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Should nature be supersymmetric, then it will be described by Quantum Supergravity at least in
some energy regimes. The currently most advanced description of Quantum Supergravity and beyond
is Superstring Theory/M-Theory in 10/11 dimensions. String Theory is a top-to-bottom approach to
Quantum Supergravity in that it postulates a new object, the string, from which classical Supergravity
emerges as a low energy limit. On the other hand, one may try more traditional bottom-to-top routes and
apply the techniques of Quantum Field Theory. Loop Quantum Gravity (LQG) is a manifestly background
independent and non-perturbative approach to the quantisation of classical General Relativity, however,
so far mostly without supersymmetry. The main obstacle to the extension of the techniques of LQG to the
quantisation of higher dimensional Supergravity is that LQG rests on a specific connection formulation
of General Relativity which exists only in D + 1 = 4 dimensions. In this Letter we introduce a new
connection formulation of General Relativity which exists in all space–time dimensions. We show that
all LQG techniques developed in D + 1 = 4 can be transferred to the new variables in all dimensions and
describe how they can be generalised to the new types of fields that appear in Supergravity theories as
compared to standard matter, specifically Rarita–Schwinger and p-form gauge fields.

© 2012 Elsevier B.V. All rights reserved.
String/M Theory (ST) [1,2] and Loop Quantum Gravity (LQG)
[3,4] are rather different programmes that aim for a consistent
synthesis of the principles of General Relativity and Quantum The-
ory. String/M Theory is necessarily 10/11-dimensional, necessarily
supersymmetric and is perturbatively defined on appropriate back-
ground space–times. Loop Quantum Gravity, on the other hand,
is to date restricted to 4 space–time dimensions, does not need
supersymmetry and by design is background independently and
non-perturbatively defined. It is therefore very hard to compare
these two approaches.

One possibility to make contact between them consists in the
consideration of String/M Theory on space–time manifolds for
which the excess dimensions are compactified and in regimes
where supersymmetry is broken, so that only an effective 4-
dimensional theory of General Relativity and the Standard Model
plus quantum corrections survives, which then can be compared
to the sector of LQG with small geometry fluctuations around the
chosen background. We refer to [5] for the state of the art of String
Theory Phenomenology but it transpires that there are many pos-
sibilities for doing this and there appears to be no specific model
that one can compare LQG to.
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Another possibility would be to generalise LQG to higher di-
mensions including supersymmetric matter in order to compare
the methods of the two theories directly in 10/11 dimensions. This
idea appears to be easier to implement because in its fundamental
dimension, String/M Theory is much simpler to describe and there
are much less choices to be made. Concretely, String Theory can be
considered as a specific proposal for quantising classical Supergrav-
ity [6] in 10/11 dimensions on a background defined by a solution
to the classical Supergravity equations of motion. With the possible
exception of N = 8 Supergravity in 4 space–time dimensions [7,8],
perturbative approaches seem to fail due to non-renormalisability1

whence non-perturbative methods appear to be more promising.
Thus, the natural question arises, how to apply non-perturbative
methods, such as those of LQG, to the quantisation of classical
Supergravity in 10/11 dimensions. This is a subject of obvious in-
terest to Supergravity research, but, to the best of our knowledge,
the literature on it is rather sparse [9].

We caution the reader that although new steps towards a
loop quantisation of higher dimensional Supergravity will be taken

1 More precisely, to date no counterterm has been found for N = 8 SUGRA in 4
dimensions in any loop contribution carried out so far, some of them way beyond
3 loop order. This could mean that the theory is perturbatively finite like QED in 4
dimensions. It does not mean that it is a UV completion of General Relativity be-
cause the perturbation series most likely diverges. Therefore strictly speaking, also
here non-perturbative methods need to be employed.
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in this Letter, there are several issues left to deal with. One of
them is to gain a proper understanding of the quantum dynam-
ics. Although well-defined operators corresponding to the classical
Hamiltonian and supersymmetry constraints can be constructed,
there is at the moment insufficient control over their algebra, in
particular off shell. A faithful representation of the super Dirac
algebra on the other hand might be considered as one of the
benchmarks a quantisation of a Supergravity has to satisfy. Also,
it is presently unclear how one could establish a relation to string
theory which goes beyond comparing two quantisation schemes
for Supergravity. We hope that first hints can be obtained by
looking at situations which can be treated by both theories non-
perturbatively, like the calculation of black hole entropy.

