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Abstract

In the context of the Type I seesaw mechanism, we carry out a systematic study of the constraints that 
result from zeros in both the Dirac and right-handed Majorana neutrino mass matrices. We find that most 
constraints can be expressed in the standard form with one or two element/cofactor zeros alone, while 
there are 9 classes of nonstandard constraints. We show that all the constraints are stable under one-loop 
renormalization group running from the lightest right-handed neutrino mass scale to the electroweak scale. 
We study the predictions of the nonstandard constraints for the lightest neutrino mass, Dirac CP phase and 
neutrinoless double beta decay.
Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Many Standard Model (SM) extensions predict the existence of right-handed (RH) Majorana 
neutrinos, which are often used to explain neutrino masses via the Type I seesaw mechanism [1]. 
The effective mass matrix of the light Majorana neutrinos is given by

M = −MDMR
−1MT

D , (1)

where MD and MR are the mass matrices for the Dirac and RH Majorana neutrinos, respectively.
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In the basis where the charged lepton mass matrix is diagonal, the light neutrino mass matrix 
is described by 9 real parameters and can be written as [2]

M = V ∗ diag(m1,m2,m3)V
† , (2)

where the mi are real and nonnegative, V = U diag(1, eiφ2/2, eiφ3/2), and

U =
⎡
⎣ c13c12 c13s12 s13e

−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

⎤
⎦ . (3)

After decades of neutrino oscillation experiments, five parameters (three mixing angles and 
two mass-squared differences) in the neutrino sector have been determined to rather good pre-
cision. However, the hierarchy of the three light neutrino masses is still unknown, and there are 
two possibilities: (i) m1 < m2 < m3 for the normal hierarchy (NH) and (ii) m3 < m1 < m2 for 
the inverted hierarchy (IH). The remaining four unknown parameters may be taken as the light-
est mass (m1 for the NH, or m3 for the IH), the Dirac CP phase δ and two Majorana phases (φ1
and φ2). The Dirac phase and the mass hierarchy will be measured in future neutrino oscillation 
experiments, and the lightest mass can in principle be determined from beta decay experiments 
and cosmological observations.

Of the many neutrino mixing models proposed in the literature, texture zero models [3] are 
attractive because of the simple relations on the matrix elements that are found in these models. 
Texture zero constraints can be imposed on the light neutrino mass matrix directly. However, 
in the context of the Type I seesaw mechanism, since the light mass matrix is a product of the 
Dirac mass matrix and the RH neutrino mass matrix, it is natural to consider texture zeros in the 
Dirac and RH neutrino mass matrices [4]. Zeros in the Dirac and RH neutrino mass matrix can 
be realized from discrete ZN symmetries with suitable scalar singlets [5].

In this paper, we carry out a systematic study of the constraints that result from various zero 
textures in both the Dirac and RH Majorana mass matrices in the context of the Type I seesaw 
mechanism. We find that most cases lead to the standard constraints which can be expressed in 
the form of just one or two element/cofactor zeros, which have been studied extensively in the 
literature [6–12]. However, there are also 9 classes of nonstandard constraints, i.e., constraints 
which are not described by simple texture or cofactor zeros in the light neutrino mass matrix. 
We first show that both the standard and nonstandard constraints are stable under one-loop renor-
malization group equation (RGE) running from the lightest RH neutrino mass scale M1 to the 
electroweak scale MZ . Then we study the phenomenological implications of the nonstandard 
constraints using recent data measured by neutrino oscillation experiments. We find that some 
cases are excluded, and for the rest we obtain preferred values for the lightest mass and Dirac 
CP phase, which will be probed in the next generation of neutrino experiments. We also study 
neutrinoless double beta decay for the nonstandard constraints.

This paper is organized as follows. In Section 2, we explore the constraints of zero textures 
in the seesaw mechanism. In Section 3, we discuss RGE effects on the constraints. In Section 4, 
we study the phenomenological implications of the nonstandard constraints and summarize our 
results in Section 5.

2. Classes of constraints

We consider three generations of RH Majorana neutrinos and we assume MR is not singular. 
Since the Majorana mass matrix is symmetric, there are 6 independent matrix elements in MR, 
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and 9 independent elements in MD . For a case with NR zeros in MR and ND zeros in MD , there 
are should be at least N − 6 complex constraints on the elements of M , where N = NR + ND is 
the total number of zeros element. This may be understood as follows.

We start with 15 = 6 + 9 nonzero complex parameters in MR and MD , respectively. There 
are a total of N zeros in MR and MD , so that leaves 15 − N independent complex parameters. 
We can always insert a diagonal matrix between MR and MD (and the same matrix between MR

and MT
D), which effectively absorbs 3 complex parameters (or, putting it another way, there are 

3 relative normalizations that are redundant in the prediction of the light neutrino mass matrix 
from the seesaw mechanism). This leaves us with 12 − N independent complex parameters. In 
M there are 6 independent elements, so the net number of constraints on the elements of M is 
6 − (12 −N) = N −6. In terms of real parameters, we have 24 −2N , from which we can subtract 
3 unphysical phases, leaving us with 21 − 2N physical real parameters in M . Since there are 9 
real parameters in the neutrino sector and 5 of them are well determined, in general, if N ≥ 9, 
the model will be over constrained and if N ≤ 6, the model will be unconstrained.

This counting rule only gives the minimum number of constraints. There are accidental con-
straints that result from some special combinations of texture zeros in MD and MR , e.g., if MD

has a column or a submatrix composed of all zeros, then the constraint detM = 0 always exists 
regardless of the counting rule. So in order to obtain all the constraints for a given zero struc-
ture of MD and MR , we have to make sure all of the independent constraints are obtained. Our 
analysis proceeds as follows.

