S ⊆ BH , let I(H,S) denote the
ideal in LK(E) generated by {v: v ∈ H } ∪ {vH : v ∈ S}.

Lemma 5.6. If H is a saturated hereditary subset of E0 and S ⊆ BH , then

I(H,S) = span
({

αβ∗: r(α) = r(β) ∈ H
} ∪ {

αvH β∗: r(α) = r(β) = v ∈ S
})

and I(H,S) is a graded ideal of LK(E) that is self-adjoint. Moreover, the ideal I(H,S) is an idem-
potent ring.

Proof. Let J denote the right-hand side of the above equation. Since I(H,S) contains v for v ∈
H and vH for v ∈ S, we see that J ⊆ I(H,S). Conversely, from an examination of the various
possibilities we see that any product of an element in LK(E) with an element of the form αβ∗ or
γ vH δ∗ will again be of one of these forms. Therefore, J is an ideal which contains the generators
of I(H,S) and we deduce that J = I(H,S).

To see that I(H,S) is graded it suffices to notice that αβ∗ and αvH β∗ are homogeneous of

degree |α|− |β|. In addition, we see that I(H,S) is self-adjoint because αβ∗ = βα∗ and αvH β∗ =
βvH α∗.

Finally, to see that I(H,S) is an idempotent ring, simply note that if αβ∗ ∈ I(H,S) with r(α) =
r(β) = v ∈ H , then αβ∗ = (αv)(vβ∗) and we have αv ∈ I(H,S) and vβ∗ ∈ I(H,S). Likewise, if
αvH β∗ ∈ I(H,S) with r(α) = r(β) ∈ S, then αvH β∗ = (αvH )(vH β∗) and we have αvH ∈ I(H,S)

and vH β∗ ∈ I(H,S). Consequently every element x ∈ I(H,S) can be written as x = a1b1 + · · · +
anbn for a1, . . . , an, b1, . . . , bn ∈ I(H,S), and I(H,S) is an idempotent ring. �
Theorem 5.7. Let E = (E0,E1, r, s) be a directed graph, and let LK(E) be the associated
Leavitt path algebra. Let LE be the lattice of admissible pairs of E, and for (H,S) ∈ LE let
I(H,S) denote the ideal generated by {v: v ∈ H } ∪ {vH : v ∈ S}. Then

(1) the map (H,S) �→ I(H,S) is an isomorphism from the lattice LE onto the lattice of graded
ideals of LK(E).

(2) For any admissible pair (H,S) ∈ LE we have that LK(E)/I(H,S) is canonically isomorphic
to LK(E \ (H,S)), where E \ (H,S) is the graph defined by(

E \ (H,S)
)0 := (

E0\H ) ∪ {v′: v ∈ BH \ S},(
E \ (H,S)

)1 := {
e ∈ E1: r(e) /∈ H

} ∪ {
e′: e ∈ E1, r(e) ∈ BH \S}
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and r and s are extended to (E \ (H,S))0 by setting s(e′) = s(e) and r(e′) = r(e)′.
(3) For any admissible pair (H,S) ∈ LE the ideal I(H,S) and the Leavitt path algebra

LK(E(H,S)) are Morita equivalent as rings, where E(H,S) is the graph defined by

E0
(H,S) := H ∪ S,

E1
(H,S) := {

e ∈ E1: s(e) ∈ H
} ∪ {

e ∈ E1: s(e) ∈ S and r(e) ∈ H
}

and we restrict r and s to E1
(H,S).

(4) For any hereditary subset X ⊆ E0, if we let IX denote the ideal in LK(E) generated by
{v: v ∈ X}, then IX = I(X,∅). Moreover, IX and LK(EX) are Morita equivalent as rings,
where EX := E(X,∅) is the graph defined in (3).

Proof. We shall begin by showing that the set {v ∈ E0: v ∈ I(H,S)} is precisely H and the set
{v ∈ BH : vH ∈ I(H,S)} is precisely S. To begin, we trivially have that H ⊆ {v ∈ E0: v ∈ I(H,S)}
and S ⊆ {v ∈ BH : vH ∈ I(H,S)}. For the reverse inclusion, let E \ (H,S) be the graph of (2) and
let {av: v ∈ (E \ (H,S))0} ∪ {be, be∗ : e ∈ (E \ (H,S))1} be the elements of LK(E \ (H,S))

defined by

av :=
⎧⎨⎩v if v ∈ (E0\H)\(BH \S),

v + v′ if v ∈ BH \S,

0 if v ∈ H,

be :=
⎧⎨⎩ e if r(e) ∈ (E0\H)\(BH \S),

e + e′ if r(e) ∈ BH \S,

0 if r(e) ∈ H

and

be∗ :=
⎧⎨⎩ e∗ if r(e) ∈ (E0\H)\(BH \S),

e∗ + (e′)∗ if r(e) ∈ BH \S,

0 if r(e) ∈ H.

Then the elements {av, be, be∗} satisfy the Leavitt path algebra relations for E: to see this, we
need to use the fact that H is hereditary to get the Cuntz–Krieger relations at vertices in H , and
that H is saturated to see that there are no vertices in E0\H at which a new Cuntz–Krieger re-
lation is being imposed (in other words, that any singular vertex in E \ (H,S)0 corresponds
to a singular vertex in E0). The universal property of LK(E) then gives a homomorphism
π :LK(E) → LK(E \ (H,S)) with π(v) = av , π(e) = be, and π(e∗) = be∗ . Then π vanishes
on I(H,S) because it kills all the generators {v: v ∈ H } ∪ {vH : v ∈ S}. But π(v) = av �= 0 for
v /∈ H , so v /∈ H implies v /∈ I(H,S). Thus {v ∈ E0: v ∈ I(H,S)} ⊆ H . Likewise, if v ∈ BH \S,
then π(vH ) = v′ �= 0 and {v ∈ BH : vH ∈ I(H,S)} ⊆ S.