The results of this Letter can be summarised as follows: We
derive a generalisation of Ashtekar variables in all dimensions
D + 1 � 3 with the properties necessary for a rigorous quanti-
sation. Furthermore, we generalise the construction to standard
model matter, Rarita–Schwinger fields,2 and Abelian p-forms, and
thus to the matter fields appearing in many interesting Supergrav-
ities. A Hilbert space representation for a suitable point splitting
Poisson subalgebra (the holonomy–flux algebra extended to the
above matter fields) is provided and densely defined operators
corresponding to the constraints of the classical theory can be
constructed. The issue of a non-anomalous representation of the
constraint algebra has not been investigated so far, however, these
problems can, in principle, be circumvented using a Master con-
straint treatment [10]. Still, having a faithful representation of the
classical constraint algebra would be far more satisfactory and we
hope to revisit this issue in the future.

When trying to find a generalisation of Ashtekar’s variables to
higher dimensions, one almost immediately gets stuck:

LQG in 4 dimensions is fundamentally based on a connection
formulation of the gravitational degrees of freedom. However, the
construction of this connection and the properties it has and which
make it so adapted for purposes of quantisation, exist only in
4 space–time dimensions [11–13]. Specifically, in 4 dimensions,
General Relativity can be described, in its Hamiltonian form, by
an SU(2) Yang–Mills phase space, subject to Gauß, spatial diffeo-
morphism and Hamiltonian constraints. The key properties of this
formulation are:

(I) The connection A j
a and its canonically conjugate momentum

Ea
j (Yang–Mills “electric field”) are real-valued, the ∗-relations

of the associated Poisson algebra are trivial. Here a,b, c, . . . =
1,2,3 are spatial, tensorial indices and j,k, l, . . . = 1,2,3 are
su(2) indices.

(II) The Poisson algebra is of the usual, simple CCR form

{
A j

a(x), Ak
b(y)

} = {
Ea

j(x), Eb
k(y)

} = 0,{
Ea

j(x), Ak
b(y)

} = −Gγ δa
bδk

jδ(x, y), (1)

where G is Newton’s constant and γ is a free, real-valued pa-
rameter, called the Immirzi parameter [12,13].

(III) The gauge group SU(2) is compact.

These three properties are essential for the whole LQG framework.
Without them, LQG would not exist. Properties (I) and (II) imply
that there is a sufficiently simple ∗-algebra A of functions on phase
space separating its points so that one has a chance to find non-
trivial Hilbert space representations thereof. Property (III) implies

2 In the present treatment, it is necessary to have a real representations of the
Lorentzian Clifford algebra. We thus have to restrict to such dimensions, however,
the most interesting cases D + 1 = 4,10,11 are covered.
that the holonomies of A are valued in a compact set. It is there-
fore possible to construct a probability measure on the space of
(distributional) connections. The Hilbert space is then an L2 space
of functions of connections which makes sense due to (1) because
on such a space the connection acts by multiplication which is
only consistent with the algebra if the connection is Poisson self-
commuting.

Put together, this enabled to develop a rigorous kinematical
mathematical framework [14,15] and to find a background inde-
pendent representation of the holonomy–flux ∗-algebra A which
was later shown to be the unique one [16,17] when one insists
on a unitary representation of the spatial diffeomorphism group.
Moreover, this representation is also well adapted to the quantum
dynamics as one may rigorously implement the spatial diffeomor-
phism constraint [18] and the Hamiltonian constraint [19] includ-
ing standard matter [20,21] without anomalies.3

It transpires that LQG heavily relies on a connection formu-
lation with the properties listed above. This connection can be
found by two independent methods. The first stays purely within
the Hamiltonian framework [11] and uses an extension of the
ADM phase space of General Relativity [22] to the afore mentioned
Yang–Mills phase space which is subjected to the additional su(2)

Gauß constraint in order that its symplectic reduction recovers the
ADM phase space. The core of the proof of this so-called symplec-
tic reduction theorem is the observation, that the spin connection of
the triad ea

j = Ea
j/

√|det(E)| has a potential, that is, there exists a

functional F [E] such that Γ
j

a (x) = δF/δEa
j(x). The second method

uses the Lagrangian framework and starts from the Holst gener-
alisation [23,24] of the Palatini action in order to accommodate
the Immirzi parameter. This is actually an SO(1,3) Yang–Mills the-
ory phase space in Lorentzian signature, however, it is subject to
second class constraints which in particular imply that the con-
nection is not self-commuting with respect to the corresponding
Dirac bracket [25]. Therefore, properties (II) and (III) listed above
are not satisfied and no kinematical Hilbert space representation of
the Dirac bracket algebra has been found so far. In order to obtain
the SU(2) Yang–Mills phase space without second class constraints,
one therefore imposes the so-called time gauge which fixes the
boosts of SO(1,3) and solves the second class constraints. What
remains from the so(1,3) connection is the afore mentioned su(2)

connection whose Dirac brackets are the Poisson brackets (1).
One would now guess that one can simply repeat either of

these methods in dimensions D + 1 > 4. However, this is not
the case. As has been shown in [26], the second route leads to
a SO(D) gauge theory in the time gauge but it is not a theory
with a connection. In order to obtain a connection formulation
one would therefore need the analog of a topological Holst term,
but such a term is not available in all dimensions. Without time
gauge, one does have an SO(1, D) connection formulation but sub-
ject to a Dirac bracket which leads to the same complication as in
D + 1 = 4. Moreover, the gauge group SO(1, D) is not compact so
that the functional analytic and measure theoretic tools mentioned
before do not apply. The first route also meets difficulties:

In D spatial dimensions, the metric of the ADM phase space
has D(D + 1)/2 degrees of freedom while an so(D) connec-
tion has D2(D − 1)/2 degrees of freedom of which the so(D)

3 As in the (3 + 1)-dimensional treatment [4], anomalies are absent in the fol-
lowing sense: The commutator of two Hamiltonian constraint operators acting on a
spin network state is annihilated by diffeomorphism invariant distributions, which
mimics the classical Dirac algebra relation {C, C} = �C . In which sense an off-shell
closure is possible is presently unknown, since due to the non-continuous repre-
sentation used, an operator corresponding to infinitesimal spatial diffeomorphism
does not exist, and only a representation of finite diffeomorphisms can be defined
in the quantum theory.
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Gauß constraint fixes D(D − 1)/2. The symplectic reduction of the
Yang–Mills phase space by the Gauß constraint therefore leaves
D2(D − 1)/2 − D(D − 1)/2 = D(D − 1)2/2 degrees of freedom
which equals D(D + 1)/2 precisely for D = 3. If one wants to
go beyond D = 3 one therefore must add more constraints and/or
change the gauge group in order to match the correct amount of
ADM degrees of freedom and these constraints should better be
first class in order to avoid complicated Dirac brackets and associ-
ated non-commuting connections.

The general analysis of the first route has been started in
[27,28]. We take an unbiased viewpoint and consider a general
Yang–Mills phase space with gauge group G , connection Aα

a and
conjugate momentum πa

α where α = 1, . . . , N = dim(G) denotes
the Lie algebra index. There are DN degrees of freedom in the con-
nection of which the Gauß constraint removes N . If there are no
other constraints then we must have (D − 1)N = D(D + 1)/2. The
only positive integer solutions to this equation are (D, N) = (2,3),
(3,3) which again corresponds to 3-dimensional or 4-dimensional
gravity respectively with gauge groups SO(1,2) and SO(3) respec-
tively (with Lorentzian signature). Thus, necessarily more con-
straints are required.

As has been demonstrated in [27], one can obtain GUT theo-
ries by varying G . We are for the time being only interested in
General Relativity and ask for the group G of minimal dimension
that accomplishes all our requirements. To constrain the possible
choices we try to follow as closely as possible the treatment of
[11,27] in D = 3 and consider a “square root” eI

a of the spatial met-

ric qab = ηI J eI
ae J

b where I, J , K , . . . = 1, . . . ,n � D . Here η defines
a G invariant metric of signature (p,q) with q � D which is neces-
sary for qab to be positive definite. This constrains the gauge group
to be SO(p,q), n = p +q which has dimension N = n(n − 1)/2. The
basic idea of the proof of equivalence with the ADM formulation of
General Relativity will be to define a gauge theory subject to cer-
tain constraints, the degrees of freedom of which will be related
to the ADM degrees of freedom. One then needs to show that the
symplectic reduction of the gauge theory coincides with the ADM
phase space, i.e. the Poisson brackets of the ADM degrees of free-
dom coincide with the Poisson brackets derived form the gauge
theory.

Next to the spatial metric, we require an expression for the
ADM momentum P ab := √

det(q)qac[Kc
b − δb

c Kd
d], where Kab is

the extrinsic curvature. For this, we need to construct from eI
a the

so-called hybrid connection ΓaI J defined by

DaeI
b = ∂aeI

b − Γ c
abeI

c + Γa
I

J e J
b = 0 (2)

and, in close analogy to the (3 + 1)-dimensional case, we set
√

det(q) Ka
b := [AaI J − ΓaI J ]πbI J , (3)

where A is the so(p,q) connection and π its conjugate momen-
tum. The logic behind this definition becomes clear only after the
symplectic reduction to the ADM phase space has been performed:
Kab will be shown to coincide with the usual extrinsic curvature
from the ADM formalism on the constraint surface and the def-
inition is thus consistent with the usual one. Notice that (3) is
meaningful since A − Γ transforms as a Lie algebra valued one
form and not as a connection under SO(p,q). The question is of
course whether Γ exists. The fact that Γa(I J ) = 0 leads to the con-
sistency condition (all internal indices are moved with η)

e(c|I∂a|eI
b) − Γ(c|a|b) = 0, (4)

which can be shown to be identically satisfied. Therefore of the
D2n equations (2) for the Dn(n −1)/2 coefficients ΓaI J only D2n −
D2(D + 1)/2 are independent. Requiring that ΓaI J can be uniquely
solved for leads to a quadratic equation with the 2 roots n = D ,
n = D + 1, that is, either p = 0, q = D for n = D , or p = 1, q = D
and p = 0, q = D + 1 for n = D + 1.