We scan all possible texture zero structures for MD . Since M is invariant under a permutation 
of the columns and rows of MR with a simultaneous permutation of the corresponding columns of 
MD , we only consider one representative structure for each set of MR that are equivalent under 
permutation. For each combination of MD and MR , we check all the elements and cofactors, 
and the determinant of M using Eq. (1) and look for independent constraints. We write the 
constraints in terms of the elements, cofactors or determinant of M in the simplest form. The 
experimental data does not allow more than two zeros in the elements or cofactors of the light 
mass matrix, hence we only consider cases that give less than three such zeros. The cases that give 
a block diagonal mass matrix are also ignored because they lead to a zero mixing angle, which 
is excluded by current experimental data. For the other cases, we analyze the elements of M , 
and make sure we obtain all of the independent constraints. We find that most constraints can be 
expressed in the standard form that can be written in terms of just one or two element/cofactor 
zeros, but there are also nine nonstandard constraints, which are listed in Table 1. The structures 
that lead to the nonstandard constraints are provided in Appendix A. Classes 2, 3, 4 and 5 are 
discussed in Ref. [4], with constraint equations in a different (albeit equivalent) form. Classes 1 
and 9 are subsets of well-known models with the additional constraint detM = 0. Classes 6, 7 
and 8 are new and not previously discussed in the literature.

3. Renormalization group running

The neutrino mixing parameters are measured at low energies, while the effective mass matrix 
of Eq. (1) can arise at a much high energy scale. The evolution of the light neutrino masses from 
the lightest RH neutrino mass scale M1 to the electroweak scale MZ is described by the one-loop 
RGE [13],

16π2 dM = κM + η[(YlY
†
l )M + M(YlY

†
l )T ] , (4)
dt
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Table 1
Classes of the nonstandard constraints that cannot be expressed in terms of one or two element (Mαβ ) or cofactor (Cαβ ) 
zeros alone. Here α �= β �= γ , and no sum is implied in the constraint equations.

Class NR + ND Nonstandard constraints No. of constraints

1 4 + 5 Mαα = Mββ = 0 and detM = 0 3
2 4 + 4, 3 + 5, 3 + 4, 2 + 5 Mαα = 0 and detM = 0 3
3 3 + 5 Mαβ = 0 and detM = 0 3
4 4 + 4 Mαα = 0 and MββMαγ = 2MαβMβγ 6
5 3 + 5 Cαα = 0 and CββCαγ = 2CαβCβγ 6
6 4 + 3, 3 + 4, 2 + 5 MααCαα = detM 3
7 4 + 3 M2

ααCαα = 4MαβMαγ Cβγ 3
8 3 + 4 Mββ detM = −M2

αβCαα 6

9 4 + 3, 3 + 4, 2 + 5 detM = 0 1

where t = ln(
/M1), 
 is the renormalization scale and Yl = diag(ye, yμ, yτ ) with yα being the 
eigenvalues of the charged lepton Yukawa coupling matrix. In the SM,

η = −3

2
, κ ≈ −3g2

2 + 6y2
t + λ , (5)

and in the Minimal Supersymmetric Standard Model (MSSM),

η = 1 , κ ≈ −6

5
g2

1 − 6g2
2 + 6y2

t , (6)

where g1, g2 are the gauge couplings, yt is the top quark Yukawa coupling, and λ is the Higgs 
self-coupling.

The solution to Eq. (4) can be written in the form [14],

M(MZ) = I0

⎡
⎣Ie 0 0

0 Iμ 0
0 0 Iτ

⎤
⎦M(M1)

⎡
⎣Ie 0 0

0 Iμ 0
0 0 Iτ

⎤
⎦ , (7)

where

I0 = exp

⎡
⎢⎣− 1

16π2

ln(M1/MZ)∫
0

κ(t)dt

⎤
⎥⎦ , (8)

and

Il = exp

⎡
⎢⎣− η

16π2

ln(M1/MZ)∫
0

y2
l (t)dt

⎤
⎥⎦ , (9)

for l = e, μ, τ .
From Eq. (7), we see that RGE running can be described by multiplying the elements of the 

mass matrix by three factors, i.e.,

Mαβ = M ′
αβI0IαIβ , (10)

where α, β = e, μ, τ , M and M ′ are the effective mass matrix at the electroweak scale and the 
lightest RH neutrino mass scale, respectively. Taking the inverse of Eq. (7), we get
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(M−1)αβ = (M ′ −1)αβ

1

I0IαIβ

. (11)

Since Cαβ = detM(M−1)αβ , it is easy to verify that both the standard and nonstandard con-
straints are stable under one-loop renormalization group running from M1 to MZ .

Note that above the lightest RH neutrino mass, one must consider seesaw threshold effects, 
which can lead to large corrections to θ12 and the Dirac and Majorana phases [13]. Due to these 
effects, some textures that are excluded by data may be allowed above the seesaw threshold [15]. 
Estimating the effect of RGE running above M1 on low-energy parameters is beyond the scope 
of this paper because additional assumptions about the Yukawa coupling matrix and the RH 
Majorana mass matrix need to be invoked [16].