Proof of (2): We shall show that LK(E)/I(H,S)
∼= LK(E \ (H,S)). Let {v ∈ E0} ∪ {e ∈ E1}

be the generators for LK(E). For each v ∈ (E \ (H,S))0 and e ∈ (E \ (H,S))1 define

Av :=
⎧⎨⎩v if v ∈ (E0\H)\(BH \S),∑

{e∈(E\(H,S))1: s(e)=v} ee∗ if v ∈ BH \S,
H ′
v if v = v
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and

Be :=
⎧⎨⎩

e if r(e) /∈ BH \S,

eAr(e) if r(e) ∈ BH \S,

eAr(e)′ if e = e′

and

Be∗ :=
⎧⎨⎩

e∗ if r(e) /∈ BH \S,

Ar(e)e
∗ if r(e) ∈ BH \S,

Ar(e)′e∗ if e = e′.

One can verify that {Av + I(H,S),Be + I(H,S),Av + I(H,S),Be + I(H,S)} is a set of elements in
LK(E)/I(H,S) satisfying the Leavitt path algebra relations for E \ (H,S). Thus there exists a
homomorphism φ :LK(E \ (H,S)) → LK(E)/I(H,S) taking the generators of LK(E \ (H,S))

to the corresponding elements of {Av + I(H,S),Be + I(H,S),Be∗ + I(H,S)}. It follows from the

first paragraph of this proof that qv /∈ I(H,S) for all v ∈ (E \ (H,S))0 and thus the elements
{qv + I(H,S)} are all non-zero in LK(E)/I(H,S). Furthermore, since I(H,S) is a graded ideal,
it follows that the quotient LK(E)/I(H,S) is graded. Since φ respects this grading, φ is a
graded homomorphism. It follows from Theorem 4.8 that φ is injective. Finally, we observe
that LK(E)/I(H,S) is generated by {e + I(H,S): r(e) /∈ H } ∪ {v + I(H,S): v /∈ H }. But for these
elements

v =
{

Av if v /∈ BH \S,

Av + Av′ if v ∈ BH \S,
e =

{
Be if r(e) /∈ BH \S,

Be + Be′ if r(e) ∈ BH \S

and

e∗ =
{

Be∗ if r(e) /∈ BH \S,

Be∗ + B(e′)∗ if r(e) ∈ BH \S

and thus φ is surjective. Hence LK(E)/I(H,S)
∼= LK(E \ (H,S)).

Proof of (1): We shall show that (H,S) �→ I(H,S) is a lattice isomorphism. To see that it
is surjective let I be a graded ideal in LK(E), and set H := {v ∈ E0: v ∈ I } and S := {v ∈
BH : vH ∈ I }. Since I(H,S) ⊆ I , we see that I(H,S) and I contain the same v’s and vH ’s. There-
fore, just as in the proof of part (2), we see that LK(E)/I(H,S) and LK(E)/I are generated
by non-zero elements satisfying the Cuntz–Krieger relations for E \ (H,S). Since both I(H,S)

and I are graded, both quotients are graded. Thus Theorem 4.8 implies that the quotient map
π :LK(E \ (H,S)) ∼= LK(E)/IH → LK(E)/I is an isomorphism. Hence I = I(H,S).

The fact that (H,S) �→ I(H,S) is injective follows immediately from the fact we deduced
in the first paragraph of this proof: the set {v ∈ E0: pv ∈ I(H,S)} is precisely H and the set
{v ∈ BH : pH

v ∈ I(H,S)} is precisely S. Thus the correspondence (H,S) �→ I(H,S) is bijective, and
since it also preserves containment it is a lattice isomorphism.

Proof of (3): List the elements of H = {v1, v2, . . .}, and list the elements of S = {w1,w2, . . .}.
(Each of these sets may be finite or infinite.) For i ∈ N define

ti :=
{

vi if i � |H |,
0 if i > |H | and ui :=

{
wH

i if i � |S|,

0 if i > |S|.
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Notice that the ti ’s (respectively, the ui ’s) will contain zero terms if and only if H (respec-
tively, S) is finite. Consider the ascending family of idempotents {en}∞n=1, where en := ∑n

i=1 ti +∑n
i=1 ui .
If we consider the elements {v: v ∈ H } ∪ {vH : v ∈ S} and {e, e∗: e ∈ E1 and s(e) ∈

H } ∪ {e, e∗: e ∈ E1, s(e) ∈ S and r(e) ∈ H } in LK(E), we see that they satisfy the Leavitt path
algebra relations for E(H,S) and thus there exists a homomorphism π :LK(E(H,S)) → LK(E)

taking the generators of LK(E(H,S)) to these elements. Since this homomorphism is graded,
Theorem 4.8 shows that π is injective. Hence we may identify LK(E(H,S)) with the subalgebra

span
({

αβ∗: α,β ∈ E∗
(H,S) and r(α) = r(β) ∈ H

} ∪ {
vH : v ∈ S

})
of LK(E).

With this identification, we see that LK(E(H,S)) = ∑∞
n=1 enLK(E)en. Moreover, Lemma 5.6

shows that I(H,S) = ∑∞
n=1 LK(E)enLK(E). Consider( ∞∑

n=1

enLK(E)en,

∞∑
n=1

LK(E)enLK(E),

∞∑
n=1

LK(E)en,

∞∑
n=1

enLK(E),ψ,φ

)

where ψ(m ⊗ n) = mn and φ(n ⊗ m) = nm. It is straightforward to show that this is a (surjec-
tive) Morita context for the idempotent rings LK(E(H,S)) and I(H,S). It then follows from [17,
Proposition 2.5] and [17, Proposition 2.7] that LK(E(H,S)) and I(H,S) are Morita equivalent.

Proof of (4): We first show that IX = I(X,∅). As in the proof of [9, Lemma 4.2], we note

that {v: v ∈ IX} is a saturated hereditary subset containing X. Therefore X ⊆ {v: v ∈ IX}, and
I(X,∅) = span{αβ∗: r(α) = r(β) ∈ X} ⊆ IX by Lemma 5.6. But since I(X,∅) is an ideal containing
{v: v ∈ X}, we have that IX = I(X,∅).