Finally, the number of constraints additional to the Gauß con-
straint needed is given by Dn(n − 1)/2 − n(n − 1)/2 − D(D + 1)/2
which equals D2[D − 3]/2 for n = D and D(D + 1)[D − 2]/2 for
n = D + 1. The question is of course what these constraints should
be. A natural choice is that these constraints should somehow
impose that πaI J is entirely determined by eI

a . The excess num-
ber of degrees of freedom in πaI J as compared to eI

a is given by
Dn(n − 1)/2 − Dn which equals precisely the number of additional
constraints needed for both n = D and n = D + 1. In order to write
πaI J purely in terms of eI

a we require an internal vector nI built
from eI

a such that

πaI J = 2
√

det(q)qabn[I e J ]
b . (5)

There is no way to construct nI out of eI
a algebraically for n = D so

that in this case we must resort to D = 3. For n = D + 1, however,
we may build the unit normal

nI := 1

D!√det(q)
εI J1.. J D εa1..aD e J1

a1 ..e J D
aD (6)

satisfying nInI = −1 for SO(1, D) or nInI = 1 for SO(D + 1).
We conclude that if we want to obtain a connection represen-

tation with compact gauge group for Lorentzian General Relativity,
a natural choice is to consider the phase space of an SO(D + 1)

Yang–Mills theory subject to an so(D + 1) Gauß constraint and ad-
ditional simplicity constraints which impose that πaI J is determined
by a generalised D-bein eI

a via (5) where nI eI
a = nInI − 1 = 0 is

the unit normal determined by eI
a . In fact, one might have almost

guessed that:
If one performs the Hamiltonian analysis of the Lorentzian

Palatini action in D + 1 dimensions (see e.g. [29] and refer-
ences therein) then one obtains a primary constraint precisely
of the form (5). However, as secondary constraints one obtains
an so(1, D) Gauß constraint next to spatial diffeomorphism and
Hamiltonian constraints plus one more constraint. This last con-
straint, let us call it D-constraint, is a second class constraint part-
ner to the simplicity constraint S . Thus, the Hamiltonian analysis
of the D + 1 Palatini action for Lorentzian gravity fails to deliver
a canonical theory of connections with the properties (I), (II) and
(III) listed above for two reasons:

1. The gauge group is SO(1, D) rather than SO(D + 1) and thus
non-compact.

2. The theory suffers from second class constraints and thus
leads to Dirac bracket non-commuting connections.

As it turns out [29], the second problem can be circumvented
by employing the machinery of gauge unfixing [30,31]. Under cer-
tain conditions, which are satisfied for our second class pair (S, D),
it is possible to trade the second class system under consideration
for an equivalent first class system equipped with the original Pois-
son bracket rather than the Dirac bracket so that the connection
remains Poisson commuting. However, the first problem cannot be
overcome starting from the Palatini action for Lorentzian General
Relativity. Therefore, the canonical theory that we are about to de-
scribe does not have an obvious Lagrangian origin (other than by
backwards Legendre transform).

The first step [32] consists in writing both the hybrid connec-
tion and the simplicity constraint purely in terms of πaI J . The
guideline for doing this consists in replacing the solution ΓaI J [e]
of (2), which can be computed explicitly, by a function ΓaI J [π ]
of π alone such that it reduces to ΓaI J [e] when πaI J = 2n[I Ea| J ]
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where EaI = √
det(q)qabeI

b . This has been done explicitly in [32]
which leads to a rather complicated expression which can be dis-
played as a rational homogeneous function of degree zero in terms
of π and its first partial derivatives and which transforms as an
so(D + 1) connection.

Next, one shows [32] that the condition that πaI J is of the form
2n[I Ea| J ][E] is equivalent to the condition

SaI J ;bK L := πa[I J π |b|K L] = 0 (7)

provided that for any non-zero vector n the object

Q ab = πaI K πb J LδI J nK nL

is non-degenerate. The proof follows closely the seminal paper [33]
in which the possibility of a higher dimensional, canonical version
of LQG is also contemplated. The non-degeneracy of Q ab is equiv-
alent to the non-degeneracy of qab , which is a standard restriction
in canonical General Relativity, and we will keep this restriction
in the classical theory in order to ensure equivalence with General
Relativity.