It has been shown that the two-loop RGE can change the rank of the light neutrino mass 
matrix [17], which implies that the constraint detM = 0 is not stable at two loop. In the SM, 
two-loop effects can be described by adding an additional term to Eq. (4) [18], so that

16π2 dM

dt
= κM + η[(YlY

†
l )M + M(YlY

†
l )T ] + 2

16π2
(YlY

†
l )M(YlY

†
l )T . (12)

The solution to the two-loop RGE is [19]

M(MZ) = I0

⎡
⎣ M ′

eeI
2
e Iee M ′

eμIeIμIeμ M ′
eτ IeIτ Ieτ

M ′
eμIeIμIeμ M ′

μμI 2
μIμμ M ′

μτ IμIτ Iμτ

M ′
eτ IeIτ Ieτ M ′

μτ IμIτ Iμτ M ′
ττ I

2
τ Iττ

⎤
⎦ , (13)

where

Imn = exp

⎡
⎢⎣− 2

(16π2)2

ln(M1/MZ)∫
0

y2
m(t)y2

n(t)dt

⎤
⎥⎦ , (14)

for m, n = e, μ, τ . We see that the nonstandard constraints are not stable under two-loop running. 
However, as shown in Ref. [18], the two-loop correction to the lightest mass is of order 10−13 eV
in the SM and 10−10(tanβ/10)4 eV in the MSSM. Two-loop effects can also generate a tiny 
value for θ13 at the level of 10−12 − 10−14 in the SM [19]. Considering current uncertainties in 
the oscillation parameters, two-loop corrections do not affect our numerical results.

4. Phenomenology of the nonstandard constraints

The phenomenology of the standard constraints have been studied extensively in the literature; 
for recent analyses, see Ref. [6] for one element zero, Ref. [7] for one off-diagonal element/cofac-
tor zero, and Ref. [8] for one diagonal element/cofactor zero. The results for two element/cofactor 
zeros can be found in Ref. [9]; other recent analyses can be found in Ref. [10] for two element 
zeros, Ref. [11] for two cofactor zeros, and Ref. [12] for one element zero and one cofactor zero. 
Here we focus on the phenomenology of the nonstandard constraints.

4.1. Classes 1, 2, 3, 9: det M = 0

Structures with the constraint detM = 0 are easiest to analyze. Since detM = 0 is equivalent 
to m1 = 0 (m3 = 0) for the NH (IH), the oscillation parameters are not affected, and these models 
are the same as models that have already been studied, with the additional constraint that the 
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lightest mass is zero. For Class 9, detM = 0 is the only constraint and therefore any value of δ
is allowed (see Section 5 for a discussion of the possible constraints from neutrinoless double 
beta decay). For models with constraints besides detM = 0, we only need to check the parameter 
space allowed by the additional constraints and see if m1 = 0 (m3 = 0) is allowed for the NH 
(IH).

Class 1 constraints have the same number of parameters as the most economical seesaw 
model [20]. From Ref. [9], we know that if two diagonal elements are both equal to zero, only 
Mμμ = Mττ = 0 for the IH is allowed, but in this case the 2σ allowed region does not include 
m3 = 0. Hence, Class 1 is not allowed by the experimental data at 2σ .

For Class 2, from Ref. [8] we know that only Mμμ = 0 or Mττ = 0 are allowed for the IH at 2σ

when the lightest mass is zero. Similarly, for Class 3, from Ref. [7] we know that only Meμ = 0
or Meτ = 0 are allowed for the IH at 2σ when the lightest mass is zero. In all other cases with 
exactly one texture zero in the light neutrino mass matrix, a massless neutrino is excluded at 2σ . 
Hence only four cases in Classes 2 and 3 are allowed for the IH at 2σ , and none for the NH. 
The allowed cases in Class 2 are: (i) Mμμ = 0, and detM = 0; (ii) Mττ = 0, and detM = 0. The 
allowed cases in Class 3 are: (i) Meμ = 0, and detM = 0; (ii) Meτ = 0, and detM = 0. We note 
that the Classes 2 and 3 constraints have been noted in Ref. [4] as Eqs. (48) and (49). Our results 
for the allowed cases are consistent with Ref. [4].

Ref. [4] also lists the conditions detM = 0 and MααMββ − (Mαβ)2 = 0 (as Eq. (50)) and 
Mαα = Mαβ = 0 and (M−1)αα = 0 (as Eq. (51)) as new constraints. The structures that lead 
to these conditions have six and three cofactor zeros, respectively. We do not count them as 
nonstandard constraints because a light neutrino mass matrix with more than two cofactor zeros 
has already been shown to be excluded by experimental data.

4.2. Class 4

Our Class 4 constraints are equivalent to Mαα = 0, Mββ(M−1)ββ = 1 and (M−1)γ γ �= 0
obtained in Ref. [4] as Eq. (51). We demonstrate this equivalency below.

Since Mαα = 0,

detM = 2MαβMβγ Mαγ − (Mαγ )2Mββ − (M2
αβ)2Mγγ . (15)

Plugging MββMαγ = 2MαβMβγ into the above equation, we get

detM = −(M2
αβ)2Mγγ . (16)

Also, since Mαα = 0, we have (M−1)γ γ = − (Mαβ)2

det M , and therefore

Mγγ (M−1)γ γ = 1 . (17)

Together with Mαα = 0 and Mββ �= 0 (which is implicitly included in our constraints), we see 
Class 4 constraints are consistent with the conditions (52) in Ref. [4]. The form of the constraint 
in Table 1 has the merit of being quadratic instead of cubic (as in Ref. [4]), which allows for 
easier numerical analysis.