To see that IX is Morita equivalent to LK(EX), note that as in the proof of (3), we may identify
LK(EX) with the subalgebra of LK(E) generated by {v: v ∈ X} ∪ {e ∈ E1: s(e) ∈ X}. If we list
the elements of X = {v1, v2, . . .}, let

Λ :=
{ {1,2, . . . , |X|} if X is finite,

{1,2, . . .} if X is infinite

and let en := ∑n
i=1 vi , then we see that

LK(EX) =
∑
n∈Λ

enLK(E)en and IX =
∑
n∈Λ

LK(E)enLK(E).

In addition,( ∑
n∈Λ

enLK(E)en,
∑
n∈Λ

LK(E)enLK(E),
∑
n∈Λ

LK(E)en,
∑
n∈Λ

enLK(E),ψ,φ

)

with ψ(m ⊗ n) = mn and φ(n ⊗ m) = nm is a (surjective) Morita context for the idempotent
rings LK(EX) and IX . It then follows from [17, Proposition 2.5] and [17, Proposition 2.7] that
LK(EX) and IX are Morita equivalent. �
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Example 5.8. Let E be the graph

v

u x y z

w

where the double arrows ⇒ indicate that there are a countably infinite number of edges from v

to y, from x to y, and from w to y. Then H := {y, z} is a saturated hereditary subset. We see that
BH = {v,w}. If we let S := {v}, then (H,S) is an admissible pair. Furthermore, LK(E)/I(H,S)

is isomorphic to the LK(E \ (H,S)), where E \ (H,S) is the graph

v

u x

w′ w

and the ideal I(H,S) is Morita equivalent to LK(E(H,S)), where E(H,S) is the graph

v

y z.

6. The Cuntz–Krieger Uniqueness Theorem

In this section we derive another uniqueness theorem for LK(E), in analogy with the Cuntz–
Krieger Uniqueness Theorem for graph C∗-algebras. We show that if the graph E has the
property that all closed paths have exits, then we may remove the condition that the homo-
morphism is graded from the Graded Uniqueness Theorem. (In other words, when every closed
path of E has an exit, a homomorphism on LK(E) that does not kill any v is injective.) We
then use this to derive a condition on graphs, called Condition (K), that is equivalent to all ideals
in LK(E) being graded.

Definition 6.1. Let E be a graph. We sat that a path α = e1 . . . en ∈ En is a closed path if r(α) =
s(α), and we say that α is based at v if s(α) = v. We say that an edge f ∈ E1 is an exit for α if
s(f ) = s(ei) but f �= ei for some i ∈ {1,2, . . . , n}.

Definition 6.2. We say that a closed path α = e1 . . . en ∈ En is simple if s(ei) �= s(e1) for i =
2,3, . . . , n.
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Definition 6.3. A graph E satisfies Condition (L) if every closed path in E has an exit.

Remark 6.4. Note that a graph E satisfies Condition (L) if and only if every closed simple path
in E has an exit.

Lemma 6.5. Let E be a row-finite graph with no sinks. If I is a non-zero ideal in LK(E), then
there exists a non-zero element x ∈ I with the property that x is a polynomial in only ghost edges.

Proof. Choose a non-zero element y ∈ I . Since the elements of E0 are a set of local units
for LK(E), there exists v ∈ E0 such that vy �= 0. We may, by collecting terms, write

vy =
∑
α∈F

αzα

for a finite set F ⊆ E∗ and non-zero polynomials zα in only ghost edges. Let n = max{|α|:
α ∈ F }.

We claim that there exits β ∈ En such that β∗vy �= 0. If not, then β∗vy = 0 for all β ∈ En

and ββ∗vy = 0 for all v ∈ En. Since E is row-finite with no sinks, repeated applications of
relation (CK2) shows that v = ∑

{β∈En: s(β)=v} ββ∗. Thus

vy = v(vy) =
∑

{β∈En: s(β)=v}
ββ∗vy = 0,

which is a contradiction. Hence there exists β ∈ En such that β∗vy �= 0.
Let x = β∗vy. Then x is a non-zero element of I . In addition, since |β| � |α| for all α ∈ F ,

we see that β∗α is a path in ghost edges for all α ∈ F , and

x = β∗vy =
∑
α∈F

(β∗α)zα

is a polynomial in only ghost edges. �
Remark 6.6. If E is a graph, then a desingularization of E is a graph F that is row-finite
and has no sinks. The desingularization was introduced in [14, §2], and it was proven in [14,
Theorem 2.11] that forming the desingularization preserves the Morita equivalence class of the
associated graph C∗-algebra. Abrams and Aranda-Pino have recently shown in [3, Theorem 5.2]
that forming the desingularization also preserves the Morita equivalence class of the associated
Leavitt path algebra. We give another proof of this fact, as well as establish an isomorphism
between the ideals in the two Leavitt path algebras.

Lemma 6.7. Let E be a graph and let F be a desingularization of E. List the vertices
of E as E0 := {vi}i∈Λ, where Λ := {1,2, . . . , |E0|} if E0 is finite and Λ := {1,2, . . .}
if E0 is infinite, and define en := ∑n

i=1 vi . Then LK(E) is isomorphic to the subalgebra∑
n∈Λ enLK(F )en of LK(F), and LK(E) and LK(F) are Morita equivalent. Furthermore,

the map I �→ ∑
n∈Λ enIen is a lattice isomorphism from the lattice of ideals of LK(F) onto the

lattice of ideals of LK(E).