We are now in the position to establish the relation with the
ADM phase space. We postulate the following non-trivial Poisson
brackets

{
AaI J (x),πbK L(y)

} := 2β G δb
a δK[I δL

J ] δ(x, y), (8)

where β is a free real parameter and consider the following quan-
tities

det(q)qab := −Tr
(
πaπb),

√
det(q) Ka

b := − 1

β
Tr

([Aa − Γa]πb) (9)

which play the role of the intrinsic D metric and the extrinsic
curvature. Then one can show [32] that with the usual formula
P ab := √

det(q)qac[Kc
b − δb

c Kd
d] one obtains the following non-

trivial Poisson brackets

{
P ab(x),qcd(y)

} = −G δ
(a
c δ

b)

d δ(x, y) (10)

modulo terms that vanish on the joint constraint surface defined
by the simplicity constraint (7) and the so(D + 1) Gauß constraint

G I J = ∂aπ
aI J + [Aa,π ]I J . (11)

This is non-trivial and heavily relies on the fact that the hybrid
connection ΓaI J [π ] has a weak potential, that is, there is a func-
tional F [π ] such that ΓaI J (x) = δF/δπaI J (x) modulo terms that
vanish on the simplicity constraint surface. Without this property,
the bracket {P ab(x), P cd(y)} would not vanish on the constraint
surface. It is also not difficult to show that the algebra of the sim-
plicity and Gauß constraints is first class and that the variables (9)
are weak Dirac observables with respect to both constraints.

Thus, as with the usual LQG variables [11], the (weak) integra-
bility of the spin (hybrid) connection is central to show that the
symplectic reduction of the SO(D + 1) Yang–Mills phase space by
Gauß and simplicity constraints results in the ADM phase space.
That the ADM spatial diffeomorphism constraints Ca and Hamilto-
nian constraint C , when expressed in terms of (9), weakly Poisson
commute with SaI J;bK L , G I J and that their algebra among them-
selves, as compared to the ADM phase space, is unchanged modulo
terms vanishing when SaI J ;bK L = G I J = 0 is a simple corollary.
We conclude that we have found a connection formulation for
Lorentzian General Relativity in D + 1 dimensions with D � 2 with
all the desired properties, in particular, all four types of constraints
form a first class algebra.
Remarkably, all we have said so far can be performed for all
four combinations of the space–time and internal signatures (s, ζ )

respectively where s = ±1 for Euclidean and Lorentzian General
Relativity respectively and ζ = ±1 for SO(D + 1) and SO(1, D) re-
spectively.

Similar to the situation with the usual variables [11], the con-
straints take a simple form when written in terms of the curvature
FabI J of AaI J . One finds modulo Gauß and simplicity constraints
[32]

Ca = −Tr
(

Fabπ
b),√

det(q) C = −ζTr
(

Fabπ
aπb)

+ 1

(D − 1)2

[
ζ − s

β2

][
Ka

b Kb
a − (

Kc
c)2]

− K T T
aI J T aI J ;bK L K T T

bK L . (12)

The spatial diffeomorphism constraint takes unsurprisingly a
form analogous to the formulation in D = 3. Also the first two
terms in C look familiar. However, the third term in the ex-
pression for C is new. Here KaI J = (AaI J − ΓaI J )/β and K T T

aI J is

transversal nI K T T
aI J = 0 and trace free EaI K T T

aI J = 0 on the solution

πaI J = 2n[I Ea| J ] of the simplicity constraint, it can be written as
PaI J

bK L[π ] KbK L where P [π ] is a transverse tracefree projector
and just depends on π . Also T aI J;bK L[π ] is a tensor constructed
entirely from π . The significance of this third term is that it re-
moves the dependence of the curvature on the transverse tracefree
components of KaI J which are pure gauge with respect to the sim-
plicity constraints and on which the ADM variables do not depend.
Notice that for matching internal and space–time signature ζ = s
and β = 1 the second term in C vanishes and the Hamiltonian
constraint simplifies, a feature that also is familiar from the usual
formulation. In this case one can arrive at (12) also starting from
the Palatini action by the method of gauge unfixing [29] where
now the third term is generated when making the Hamiltonian
constraint invariant under the gauge transformations generated by
the simplicity constraint so that the afore mentioned second class
partner can be dropped.

In order to quantise the Hamiltonian constraint, we observe
that the terms quadratic in KaI J can be written, as in the D = 3
situation [19] as [34]

KaI J (x) ∝ {
AaI J (x), {V , C E }}, (13)

where V = ∫
dD x

√
det(q) is the total volume and√

det(q) C E := −Tr
(

Fabπ
aπb) (14)

is the “Euclidean piece” of the Hamiltonian constraint. Similar re-
marks apply to the tensors T , P which can be treated by anal-
ogous Poisson bracket identities as displayed in [19,20]. Notice
that the kinematical Hilbert space techniques [14–17] as well as
the treatment of the spatial diffeomorphism constraint [18] have
been formulated for canonical theories of connections for com-
pact gauge groups in any dimension and thus can be applied to
our situation without further effort. In particular, the holonomy–
flux algebra now consists of SO(D + 1)-valued holonomies of A
along piecewise analytic (or semianalytic) 1-dimensional paths and
so(D + 1)-valued fluxes of π through semianalytic D − 1 surfaces.