The constraints Mαα = 0 and MββMαγ = 2MαβMβγ can be written as

X1 + σX2 + ρX3 = 0 , (18)

and

A1 + σ 2A2 + ρ2A3 + σA12 + ρA13 + σρA23 = 0 , (19)
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Fig. 1. The 2σ allowed regions in the plane of the lightest mass and Dirac phase for the constraints, Mμμ = 0 and 
Mττ Meμ = 2Mμτ Meτ . The left (right) panel is for the normal (inverted) hierarchy.

where σ = (m2/m1)e
−iφ2 , ρ = (m3/m1)e

−iφ3 , Xi = U∗2
αi , Ai = U∗2

βi U
∗
αiU

∗
γ i and Aij =

2U∗
βiU

∗
βj (U

∗
αiU

∗
γj + U∗

αjU
∗
γ i) − (U∗2

βi U
∗
αjU

∗
γj + U∗2

βj U∗
αiU

∗
γ i) for i = 1, 2, 3. Since Eq. (19) is 

quadratic, it can be solved with Eq. (18). We get

ρ = A23X1X2X3 − A13X
2
2X3 − 2A2X1X

2
3 + A12X2X

2
3 ± X2

√



2X3[A3X
2
2 + X3(A2X3 − A23X2)]

, (20)

σ = A23X1X3 + A13X2X3 − 2A3X1X2 − A12X
2
3 ∓ √




2[A3X
2
2 + X3(A2X3 − A23X2)]

, (21)

where 
 = [2A3X1X2 + X3(A12X3 − A23X1 − A13X2)]2 − 4[A3X
2
1 + X3(A1X3 − A13X1)] ×

[A3X
2
2 + X3(A2X3 − A23X2)]. Taking the absolute values of σ and ρ, we find m2/m1 and 

m3/m1. Then m1 can be written as

m1 =
√

δm2

|σ |2 − 1
=

√
1
2δm2 ± �m2

|ρ|2 − 1
, (22)

where the plus (minus) sign in Eq. (22) is for the NH (IH).
Our numerical analysis proceeds as follows. Since there are 5 independent parameters in the 

light mass matrix in this case, we take them to be θ12, θ23, θ13, δm2 ≡ m2
2 − m2

1 and �m2 ≡
m2

3 − (m2
1 + m2

2)/2. First, we choose a set of the five oscillation parameters within the 2σ range 
from a recent global fit [21]. Then we solve Eq. (22) by scanning over δ from 0 to 360◦. We 
sample 105 sets of oscillation parameters allowed at 2σ ; by keeping the values of m1 and δ that 
are allowed, we obtain the allowed regions in m1 − δ (m3 − δ) plane for the NH (IH).

The allowed cases in Class 4 are as follows:

1. Mμμ = 0 and MττMeμ = 2MμτMeτ . This case is allowed for both hierarchies. The allowed 
regions are shown in Fig. 1.

2. Mττ = 0 and MμμMeτ = 2MμτMeμ. This case is allowed for both hierarchies. The allowed 
regions are shown in Fig. 2. They are similar to Fig. 1 with δ → δ+180◦ for both hierarchies. 
The similarity is explained by the approximate μ − τ symmetry of the experimental data.

Note that these allowed regions are consistent with the results obtained in Ref. [4], in which 
3σ ranges of each parameter are used as input.
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Fig. 2. Same as Fig. 1, except for Mττ = 0 and MμμMeτ = 2Mμτ Meμ.

Fig. 3. The 2σ allowed regions in the (m3, δ) plane for the inverted hierarchy. The left (right) panel shows the results for 
the constraints, Cee = 0 and CμμCeτ = 2CeμCμτ (Cττ Ceμ = 2Ceτ Cμτ ).

4.3. Class 5

Similar to Class 4, Class 5 constraints are consistent with the conditions (M−1)αα = 0, 
Mββ(M−1)ββ = 1 and Mγγ �= 0 in Eq. (53) of Ref. [4]. We find that it is easier to use the 
quadratic form of Class 5 constraints for the numerical analysis.

Similar to Eqs. (18) and (19), the two constraints Cαα = 0 and CββCβγ = 2CαβCαγ can be 
written as

X1 + X2/σ
∗ + X3/ρ

∗ = 0 , (23)

and

A1 + A2/(σ
∗)2 + A3/(ρ

∗)2 + A12/σ
∗ + A13/ρ

∗ + A23/(σ
∗ρ∗) = 0 , (24)

where ρ, σ , Xi , Ai and Aij are defined after Eq. (19). The analysis of this case follows that of 
Class 4 with the replacements, σ → 1/σ ∗ and ρ → 1/ρ∗. The allowed cases in Class 5 are as 
follows:

1. Cee = 0 and CμμCeτ = 2CeμCμτ . This case is allowed for the IH only. The allowed regions 
are shown in the left panel of Fig. 3.

2. Cee = 0 and CττCeμ = 2CeτCμτ . This case is allowed for the IH only. The allowed regions 
are shown in the right panel of Fig. 3, which is similar to the left panel with δ → δ + 180◦
because of the approximate μ − τ symmetry.
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Fig. 4. Same as Fig. 1, except for Cμμ = 0 and Cττ Ceμ = 2Cμτ Ceτ .

3. Cμμ = 0 and CττCeμ = 2CμτCeτ . This case is allowed for both hierarchies. The allowed 
regions are shown in Fig. 4.

4. Cττ = 0 and CμμCeτ = 2CμτCeμ. This case is allowed for both hierarchies. The allowed 
regions are similar to Fig. 4 with δ → δ + 180◦ for both hierarchies. The similarity can be 
explained by the approximate μ − τ symmetry of the experimental data.

Note that these allowed regions are consistent with the results obtained in Ref. [4]. Also, the 
Class 4 constraints are dual to the Class 5 constraints because they have the same functional form 
with the roles of elements and cofactors reversed [22]. From Ref. [22], we know that the allowed 
regions of Classes 4 and 5 should be similar for opposite mass hierarchies when the lightest mass 
is larger than about 20 meV. This can be seen from the left panel of Fig. 1 and the right panel of 
Fig. 4, and from the right panel of Fig. 1 and the left panel of Fig. 4.

4.4. Class 6

Since detM �= 0, the constraint MααCαα = detM is equivalent to Mαα(M−1)αα = 1, which 
can be written as

(m1U
∗2
α1 + m2U

∗2
α2e−iφ2 + m3U

∗2
α3e−iφ3)(m−1

1 U2
α1 + m−1

2 U2
α2e

iφ2 + m−1
3 U2

α3e
iφ3) = 1 .