290 M. Tomforde / Journal of Algebra 318 (2007) 270–299
Proof. Let F be a desingularization of E, as described in [14, §2] and [3, §5], and assume the
reader is familiar with this construction. As described in the second paragraph of the proof of [3,
Theorem 5.2] there is a monomorphism φ :LK(E) → LK(F) that takes

v �→ v if v ∈ E0,

e �→ e if s(e) ∈ E0
reg,

ei �→ f1 . . . fi−1gi if ei ∈ E1 and s(ei) ∈ E0
sing,

e∗ �→ e∗ if e ∈ E1 and s(e) ∈ E0
reg,

ei �→ g∗
i f ∗

i−1 . . . f ∗
1 if ei ∈ E1 and s(ei) ∈ E0

sing.

It follows that the image of this monomorphism is equal to
∑

n∈Λ enLK(F )en, and thus LK(E)

is isomorphic to the subalgebra
∑

n∈Λ enLK(F )en of LK(F). We shall identify LK(E) with this
subalgebra. We then see that( ∑

n∈Λ

enLK(F )en,
∑
n∈Λ

LK(F)enLK(F ),
∑
n∈Λ

LK(F)en,
∑
n∈Λ

enLK(F ),ψ,φ

)
,

where ψ(m ⊗ n) = mn and φ(n ⊗ m) = nm, is a (surjective) Morita context for the idempotent
rings LK(F) = LK(F)enLK(F ) and enLK(F )en

∼= LK(E). Thus LK(F) and LK(E) are Morita
equivalent.

Furthermore, since LK(F) and LK(E) are rings with sets of local units, it follows from Propo-
sition 3.18 and Remark 3.19 that the map that sends I to

φ

( ∑
n∈Λ

enLK(F )I,
∑
n∈Λ

LK(F)en

)
=

∑
n∈Λ

enLK(F )I
∑
n∈Λ

LK(F)en =
∑
n∈Λ

enIen

is a lattice isomorphism from the lattice of ideals of LK(F) onto the lattice of ideals
of LK(E). �
Theorem 6.8 (Cuntz–Krieger Uniqueness). Let E be a graph that satisfies Condition (L), and let
LK(E) be the associated Leavitt path algebra. If π :LK(E) → A is a ring homomorphism with
π(v) �= 0 for all v ∈ E0, then π is injective.

Proof. First consider the case when E is row-finite with no sinks. Let I := kerπ . If I is non-zero,
then by Lemma 6.5 there is a non-zero element x ∈ I such that x is a polynomial in only ghost
edges. By [1, Corollary 3.8] there exist v ∈ E0 with v ∈ I . But this contradicts the assumption
that π(v) �= 0. Hence we must have I = {0}, and π is injective.

Now consider the case when E is not necessarily row-finite with no sinks. Again, let I :=
kerπ . Then π(v) �= 0 for all v ∈ E0 we have that I ∩ E0 = ∅. Let F be a desingularization of E,
list the vertices of E as E0 := {vi}i∈Λ, where

Λ :=
{ {1,2, . . . , |E0|} if E0 is finite,

{1,2, . . .} if E0 is infinite

and define en := ∑n
i=1 vi . By Lemma 6.7, there is an ideal J of C∗(E) such that∑

n∈Λ enJen = I .
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We claim that J ∩ F 0 = ∅ by arguing as follows: Certainly if v ∈ E0, then v ∈ J implies that
for large enough n we have v = enven ∈ I , which contradicts the fact that I ∩ E0 = ∅. Hence
J ∩ E0 = ∅. In addition, if v ∈ F 0 \ E0, then v is on a tail added to some singular vertex of E0,
and there exists a path α ∈ F ∗ with s(α) = v and r(α) ∈ E0. But then

r(α) = α∗α = α∗s(α)α = α∗vα ∈ J

contradicting the fact that J ∩ E0 = ∅. Hence we must have that J ∩ F 0 = ∅.
Since F is a desingularization of E, the graph F is row-finite with no sinks and it follows

from Lemma 2.7(a) that F satisfies Condition (L). Therefore, the fact that J ∩ F 0 = ∅, together
with Lemma 6.5 and [1, Corollary 3.8], implies that J = {0}. But then I = ∑

n∈Λ vnJvn = {0}
and π is injective. �
Remark 6.9. Note that in Theorem 6.8, as with the Graded Uniqueness Theorem, we assumed
π was a ring homomorphism and not an algebra homomorphism.

Corollary 6.10. Let E be a graph that satisfies Condition (L), and let LK(E) be the associated
Leavitt path algebra. If I is a non-zero ideal of LK(E), then I ∩ E0 �= ∅.

Using the Cuntz–Krieger Uniqueness Theorem we can characterize those graphs whose asso-
ciated Leavitt path algebras have the property that all ideals are graded.

Definition 6.11. A graph E satisfies Condition (K) if every vertex in E0 is either the base of no
closed path or the base of at least two simple closed paths.

The following proposition is well-known to graph C∗-algebraists. It has been proven in the
row-finite case in [25, Proposition 1.17] and [8, Theorem 4.5(2), (3)], and in the non-row-finite
case the proof is nearly identical.

Proposition 6.12. If E is a graph, then E satisfies Condition (K) if and only if for every admis-
sible pair (H,S) the graph E \ (H,S) defined Theorem 5.7(2) satisfies Condition (L).

Lemma 6.13. If E is the graph consisting of a single simple closed path of length n; i.e.,

E0 = {v1, . . . , vn}, E1 = {e1, . . . , en},
s(ei) = vi for 1 � i � n,

r(ei) = vi+1 for 1 � i < n and r(en) = v1

then LK(E) ∼= Mn(K) ⊗ K[x, x−1].

Proof. Let {ei,j } denote the matrix units of Mn(K). Note that the map which sends

vi �→ ei,i ⊗ 1 for 1 � i � n,

ei �→ ei,i+1 ⊗ x for 1 � i < n,

en �→ e1,n ⊗ x,
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e∗
i �→ ei+1,i ⊗ x−1 for 1 � i < n,

e∗
n �→ en,1 ⊗ x−1

is a homomorphism. (Simply check that the image elements satisfy the defining relations
for the generators of LK(E), and use the universal property.) Using the natural grading on
Mn(K) ⊗ K[x, x−1], we see that this homomorphism is graded, and by Theorem 4.8 the ho-
momorphism is injective. It is straightforward to show that the homomorphism is surjective, and
thus an isomorphism. �

The ideas in the following lemma were suggested to the author by Enrique Pardo.