The following remark is due at this point for the case of D = 3:
In the usual formulation the connection ALQG is an SU(2) con-

nection and is related to the extrinsic curvature by

ALQG
ajk − Γ SPIN

ajk [E] = γ ε jkl K
l
a;

ALQG = Γ SPIN[E] ≡ 0, (15)
a0 j a0 j
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where Kab = K j
a ebj and where Γ SPIN

ajk [E] is the spin connection

of the co-triad e j
a built from Ea

j . Neither ALQG nor Γ SPIN have a
“boost” part, the information about the extrinsic curvature is en-
coded in the rotational part of ALQG and depends on the Immirzi
parameter γ . On the other hand, in the “time gauge” nI = δ I

0

ANEW
ajk − Γ HYB

ajk [π ] ≈ S − gauge,

ANEW
a0 j − Γ HYB

a0 j [π ] = βKaj, (16)

where Γ HYB[π ] is the hybrid connection built from π . The trace-
free rotational components of the new connection are pure gauge
and the trace piece of the rotational components vanishes by the
boost part of the Gauß constraint. Therefore the information about
the extrinsic curvature is encoded in the boost part of the new
connection and depends on the parameter β . It transpires that the
Immirzi parameter γ and β have nothing to do with each other
and that the new formulation is a rather different extension of
the ADM phase space as compared to the LQG formulation even
in D = 3 which nevertheless have the same symplectic reduction,
namely the ADM phase space. In [29] we show that for D = 3
one can generalise the exposition given so far by considering a 2-
parameter family of connection formulations depending on both
γ , β . The essential features remain the same, the connection re-
mains Poisson commuting.

The price to pay for the higher dimensional connection formu-
lation are the additional simplicity constraints. On the other hand,
this makes this canonical formulation appear much closer to the
spin foam models [35] which aim to be a path integral formula-
tion of LQG in D + 1 = 4 dimensions. For instance, we expect that
the β = 1, ζ = s theory with arbitrary γ corresponds to the “new
spin foam models” [36,37] because both can be obtained from the
Holst modification of the Palatini action without imposing the time
gauge. Notice that our formulation is in the continuum rather than
on a fixed triangulation. In particular, we must define the simplic-
ity constraint operators on spin network functions for all graphs
not only simplicial ones. The necessity of doing that in order to
make contact with the canonical formulation has been recently
emphasised also in [38].

The quadratic, canonical quantum simplicity constraints are
naturally quantised by smearing the two factors of π in (7) over
two independent D − 1 surfaces in order to obtain flux operators
which are then shrunk to a point x [34]. Then two types of sim-
plicity constraints arise: Either x is an interior point of an edge
(edge simplicity constraints) or a vertex (vertex simplicity con-
straints). Taking advantage of the flexibility in the choice of the
surfaces available in the continuum formulation as well as taking
linear combinations one can show that one can reduce the sim-
plicity constraints to the following building blocks

S I J K L
e,e′ := X [I J

e X K L]
e′ = 0 (17)

for all pairs of edges e, e′ of the given graph which share a vertex.
Here X I J

e is right invariant vector field on the copy of SO(D + 1)

associated with the edge e. The edge simplicity constraints arise
for e = e′ , the vertex simplicity constraints for e �= e′ . These are the
analogs of the diagonal and cross simplicity constraints appearing
in the spin foam literature which involve either one face or two
faces sharing a “temporal edge”. These faces arise from our edges
by “time evolving” them into faces.

The edge simplicity constraints enforce the irreducible SO(D +
1) representations on the edges of the SO(D + 1) spin network
functions to be simple representations which have already been
described in great detail in [33] for SO(D + 1). Despite the first
class nature of the simplicity constraint in the classical, non-
distributional theory,4 the vertex simplicity constraints become
second class in the quantum theory due to the non-commutativity
of the fluxes, which results in an anomaly and strong imposition
leads to the higher dimensional analogue of the Barrett–Crane in-
tertwiner also described already in [33]. To avoid the anomaly one
can invent several strategies, none of which are entirely satisfac-
tory. Either one can try to construct a vertex master constraint [34]
for each vertex whose solutions, however, are beyond any analytic
control at the moment. Another possibility is to consider for each
vertex a preferred recoupling scheme which then selects a max-
imal commuting subset of vertex simplicity constraints which in
turn select a so-called simple intertwiner [39] which appears to
establish a unitary map between the old and new formulation in
D + 1 = 4. The unnatural feature here is that the notion of simple
intertwiner depends on the chosen recoupling scheme. Yet another
option in the spirit of the “improved spin foam models” [36,37] is
to consider linear simplicity constraints [39] instead. These arise in
the canonical framework by considering the time normal nI as an
independent quantum field subject to the normalisation constraint
N = nInI − 1 and to replace the quadratic constraints (7) by the
linear constraints