(25)

Defining Uαj = |Uαj |eiβj and φ′
j = φj + 2βj − 2β1, we absorb the phases of the U ’s into φj ’s 

and write Eq. (25) as

(m1|Uα1|2 + m2|Uα2|2e−iφ′
2 + m3|Uα3|2e−iφ′

3)(m−1
1 |Uα1|2 + m−1

2 |Uα2|2eiφ′
2

+ m−1
3 |Uα3|2eiφ′

3) = 1 . (26)

We now expand the above equation into real and imaginary parts, and after some simplification 
we get

|Uα1|4 + |Uα2|4 + |Uα3|4 + |Uα2|2|Uα3|2
(

m2

m3
+ m3

m2

)
(cosφ′

2 cosφ′
3 + sinφ′

2 sinφ′
3)

+ |Uα1|2|Uα2|2
(

m1

m2
+ m2

m1

)
cosφ′

2 + |Uα1|2|Uα3|2
(

m1

m3
+ m3

m1

)
cosφ′

3 = 1 , (27)

for the real part and
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|Uα1|2|Uα2|2
(

m1

m2
− m2

m1

)
sinφ′

2 + |Uα1|2|Uα3|2
(

m1

m3
− m3

m1

)
sinφ′

3

+ |Uα2|2|Uα3|2
(

m3

m2
− m2

m3

)
(cosφ′

3 sinφ′
2 − sinφ′

3 cosφ′
2) = 0 , (28)

for the imaginary part. The imaginary part can be put into the form

D = A cosφ′
2 + B sinφ′

2 , (29)

where

A = −|Uα2|2|Uα3|2
(

m3

m2
− m2

m3

)
sinφ′

3 ,

B = |Uα2|2|Uα3|2
(

m3

m2
− m2

m3

)
cosφ′

3 + |Uα1|2|Uα2|2
(

m1

m2
− m2

m1

)
,

D = −|Uα1|2|Uα3|2
(

m1

m3
− m3

m1

)
sinφ′

3 .

Equation (29) has the solution (as long as A2 + B2 ≥ D2),

sinφ′
2 = BD ± A

√
A2 + B2 − D2

A2 + B2
, (30)

cosφ′
2 = AD ∓ B

√
A2 + B2 − D2

A2 + B2
. (31)

For a given φ′
3 we solve for φ′

2 and plug that into Eq. (27). Then for a fixed set of δ, m1 (m3) 
for the NH (IH), and a given set of oscillation parameters, we scan φ′

3 to see where (if) Eq. (27) is 
satisfied. We also ignore those values of φ′

3 that have no real solution for φ′
2, i.e., A2 +B2 < D2. 

If a solution is found, that point in m1 −δ space is allowed for the corresponding set of oscillation 
parameters. With the value of φ′

3 that gives the solution, φ2 and φ3 are also obtained.
The allowed cases in Class 6 are as follows:

1. MeeCee = detM . This case is allowed for both hierarchies. There is no constraint on δ in 
this case. For the best-fit oscillation parameters, the allowed range of the lightest mass is 
m1 > 0.0024 eV for the NH and m3 > 0.00050 eV for the IH. The allowed range at 2σ is 
m1 > 0.0020 eV for the NH and m3 > 0.00037 eV for the IH.

2. MμμCμμ = detM . This case is allowed for both hierarchies, and the allowed regions are 
shown in Fig. 5.

3. MττCττ = detM . This case is allowed for both hierarchies, and the allowed regions are 
shown in Fig. 6. The allowed regions are similar to Fig. 5 with δ → δ + 180◦ for both 
hierarchies because of the approximate μ − τ symmetry of the data.

4.5. Class 7

With x = e−iφ2 and y = e−iφ3 , the constraint M2
ααCαα = 4MαβMαγ Cβγ can be written as

ax3 + bx2 + cx + d = 0 , (32)

where



J. Liao et al. / Nuclear Physics B 900 (2015) 449–476 459
Fig. 5. The allowed regions for the constraint MμμCμμ = detM . The left (right) panel is for the normal (inverted) 
hierarchy. The dark shaded regions correspond to the best-fit oscillation parameters, while the light shaded regions are 
allowed at 2σ .

Fig. 6. Same as Fig. 5, except for Mττ Cττ = detM .

a = m2
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∗
α2

2
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2
α3 + m3U

2
α1y)U∗

α2
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β2U
∗
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, (33)

b =m2U
∗
α2

m1m3

{
2m1(m1U

2
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2
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2U∗
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, (34)

c = 1
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2
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]
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+m2
3y

2U∗
α3

[
2m1|Uα2|4U∗

α3 − 4(m1Uβ3Uγ 3 + m3yUβ1Uγ 1)U
∗
α3U

∗
β3U

∗
γ 3

+ (m1U
2
α3 + m3U

2
α1y)(U∗

α3)
3 − 4m1Uβ2Uγ 2U
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α2(U

∗
β3U

∗
γ 2 + U∗

β2U
∗
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, (35)

d = y

m2

[
m2

1U
2
α2U

∗
α1

4 + 2m1U
∗
α1

2(m3U
2
α2yU∗

α3
2 − 2m1Uβ2Uγ 2U
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β1U

∗
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∗
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]
. (36)

For a fixed set of δ, m1 (m3) for the NH (IH), and a given set of oscillation parameters, we 
solve the cubic equation (32) to find x as a function of y, and then scan over φ3 from 0 to 2π to 
find where (if) |x| = 1. If |x| = 1 is found, there is a solution for φ2 and φ3. By keeping the values 
of m1 (m3) and δ that have a solution, we obtain the allowed regions in the m1 − δ (m3 − δ) space 
for the NH (IH). All the cases in Class 7 are allowed for the both hierarchies, and the allowed 
regions are shown in Fig. 7. The 2σ allowed regions in the second row of Fig. 7 are similar to 
the third row of Fig. 7 with δ → δ + 180◦ for both hierarchies because of the approximate μ − τ

symmetry of the data.