Lemma 6.14. Let E be a graph, and let H be a saturated hereditary subset of E. Also let I(H,∅)

be the ideal of LK(E) defined in Theorem 4.8. Then I(H,∅) is a ring with a set of local units.

Proof. Let

F(X) := {
α = e1 . . . e|α| ∈ E∗: r(e|α|) ∈ H and r(ei) /∈ H for 1 � i � |α| − 1

}
.

List the elements of F(X) = {α1, α2, . . .} and list the elements of H = {v1, v2, . . .}. Define

ei :=
{

vi if i � |H |,
0 if i > |H |, fi :=

{
αiα

∗
i if i � |F(X)|,

0 if i > |F(X)|.
Note that the ei ’s (respectively, the fi ’s) will contain zero terms if and only if |H | (respectively,
|F(X)|) is infinite. Clearly these elements are idempotents, and one can also see that these idem-
potents are mutually orthogonal. (Note that by definition of F(X), no αi can extend an αj for
i �= j and thus αiα

∗
i αjαj = 0.) Thus if we define tn := ∑n

i=1 ei + ∑n
i=1 fi , we see that {tn}∞n=1

is a set of commuting idempotents. From Lemma 5.6 we have that

I(H,∅) = span
{
αβ∗: r(α) = r(β) ∈ H

}
.

Since any α ∈ E∗ with r(α) ∈ H either has s(α) ∈ H or may be written as α = γ δ for γ ∈ F(X),
we see that {tn}∞n=1 is a set of local units for I(H,∅). �
Lemma 6.15. Let E be a graph that contains a closed path with no exit. Then LK(E) contains
ideals that are not graded. In fact, the cardinality of the set of ideals in LK(E) that are not
graded will be at least max{ℵ0, |K|}.

Proof. Let α := e1 . . . en be a closed path with no exists in E. If we let X := {s(ei)}ni=1, then
since α has no exits, X is a hereditary subset of E0. By Theorem 5.7(4) LK(EX) is Morita
equivalent to the ideal IX = I(X,∅) in LK(E). However, EX is the graph which consists of a

single closed path, and thus LK(EX) ∼= Mn(K) ⊗ K[x, x−1] by Lemma 6.13. Theorem 5.7(1)
implies that LK(E) has no proper non-trivial graded ideals. In addition, K[x, x−1] is a Princi-
pal Ideal Domain (in fact, a Euclidean Domain) and a unital ring. Thus any two-sided ideal of
Mn(K)⊗K[x, x−1] is of the form Mn(K)⊗ I for an ideal I of K[x, x−1], and since any such I

is generated by a non-zero polynomial in the variables x and x−1 with coefficients from K , there
are infinitely many ideals in Mn(K) ⊗ K[x, x−1] and the cardinality of the set of these ideals
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corresponds with max{ℵ0, |K|}. It follows that LK(EX) contains an equal number of ideals that
are not graded. Because the Morita context described in the proof of Theorem 5.7(4) gives a
lattice isomorphism from ideals of LK(EX) to ideals of IX that preserves the grading, we may
conclude that IX contains at least this many ideals that are not graded. Since IX = I(X,∅) has a set
of local units by Lemma 6.14, it follows from Lemma 3.21 that ideals of IX are ideals of LK(E).
Hence LK(E) contains at least max{ℵ0, |K|} ideals that are not graded. �

These results together with the Cuntz–Krieger Uniqueness Theorem give us the following
theorem, which generalizes [8, Proposition 3.3].

Theorem 6.16. If E is a graph, then E satisfies Condition (K) if and only if every ideal in LK(E)

is graded.

Proof. Suppose that E satisfies Condition (K). If I is an ideal of LK(E), let H := {v: v ∈ I } and
let S := {v: vH ∈ I }. Then I(H,S) ⊆ I , and we have a canonical surjection q :LK(E)/I(H,S) →
LK(E)/I . By Theorem 5.7(2) there exists a canonical isomorphism φ :LK(E \ (H,S)) →
LK(E)/I(H,S). Thus the composition q ◦ φ :LK(E \ (H,S)) → LK(E)/I has the property that
q ◦ φ(v) �= 0 for all v ∈ E0. Since E satisfies Condition (K), it follows from Proposition 6.12
that E \ (H,S) satisfies Condition (L). Hence we may apply Theorem 6.8 to conclude that q ◦ φ

is injective. Since φ is an isomorphism, this implies that q is injective and I = I(H,S). It then
follows from Lemma 5.6 that I is graded.

Conversely, suppose that E does not satisfy Condition (K). Then there exists an admissible
pair (H,S) such that E \ (H,S) does not satisfy Condition (L). Thus there exists a closed simple
path with no exit in E \ (H,S), and by Lemma 6.15 the algebra LK(E \ (H,S)) ∼= LK(E)/I(H,S)

contains an ideal I that is not graded. If we let q :LK(E) → LK(E)/I(H,S), then q is graded,
and q−1(I ) is an ideal of LK(E) that is not graded. �
Corollary 6.17. If E satisfies Condition (K), then the map (H,S) �→ I(H,S) is a lattice isomor-
phism from the lattice of admissible pairs of E onto the lattice of ideals of LK(E).

The following result characterizes simplicity for Leavitt path algebras. A special case of this
result for Leavitt path algebras of row-finite graphs was obtained in [1, Theorem 3.11]. Our
method of proof is different, and in the row-finite case gives a shorter proof than the one in [1].

Theorem 6.18. Let E be a graph. The Leavitt path algebra LK(E) is simple if and only if E

satisfies the following two conditions:

(i) the only saturated hereditary subsets of E0 are ∅ and E0, and
(ii) the graph E satisfies Condition (L).