SaI J K = πa[I J nK ]. (18)

The framework described so far can be adapted to this formulation
of the simplicity constraint and all essential features are preserved.
This formulation automatically avoids the topological sector for
D = 3. The then needed Hilbert space representation for the time
normal field is supplied in [40]. Again, it is natural to smear the
π appearing in (18) over arbitrary surfaces. Notice that now the
wave functions depend on both A and n where A is located along
the edges and n along the vertices. The building blocks of the sim-
plicity constraint are now the operators

X [I J
e,x nK ]

(x) (19)

for each point x on the edge e and each edge e of the graph.
Here Xe,x denotes the right invariant vector field on the copy of
SO(D + 1) corresponding to segment of e which starts at x and
ends at the end point of e. The nice thing is that these constraints
are non-anomalous because they generate the Lie algebra of the
SO(D) subgroup of SO(D + 1) stabilising n, however, they enforce
that at each point of an edge there should be a specific n de-
pendence which maps out of the space of spin network functions
described above. While some strategies for matching linear and
quadratic simplicity constraints are spelled out in [39] based on
ideas from group averaging, none of them can be considered as
complete so far and they deserve further research.

Notice that especially in D = 3 we are now faced with a real
challenge and opportunity to make progress with the simplicity
constraint:

We have two classically equivalent connection formulations,
the one based on the Ashtekar–Barbero–Immirzi SU(2) connection
with SU(2) Gauß constraint and the new SO(4) connection for-
mulation with SO(4) Gauß and simplicity constraint. One would
therefore expect the corresponding quantum theories to be uni-
tarily or at least semiclassically equivalent. Thus, the usual LQG

4 I.e. before using the singular smearing to construct holonomies and fluxed from
the gauge and frame fields. In fact, the second class nature of the vertex simplicity
constraints is already present in the classical theory when using a singular smear-
ing, i.e. holonomies and fluxes. The wording “anomaly” however still seems to be
appropriate, because the singular smearing is needed for the quantum theory, but
not for the classical one.
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formulation may help us to find a consistent and non-anomalous
definition of the simplicity constraint as argued in [39].

So far we have only considered the purely gravitational degrees
of freedom. We now turn to matter. As far as standard matter
is concerned, all the machinery developed for D = 3 straight-
forwardly generalises to arbitrary D as far as gauge bosons and
scalars are concerned [20]. Slightly more attention is required
when considering fermionic matter because the Lorentzian the-
ory uses Dirac matrices for the SO(1, D) Clifford algebra which
we would like to recast in terms of the Dirac matrices for
the SO(D + 1) Clifford algebra in order that matter and gravita-
tional degrees of freedom transform under the same gauge group
SO(D + 1). As far as Dirac fermions are concerned, one can pro-
ceed similarly [41] as in the case D = 3 in [20]: Consider the
Lorentzian theory first in time gauge nI = δ I

0 which breaks the
SO(1, D) internal group down to the SO(D) subgroup preserving
the time gauge. In particular, the theory is now formulated in
terms of Ea

j , K j
a as in [26]. Now extend all constraints and vari-

ables in an SO(D + 1) covariant way such that they reduce to
the previous expressions in the time gauge. This can be done us-
ing that Eai = πai0 in time gauge when the simplicity constraint
holds, by subtracting terms proportional to K T T

aI J as we did for the
gravitational degrees of freedom and by replacing the Lorentzian
γ 0

L Dirac matrix by the Euclidean one γ0 := γ 0
E := iγ 0

L wherever
it appears. For instance, the term Ea

jΨ
†γ 0γ j∇aΨ where Ψ are the

Dirac fermions and ∇a is the covariant derivative defined by the
SO(D) spin connection of Ea

i , can be written as πaI J Ψ †γ[Iγ J ]DaΨ

plus terms involving KaI J where Da is the covariant derivative
defined by AaI J . Here we used the fact that the SO(D) spin con-
nection is the SO(D +1) hybrid connection in time gauge. The KaI J

terms then need to be written as above in double Poisson brackets
involving volume and Euclidean piece of the gravitational contribu-
tion to the Hamiltonian constraint. This produces 4-fermion terms,
see [41] for details but apart from this one can copy the Hilbert
space representation from the case D = 3 for Dirac fermions given
in [21]. We conclude that standard matter can be treated just as
in D = 3.