4.6. Class 8

Since detM �= 0, the constraint Mββ detM = −M2
αβCαα is equivalent to

Mββ = −M2
αβ(M−1)αα . (37)

Similar to Class 7, defining x = e−iφ2 and y = e−iφ3 , we can write the constraint as

a′x3 + b′x2 + c′x + d ′ = 0 , (38)

where

a′ = m2
2U

∗
α2

2U∗
β2

2
(
m1U

2
α3 + m3yU2

α1

)
m1m3

, (39)

b′ =m2U
∗
β2
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yU∗
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(
|Uα2| 4 + 1

)
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1 U2
α1 + m−1

3 U2
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, (40)
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2
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+
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d ′ =
yU2

α2

(
m1U

∗
α1U

∗
β1 + m3U

∗
α3U

∗
β3y

)
2

m2
. (42)

The solutions for φ2 and φ3 then proceed as in Class 7. We find all the cases in Class 8 are 
allowed for the both hierarchies and the allowed regions are shown in Figs. 8 and 9. Due to 
the approximate μ − τ symmetry in the experimental data, the 2σ allowed regions in each row 
of Fig. 8 are similar to those in the corresponding row of Fig. 9 with δ → δ + 180◦ for both 
hierarchies.
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Fig. 7. The first, second and third rows show the allowed regions for the constraints, M2
eeCee = 4MeμMeτ Cμτ , 

M2
μμCμμ = 4MeμMμτ Ceτ and M2

ττ Cττ = 4Meτ Mμτ Ceμ, respectively. The dark shaded regions correspond to the 
best-fit oscillation parameters, while the light shaded regions are allowed at 2σ . The left (right) panels are for the normal 
(inverted) hierarchy.

5. Discussion and conclusion

We carried out a systematic study of zeros in the Dirac and RH Majorana neutrino mass ma-
trices in the context of the Type I seesaw mechanism. We derived complex constraints on the 
light neutrino mass matrix for various textures in both the Dirac and RH Majorana neutrino mass 
matrices. There are 9 nonstandard constraints besides the standard ones that can be expressed 
in the form of one or two element/cofactor zeros alone. We showed that both the standard and 
nonstandard constraints are stable under one-loop RGE running from the lightest RH neutrino 
mass scale M1 to the electroweak scale MZ . In addition, we studied the phenomenological im-
plications for the nonstandard constraints, and found that some cases for the normal or inverted 
hierarchy are excluded, and for the rest we obtain the allowed regions for the lightest mass and 
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Fig. 8. Same as Fig. 7, except that the first, second and third rows show the results for the constraints, Mμμ detM =
−M2

eμCee , Mee detM = −M2
eμCμμ and Mττ detM = −M2

μτ Cμμ , respectively.

Dirac CP phase, which will be probed in the next generation of neutrino experiments. We found 
12 new models (Classes 6, 7 and 8) not previously discussed in the literature which are allowed 
at 2σ for both the normal and inverted hierarchies.

Once the lightest neutrino mass and Dirac CP phase are determined, the rate for neutrinoless 
double beta decay (0νββ), which depends on the magnitude of the νe −νe element of the neutrino 
mass matrix,

|Mee| = |m1c
2
12c

2
13 + m2e

−iφ2s2
12c

2
13 + m3e

−iφ3s2
13e

2iδ| , (43)

is fixed.
In Table 2, we list the minimum and maximum values of |Mee| at the 2σ level for Classes 2, 

3, 4 and 5 constraints. In Table 3, we list the minimum values for Classes 6, 7, 8 and 9 con-
straints with the best-fit oscillation parameters and the 2σ lower bounds. The maximum values 
for Classes 6, 7, 8 and 9 constraints are all above 1000 meV. The most stringent experimental up-
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Fig. 9. Same as Fig. 7, except that the first, second and third rows show the results for the constraints, Mττ detM =
−M2

eτ Cee , Mee detM = −M2
eτ Cττ and Mμμ detM = −M2

μτ Cττ , respectively.

per limit on the effective mass |Mee| is 120–250 meV at 90% C.L. [23]. Some cases in Classes 3, 
4 and 5 could be ruled out once the sensitivities to |Mee| reach about 50 meV for the currently 
running 0νββ experiments [24]. Nevertheless, the minimum values of |Mee| for Classes 6, 7, 
8 and 9 constraints are all below 50 meV and can be completely probed only if the sensitivity 
of future 0νββ experiments is significantly improved. Note that the minimum value of |Mee| is 
about 15 meV for the IH and 0 for the NH. The mass hierarchy will also be determined if |Mee|
can be pushed to 15 meV in the future.

Recent global fits [21,25,26] indicate a slight preference for a nonzero Dirac CP phase, with 
a preferred value δ ∼ 270◦. Also, combined T2K and reactor analyses show a weak hint for the 
normal hierarchy [27]. Most viable cases of the nonstandard constraints allow δ = 270◦, except 
for two cases in Class 5: Cee = 0, CμμCeτ = 2CeμCμτ and Cee = 0, CττCeμ = 2CeτCμτ . These 
two cases may be ruled out if future measurements find δ to be close to 270◦. If the hint for the 
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Table 2
The minimum and maximum values of |Mee | (in meV) for Classes 2, 3, 4 and 5 constraints at 2σ .