Proof. Suppose that LK(E) is simple. Then the only ideals of LK(E) are {0} and LK(E), both
of which are graded. By Theorem 6.16 we have that E satisfies Condition (K). It then follows
from Theorem 5.7(1) and the simplicity of LK(E) that the only saturated hereditary subsets
of E0 are ∅ and E0. Hence (i) holds. In addition, since Condition (K) implies Condition (L) (cf.
Proposition 6.12) we have that (ii) holds.

Conversely, suppose that (i) and (ii) hold. We shall show that E satisfies Condition (K). Let
v be a vertex and let α = e1 . . . en be a closed simple path based at v. By (ii) we know that α
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has an exit f ; i.e. there exists f ∈ E1 with s(f ) = s(ei) and f �= ei for some i. If we let H

be the set of vertices in E0 such that there is no path from that vertex to v, then H is saturated
hereditary. By (i) we must have either H = ∅ or H = E0. Since v /∈ H it must be the case that
H = ∅. Hence for every vertex in E0, there is a path from that vertex to v. Choose a path β ∈ E∗
from r(f ) to v of minimal length. Then e1 . . . ei−1fβ is a simple closed path based at v that is
distinct from α. Hence E satisfies Condition (K). It then follows from Theorem 5.7(1) and (i)
that LK(E) is simple. �

Condition (i) and (ii) in the above theorem can be reformulated in a number of equivalent
ways. The equivalence of the statements (2)–(5) in Proposition 6.20 are elementary facts about
directed graphs (cf. [25, Theorem 1.23] and [3, Proposition 3.2]).

Definition 6.19. A graph E is cofinal if whenever e1e2e3 . . . is an infinite path in E and v ∈ E0,
then there exists a finite path from v to s(ei) for some i ∈ N.

Proposition 6.20. Let E be a graph, and let LK(E) be the associated Leavitt path algebra. Then
the following are equivalent.

(1) LK(E) is simple.
(2) E satisfies Condition (L), and the only saturated hereditary subsets of E0 are ∅ and E0.
(3) E satisfies Condition (K), and the only saturated hereditary subsets of E0 are ∅ and E0.
(4) E satisfies Condition (L), E is cofinal, and whenever v ∈ E0

sing and w ∈ E0 there is a path
from v to w.

(5) E satisfies Condition (K), E is cofinal, and whenever v ∈ E0
sing and w ∈ E0 there is a path

from v to w.

7. The Leavitt path algebra LCCC(E) and graph C∗-algebra C∗(E)

Much of the progress made in the study of Leavitt path algebras has been motivated by the
theory developed for graph C∗-algebras in the past decade. Although Leavitt path algebras and
graph C∗-algebras have much in common (e.g., they each have generators satisfying the same
set of relations, and many similar results hold for the objects of each class), there are important
differences:

(1) Graph C∗-algebras are algebras over C with analytic structure, while Leavitt path algebras
are algebras (without any analytic structure) over an arbitrary field K .

(2) Recently it has been shown that certain graph C∗-algebra results do not hold for Leavitt
path algebras (e.g., it is shown in [7] that there is a graph E whose associated Leavitt path
algebra LK(E) has stable rank 2 but whose associated graph C∗-algebra C∗(E) has stable
rank 1).

(3) When similar results do hold for graph C∗-algebras and Leavitt path algebras, there is no
obvious way to deduce the results for one class from the results of the other class. Also,
in the current literature it is not uncommon for the proof of a result for one class to be
substantially different from the proof of the corresponding result for the other class.

In this section we examine the relationship between the Leavitt path algebra LC(E) and the graph
C∗-algebra C∗(E) for a fixed graph E.
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Definition 7.1. Let E be a graph. A Cuntz–Krieger E-family is a collection of mutually orthog-
onal projections {pv: v ∈ E0} and a collection of partial isometries with mutually orthogonal
ranges {se: e ∈ E1} satisfying the following three relations:

(CK1) s∗
e se = pr(e) for all e ∈ E1,

(CK2) pv = ∑
s(e)=v ses

∗
e for all v ∈ E0

reg,

(CK3) ses
∗
e � ps(e) for all e ∈ E1.

Definition 7.2. If E is a graph, the graph C∗-algebra C∗(E) is the C∗-algebra generated by
a universal Cuntz–Krieger E-family; that is, C∗(E) is generated by a Cuntz–Krieger E-family
{se,pv}, and whenever {te, qv} is a Cuntz–Krieger E-family sitting inside a C∗-algebra A, then
there exists a ∗-homomorphism φ : C∗(E) → A with φ(se) = te for all e ∈ E1 and φ(pv) = qv

for all v ∈ E0.

The existence and uniqueness (up to isomorphism) of the graph C∗-algebra is proven in [23,
Proposition 1.21]. If α = e1 . . . en ∈ E∗ we write sα for the product se1 . . . sen .

It has frequently been stated (without proof) that if E is a graph, then the Leavitt path algebra
LC(E) is isomorphic to the dense C∗-subalgebra

A := span
{
sαs∗

β : α,β ∈ E∗ and r(α) = r(β)
}

(7.1)

of C∗(E). (This is asserted in the second paragraph of the introduction to [1], and the second
paragraph of the introduction to [6], among other places. It is also used implicitly throughout
much of the work in [6].) In personal communication with the author, Ara and Pardo explained
that when they used this fact in [6], they knew it was true because it is a consequence of their
description of graded ideals in Leavitt path algebras of row-finite graphs [6, Theorem 5.3]. Thus
they deduced the row-finite case of the result as a consequence of the Graded Uniqueness Theo-
rem for row-finite Leavitt path algebras. We shall use our Graded Uniqueness Theorem, stated in
Theorem 4.8, to give a proof of the result in the general case. As far as we know, this is the only
place (even for the row-finite case) that a proof has been written down. Moreover, as we shall
see, this has consequences for the construction of the graph C∗-algebra.