The reason why this worked so well is that both SO(D + 1) and
SO(1, D) act on the same complex representation spaces. When
we turn to Supergravity theories, this is no longer helps because
Supergravity multiplets contain the Rarita–Schwinger field (grav-
itino) as a Majorana fermion and these belong to real representation
spaces. In particular, the Lorentzian Dirac matrices (for our mostly
plus signature choice in D + 1 = 4,10,11) are real-valued which
is crucial in order that the real vector space V formed by Majo-
rana fermions is preserved under SO(1, D). Since γ 0

E = iγ 0
L is then

purely imaginary this is no longer the case for SO(D + 1) so that
SO(D + 1) does not act on the vector space of Majorana fermions.
To see this explicitly, notice that [γ I , γ J ]/8 are the generators of
so(1, D) or so(D + 1) respectively in the spinor representation. We
resolve the arising tension by noticing that while there is no ac-
tion of SO(D + 1) on V there is an action on the set of pairs
(n, θ) where θ is a Majorana fermion and n is the time normal
field. To see this, notice that the action of g ∈ SO(D + 1) on n is
simply given by n �→ g · n. Let us now build an SO(D + 1) ma-
trix A(n) from the components of n, for instance the one that is
given in [40], which maps nI to the time gauge normal vector δ I

0.
Then one can show that g A(n)−1 = A(g ·n)−1 R(g,n) where R(g,n)

is a rotation preserving the time gauge. Such a rotation is gen-
erated in the spinor representation by [γ j, γ k]/8, j,k = 1, . . . , D
and thus only involves the real Dirac matrices γ j . We now con-
sider the extension θ �→ A(n)−1 · θ off the time gauge and ob-
serve that the SO(D + 1) orbit of these vectors is preserved as
g · A(n)−1 · θ = A(g · n)−1 · R(g,n) · θ . In other words, we have
the action on pairs g · (n, θ) = (g ·n, R(g,n) · θ). Starting from time
gauge, one then rewrites all constraints in terms of these variables,
replaces Lorentzian γ 0 by the Euclidean one and finally extends
off the time gauge similar as for Dirac fermions. There is still a
remaining complication which arises from the fact that there is a
reality condition on the Majorana spinors which effectively gives
rise to a non-trivial Dirac antibracket and which prohibits to use
the formalism of [21]. We supply the missing details and provide
a proper Hilbert space representation of the Dirac antibracket [40].

Supergravity theories not only contain the Rarita–Schwinger
field but often additional tensor fields such as the 3-index pho-
ton field A in 11d Supergravity. This field is self-interacting due
to a Chern–Simons term in the action (the Hamiltonian is a poly-
nomial of fourth order in A and the momentum π conjugate to
it) and it is constrained by a twisted Gauß law constraint which
is of the form G = d ∗ π − c/2F ∧ F . Here, F = dA is the curva-
ture of A and c is related to the level of the Chern–Simons theory.
The appearance of the F ∧ F term implies that one cannot sim-
ply solve the constraint by considering the theory as the 3-form
equivalent of Maxwell theory in higher dimensions and for which
gauge invariant states would simply be gauge invariant “Spin net-
work states”, i.e. functions of A integrated over closed 3-surfaces.
In particular the analog of the LQG representation is inappropriate
to solve the constraint. We resolve the tension [42] by consider-
ing the Weyl algebra generated by the exponentials of the Dirac
observables F , P = ∗π + c A ∧ F with respect to G which can be
computed in closed form and show that the resulting ∗-algebra ad-
mits a state (positive linear functional) which is discontinuous in
both F , P and is thus of the Narnhofer–Thirring type5 [43]. The re-
sulting background independent Hilbert space representation then
follows from the GNS construction [44] and since the contribution
of the 3-index Photon to the Hamiltonian and spatial diffeomor-
phism constraint can be written just in terms of the observables,
they can be quantised in terms of Weyl elements [42].

We hope that the tools provided in our work will turn out to be
useful for a rigorous canonical and non-perturbative quantisation,
for instance by the methods of LQG, of a wide variety of Super-
gravity theories, including d = 4, N = 8, d = 11, N = 1 and d = 10,
N = 1. An extension to the d = 10, N = 2a and d = 10, N = 2b the-
ories related to type 2a and 2b Superstring theory should also be
possible, although we are not aware of explicit Hamiltonian formu-
lations of these theories.

In order to attack the issue of comparing LQG techniques to
String Theory, it makes sense to start with symmetry reduced
models such as cosmology and black holes. The goal however
should not just be to compare certain numerical values, like the
black hole entropy, to each other, but to understand possible con-
nections between the derivations of these. We hope that new
features of higher dimensional (Super)LQG, e.g. supersymmetric ef-
fects in cosmological models and the treatment of topologically
interesting black holes in higher dimensions (black rings), might
yield hints on how to proceed. Also, despite many technical and
conceptual hurdles along the way, revisiting the AdS/CFT corre-
spondence [45] and its integrability structure [46] in the light of
the proposed techniques seems to be an interesting project for fur-
ther research.
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