Class Constraints Hierarchy Minimum Maximum

2 Mμμ = 0 and detM = 0 IH 15 18
2 Mττ = 0 and detM = 0 IH 15 17
3 Meμ = 0 and detM = 0 IH 46 48
3 Meτ = 0 and detM = 0 IH 46 48
4 Mμμ = 0 and Mττ Meμ = 2Mμτ Meτ NH 41 278
4 Mμμ = 0 and Mττ Meμ = 2Mμτ Meτ IH 16 214
4 Mττ = 0 and MμμMeτ = 2Mμτ Meμ NH 65 277
4 Mττ = 0 and MμμMeτ = 2Mμτ Meμ IH 15 223
5 Cee = 0 and CμμCeτ = 2CeμCμτ IH 19 23
5 Cee = 0 and Cττ Ceμ = 2Ceτ Cμτ IH 19 24
5 Cμμ = 0 and Cττ Ceμ = 2Cμτ Ceτ NH 64 278
5 Cμμ = 0 and Cττ Ceμ = 2Cμτ Ceτ IH 65 222
5 Cττ = 0 and CμμCeτ = 2Cμτ Ceμ NH 39 268
5 Cττ = 0 and CμμCeτ = 2Cμτ Ceμ IH 61 219

Table 3
The minimum values of |Mee| (in meV) for Classes 6, 7, 8 and 9 constraints for the best-fit oscil-
lation parameters, and the 2σ lower bounds.

Class Constraints Best-fit 2σ lower bound

NH IH NH IH

6 MeeCee = detM 3.2 17.9 2.6 15.1
6 MμμCμμ = detM 0.2 17.9 0.0 14.9
6 Mττ Cττ = detM 0.8 17.9 0.0 15.0
7 M2

eeCee = 4MeμMeτ Cμτ 0.0 41.4 0.0 39.6
7 M2

μμCμμ = 4Mμτ MeμCeτ 0.9 17.9 0.6 15.0
7 M2

ττ Cττ = 4Meτ Mμτ Ceμ 0.8 17.9 0.5 15.0
8 Mμμ detM = −M2

eμCee 1.6 18.0 1.3 14.9

8 Mττ detM = −M2
eτ Cee 1.7 17.9 1.4 14.9

8 Mee detM = −M2
eμCμμ 0.0 21.7 0.0 18.1

8 Mττ detM = −M2
μτ Cμμ 0.5 17.9 0.2 15.0

8 Mee detM = −M2
eτ Cττ 0.0 20.3 0.0 18.6

8 Mμμ detM = −M2
μτ Cττ 0.5 17.9 0.2 15.0

9 detM = 0 1.4 17.9 1.2 14.8

normal hierarchy is confirmed, Classes 2 and 3, and the IH cases in the other classes will be ruled 
out.
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Appendix A. Textures for the nonstandard constraints

We list all possible structures that lead to the nonstandard constraints for N = NR + ND ≥ 7. 
Also we do not consider ND ≥ 7 because it has one row of zeros in MD , which leads to three 
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zeros in M , which is excluded by experimental data. Following Ref. [9], we define Class X 
constraints on M or C ≡ det(M)M−1 as one zero on diagonal and one off-diagonal zero sharing 
column and row, Class Y constraints as one zero on diagonal and one off-diagonal zero not 
sharing column and row, and Class Z constraints as two zeros on diagonal.

A.1. NR = 4

For NR = 4, there is only one structure for MR ,

MR =
⎡
⎣× 0 0

0 0 ×
0 × 0

⎤
⎦ , (44)

where the symbol × denotes a nonzero matrix element. All other structures of MR can be ob-
tained by a permutation of the columns and rows of the above structure. If MD has more than 5 
zeros, M or C would have at least three zeros, so here we only consider ND ≤ 5.

1. ND = 5. Of the 126 different structures of MD in this case, 120 lead to at least three zeros in 
M or C, and only 6 structures lead to Class 1 nonstandard constraints. The 6 structures are:

MD =
⎡
⎣0 × 0

0 0 ×
0 × ×

⎤
⎦ ,

⎡
⎣0 0 ×

0 × 0
0 × ×

⎤
⎦ , (45)

which lead to the constraints, Mee = Mμμ = 0 and detM = 0;

MD =
⎡
⎣0 × 0

0 × ×
0 0 ×

⎤
⎦ ,

⎡
⎣0 0 ×

0 × ×
0 × 0

⎤
⎦ , (46)

which lead to the constraints, Mee = Mττ = 0 and detM = 0;

MD =
⎡
⎣0 × ×

0 × 0
0 0 ×

⎤
⎦ ,

⎡
⎣0 × ×

0 0 ×
0 × 0

⎤
⎦ , (47)

which lead to the constraints, Mμμ = Mττ = 0 and detM = 0.
2. ND = 4. Of the 126 different structures of MD in this case, 39 lead to at least three zeros 

in M or C, 3 lead to a block diagonal matrix for M , 36 lead to Class X constraints on M , 
6 lead to Class Z constraints on M , 6 lead to Class Z constraints on C, and 18 lead to one 
zero in M and one zero in C. In addition, there are 6 structures of MD that lead to Class 2 
nonstandard constraints:

MD =
⎡
⎣0 × 0

0 × ×
0 × ×

⎤
⎦ ,

⎡
⎣0 0 ×

0 × ×
0 × ×

⎤
⎦ , (48)

which lead to the constraints, Mee = 0 and detM = 0;

MD =
⎡
⎣0 × ×

0 × 0
0 × ×

⎤
⎦ ,

⎡
⎣0 × ×

0 0 ×
0 × ×

⎤
⎦ , (49)

which lead to the constraints, Mμμ = 0 and detM = 0;
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MD =
⎡
⎣0 × ×