Let us examine the statement “the Leavitt path algebra LC(E) is naturally isomorphic to the
dense ∗-subalgebra A of C∗(E) described in (7.1)” and consider the subtleties that make it non-
obvious. To begin, let us carefully state the universal properties of LK(E) and C∗(E).

Universal property of LK(E): If A is a K-algebra containing a collection of elements {av: v ∈
E0} ∪ {be, be∗ : e ∈ E1} satisfying the relations in Definition 2.4, then there is a ho-
momorphism φ :LK(E) → A with φ(v) = bv for all v ∈ E0 and φ(e) = be and
φ(e∗) = be∗ for all e ∈ E1.

Universal property of C∗∗∗(E): If A is a C∗-algebra containing a collection of projections
{qv: v ∈ E0} and partial isometries with mutually orthogonal ranges {te: e ∈ E1} sat-
isfying the relations in Definition 7.1, then there is a ∗-homomorphism φ :C∗(E) → A

with φ(pv) = qv for all v ∈ E0 and φ(se) = te for all e ∈ E1.

If we look at A of Eq. (7.1), then we see that A is a C-algebra and the elements {pv, se, s
∗
e :

v ∈ E0, e ∈ E1} satisfy the relations in Definition 2.4. Hence by the universal property
of LK(E), there exists a homomorphism φ :LC(E) → A with φ(v) = pv , φ(e) = se , and
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φ(e∗) = s∗
e . Furthermore, since {pv, se, s

∗
e : v ∈ E0, e ∈ E1} generate A as an algebra, we see

that φ is surjective.
We would like to show that φ is also injective, and hence an isomorphism. An immediate idea

of how to accomplish this is to use the universal property of C∗(E) to obtain a homomorphism ψ

such that ψ |A :A → LC(E) is an inverse for φ. However, there is a problem: in order to use the
universal property of C∗(E) to obtain the homomorphism ψ we need to know that the generators
{v, e, e∗: v ∈ E0, e ∈ E1} of LK(E) sit inside a C∗-algebra. Thus we need to show that LK(E)

embeds into a C∗-algebra (or equivalently, that LK(E) embeds as a ∗-subalgebra of B(H), the
bounded operators on a Hilbert space). This is, in general, a difficult thing to show, and the author
does not know of any elementary way to prove it for the algebra A.

We can, however, show that the homomorphism φ is injective by using the Graded Uniqueness
Theorem for Leavitt path algebras. But, as one can see from Section 4, this is a fairly non-trivial
result.

Theorem 7.3. Let E be a graph, and let φ :LC(E) → C∗(E) be the canonical map onto the
algebra A in Eq. (7.1) obtained by the universal property of LC(E). Then φ is injective, and
LC(E) is isomorphic to a dense ∗-subalgebra of C∗(E).

Proof. By the universal property of C∗(E) there exists a gauge action γ : T → AutC∗(E) with
γz(pv) = pv for all v ∈ E0 and γz(se) = zse for all e ∈ E1. For n ∈ Z we may then define
An := {a ∈ A:

∫
T

z−nγz(a) dz = a}, where the integration dz is done with respect to normalized
Haar measure on T.

We see that for an element λsαs∗
β , we have

∫
T

λsαs∗
β dz =

{
λsαs∗

β if |α| − |β| = n,

0 otherwise.

Thus an element x := ∑N
k=1 λksαk

s∗
βk

∈A is in An if an only if |αk|− |βk| = n for all 1 � k � N .

One can then see that A = ⊕
n∈Z

An as A-modules. Furthermore, if x := ∑M
k=1 λksαk

s∗
βk

∈ Am

and y := ∑N
l=1 κlsγl

s∗
δl

∈ An, we have that

xy =
∑
k,l

ηk,lsμk,l
s∗
νk,l

,

where |μk,l |− |νk,l | = |αk|− |βk|+ |γl |− |δl | = m+n. Thus xy ∈ Am+n, and A is graded. Since
φ(v) = pv ∈ A0, φ(e) = se ∈ A1, and φ(e∗) = s∗

e ∈ A−1, we see that φ is a graded homomor-
phism. Because we also have φ(v) = pv �= 0 for all v ∈ E0, it follows from Theorem 4.8 that φ

is injective. �
This result has consequences for the construction of the graph C∗-algebra C∗(E). We recall

this construction from [18, Theorem 1.2]:

Remark 7.4 (The Construction of C∗(E)). Given a graph E, let SE := {(α,β): α,β ∈ E∗
and r(α) = r(β)}, and let kE be the space of complex-valued functions of finite support on SE .
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Then the set of point masses {ελ: λ ∈ SE} forms a basis for the vector space kE . We define an
associative multiplication on SE by setting

ε(α,β)ε(γ,δ) =

⎧⎪⎨⎪⎩
ε(αγ ′,δ) if γ = βγ ′,
ε(α,δ) if β = γ,

ε(α,β ′δ) if β = γβ ′,
0 otherwise.

If we let J be the ideal in kE generated by {ε(v,v) − ∑
s(e)=v ε(e,e): v ∈ E0

reg}, then kE/J =
LC(E). (Simply check that kE/J has the appropriate universal property.)

If we define

‖a‖0 := sup
{∥∥π(a)

∥∥: π is a non-degenerate ∗ -representation of kE/J into B(H)
}

then a standard argument shows that ‖ · ‖0 is a well-defined, bounded semi-norm on kE/J .
If we let K := {a ∈ kE/J : ‖a‖0 = 0}, then K is an ideal, and the completion (kE/J )/K is
a C∗-algebra. One can then show that {ε(v,v), ε(e,r(e)): v ∈ E0, e ∈ E1} is a universal Cuntz–
Krieger E-family generating (kE/J )/K , and thus C∗(E) = (kE/J )/K .

Observe that the algebra kE/J in the above construction is the Leavitt path algebra LC(E).
We see that kE is isomorphic to the path algebra generated by E subject to relations (1)–(3) of
Definition 2.4, and J is the ideal generated by the differences in relation (4) of Definition 2.4,
which is precisely how LC(E) is constructed. Therefore, in order for the canonical map from LC

onto the subalgebra A = {a + K: a ∈ kE/J } to be injective, we would need K to be zero.
If one looks at ‖ · ‖0, it is easy to see that ‖ · ‖0 is a semi-norm. However, it is not clear at

all that ‖ · ‖0 is a norm. (To show this one would need to show that for every a ∈ kE/J there is
a ∗-representation π : kE/J → B(H) with π(a) �= 0.) Yet, because we know from Theorem 7.3
that the map φ :LC(E) → C∗(E) embeds LC(E) onto A, it must be the case that K = {0} and
‖ ·‖0 is a norm. This is a fact that is likely to be surprising to most C∗-algebraists! We summarize
these consequences in the following two corollaries.

Corollary 7.5. The ideal K in the construction of the graph C∗-algebra described in Remark 7.4
is equal to {0}, and C∗(E) = kE/J .

Corollary 7.6. Let E be a graph and let LC(E) be the associated Leavitt path algebra with
coefficients in C. If we define ‖ · ‖0 :LC(E) → C by

‖a‖0 := sup
{∥∥π(a)

∥∥: π is a non-degenerate ∗ -representation of LC(E) into B(H)
}

then ‖ · ‖0 is a norm on LC(E) and C∗(E) = LC(E)0, where LC(E)0 denotes the completion
of LC(E) with respect to the norm ‖ · ‖0.

Since LC(E) may be viewed as a ∗-subalgebra of C∗(E), we can take an ideal in LC(E) and
form its closure to obtain an ideal in C∗(E). As shown in the following proposition, this gives a
correspondence between graded ideals of LC(E) and gauge-invariant ideals of C∗(E).
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Proposition 7.7. Let E be a graph. Identify LC(E) as a ∗-subalgebra of C∗(E) as described in
Corollary 7.6, and for an ideal I of LC(E) let I denote the closure of I in C∗(E). Then the map

I �→ I

is a lattice isomorphism from the lattice of graded ideals of LC(E) onto the lattice of gauge-
invariant ideals of C∗(E), with inverse given by J �→ J ∩ LC(E).

Moreover, when E satisfies Condition (K) all ideals of LC(E) are graded, all ideals of C∗(E)

are gauge-invariant, and the map I �→ I is a lattice isomorphism from the lattice of ideals
of LC(E) onto the lattice of ideals of C∗(E).

Proof. For an admissible pair (E,S) of the graph E, let I(H,S) denote the ideal in LC(E) gener-
ated by {v: v ∈ H } ∪ {vH : v ∈ S}. In addition, identify the elements v and vH := v − ∑

s(e) ee
∗

in LC(E) with the elements pv and pH
v := pv − ∑

s(e)=v ses
∗
e in C∗(E), and let J(H,S) be the

ideal in C∗(E) generated by {pv: v ∈ H } ∪ {pH
v : v ∈ S}.

We shall prove that I(H,S) = J(H,S). To begin, we note that I(H,S) is an ideal in C∗(E) contain-
ing {pv: v ∈ H } ∪ {pH

v : v ∈ S}. Therefore J(H,S) ⊆ I(H,S). Furthermore, if x ∈ I(H,S), then by
Lemma 5.6, x = limn

∑Nn

k=1 λk,nαk,nβ
∗
k,n for αn,k, βn,k ∈ E∗. Using the identification mentioned

above, we have that x = limn

∑Nn

k=1 λk,nsαk,n
s∗
βk,n

. It follows from the first paragraph of [10, p. 6]

that x ∈ J(H,S). Therefore, I(H,S) = J(H,S).
It follows from Theorem 5.7(1) that (H,S) �→ I(H,S) is a lattice isomorphism from the ad-

missible pairs of E onto the graded ideals of LC(E), and it follows from [10, Theorem 3.6]
that (H,S) �→ J(H,S) is a lattice isomorphism from the admissible pairs of E onto the gauge-
invariant ideals of C∗(E). If we compose the inverse of the first map with the second map, we
see that I(H,S) �→ I(H,S) = J(H,S) is a lattice isomorphism from the graded ideals of LC(E) onto
the gauge-invariant ideals of C∗(E). Furthermore, it is straightforward to show that the inverse
is given by J �→ J ∩ LC(E).

Moreover, when E satisfies Condition (K), it follows from Theorem 6.16 that every ideal
of LC(E) is graded, and it follows from [10, Corollary 3.8] (or [14, Theorem 3.5]) that every ideal
of C∗(E) is gauge invariant. Hence when E satisfies Condition (K), then map I(H,S) �→ I(H,S) is
a map from the lattice of all ideals of LC(E) onto the lattice of all ideals of C∗(E). �
Remark 7.8. We mention that the above result does not hold if we extend the map I �→ I to
ideals that are not graded. If E is the graph

•

consisting of a single vertex and a single edge, then LC(E) ∼= C[x, x−1] and C∗(E) ∼= C(T). The
inclusion of LC(E) ↪→ C∗(E) identifies LC(E) with the finite Laurent polynomials p(z, z−1)

on T.
If we view T = [0,2π) and let [a, b], with a �= b, be an interval of T, we can let J := {f ∈

C(T): f |[a,b] = 0}. Then J is an ideal of C∗(E) = C(T), but J ∩ LC(E) = {0} since any non-
zero polynomial can only vanish at a finite number of points. Hence the map I �→ I is not
surjective when extended to all ideals.



M. Tomforde / Journal of Algebra 318 (2007) 270–299 299
Furthermore, if we let a = 1 + z + z3, then as shown in Remark 3.6, the ideal I1 := 〈a〉
in LC(E) is not self-adjoint and in particular a∗ = 1 + z−1 + z−3 /∈ I1. However, I1 is an ideal
in the C∗-algebra C∗(E), and thus I1 is self adjoint. Therefore if we let I2 := 〈a∗〉, then I1 = I2
even though I1 �= I2. Hence the map I �→ I is not injective when extended to all ideals.
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