0 × ×
0 × 0

⎤
⎦ ,

⎡
⎣0 × ×

0 × ×
0 0 ×

⎤
⎦ , (50)

which lead to the constraints, Mττ = 0 and detM = 0.
The remaining 12 structures lead to Class 4 nonstandard constraints:

MD =
⎡
⎣ 0 × 0

0 × ×
× 0 ×

⎤
⎦ ,

⎡
⎣ 0 0 ×

0 × ×
× × 0

⎤
⎦ , (51)

which lead to the constraints, Mee = 0 and MμμMeτ = 2MeμMμτ ;

MD =
⎡
⎣ 0 × 0

× 0 ×
0 × ×

⎤
⎦ ,

⎡
⎣ 0 0 ×

× × 0
0 × ×

⎤
⎦ , (52)

which lead to the constraints, Mee = 0 and MττMeμ = 2MeτMμτ ;

MD =
⎡
⎣ 0 × ×

0 × 0
× 0 ×

⎤
⎦ ,

⎡
⎣ 0 × ×

0 0 ×
× × 0

⎤
⎦ , (53)

which lead to the constraints, Mμμ = 0 and MeeMμτ = 2MeμMeτ ;

MD =
⎡
⎣× 0 ×

0 × 0
0 × ×

⎤
⎦ ,

⎡
⎣× × 0

0 0 ×
0 × ×

⎤
⎦ , (54)

which lead to the constraints, Mμμ = 0 and MττMeμ = 2MμτMeτ ;

MD =
⎡
⎣× 0 ×

0 × ×
0 × 0

⎤
⎦ ,

⎡
⎣× × 0

0 × ×
0 0 ×

⎤
⎦ , (55)

which lead to the constraints, Mττ = 0 and MμμMeτ = 2MeμMμτ ;

MD =
⎡
⎣ 0 × ×

× 0 ×
0 × 0

⎤
⎦ ,

⎡
⎣ 0 × ×

× × 0
0 0 ×

⎤
⎦ , (56)

which lead to the constraints, Mττ = 0 and MeeMμτ = 2MeμMeτ .
3. ND = 3. Of the 84 different structures of MD in this case, 5 lead to at least three zeros in 

M or C, 12 lead to Class X constraints on M , 24 lead to one diagonal zero in M , 6 lead to 
one off-diagonal zero in M and 24 lead to one diagonal zero in C. In addition, there are 6 
structures that lead to Class 6 nonstandard constraints:

MD =
⎡
⎣× × 0

0 × ×
0 × ×

⎤
⎦ ,

⎡
⎣× 0 ×

0 × ×
0 × ×

⎤
⎦ , (57)

which lead to the constraint, MeeCee = detM ;

MD =
⎡
⎣ 0 × ×

× × 0
0 × ×

⎤
⎦ ,

⎡
⎣ 0 × ×

× 0 ×
0 × ×

⎤
⎦ , (58)

which lead to the constraint, MμμCμμ = detM ;
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MD =
⎡
⎣ 0 × ×

0 × ×
× × 0

⎤
⎦ ,

⎡
⎣ 0 × ×

0 × ×
× 0 ×

⎤
⎦ , (59)

which lead to the constraint, MττCττ = detM .
Also, there are 6 structures lead to Class 7 nonstandard constraints:

MD =
⎡
⎣ 0 × ×

× × 0
× 0 ×

⎤
⎦ ,

⎡
⎣ 0 × ×

× 0 ×
× × 0

⎤
⎦ , (60)

which lead to the constraint, M2
eeCee = 4MeμMeτCμτ ;

MD =
⎡
⎣× × 0

0 × ×
× 0 ×

⎤
⎦ ,

⎡
⎣× 0 ×

0 × ×
× × 0

⎤
⎦ , (61)

which lead to the constraint, M2
μμCμμ = 4MeμMμτCeτ ;

MD =
⎡
⎣× × 0

× 0 ×
0 × ×

⎤
⎦ ,

⎡
⎣× 0 ×

× × 0
0 × ×

⎤
⎦ , (62)

which lead to the constraint, M2
ττCττ = 4MeτMμτCeμ.

The remaining one structure leads to the Class 9 constraint, detM = 0:

MD =
⎡
⎣0 × ×

0 × ×
0 × ×

⎤
⎦ . (63)

A.2. NR = 3

For NR = 3, there are four structures of MR that are not equivalent under permutation. They 
are

MR1 =
⎡
⎣× 0 0

0 × ×
0 × 0

⎤
⎦ , MR2 =

⎡
⎣× 0 ×

0 0 ×
× × 0

⎤
⎦ ,

MR3 =
⎡
⎣ 0 × ×

× 0 ×
× × 0

⎤
⎦ , MR4 =

⎡
⎣× 0 0

0 × 0
0 0 ×

⎤
⎦ . (64)

All other structures of MR can be obtained by a permutation of the columns and rows of the 
above structure. If MD has more than 5 zeros, M or C would have at least three zeros for all 
three structures of MR , so here we only consider ND ≤ 5.

A.2.1. MR1
1. ND = 5. Of the 126 different structures of MD in this case, 84 lead to at least three zeros in 

M or C, 6 lead to a block diagonal matrix for M , 12 lead to Class X constraints on M , and 
12 lead to one zero in M and one zero in C. In addition, there are 6 structures that lead to 
Class 2 nonstandard constraints:
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MD =
⎡
⎣0 × 0

0 × ×
0 0 ×

⎤
⎦ ,

⎡
⎣0 × 0

0 0 ×
0 × ×

⎤
⎦ , (65)

which lead to the constraints, Mee = 0 and detM = 0;

MD =
⎡
⎣0 × ×

0 × 0
0 0 ×

⎤
⎦ ,

⎡
⎣0 0 ×

0 × 0
0 × ×

⎤
⎦ , (66)

which lead to the constraints, Mμμ = 0 and detM = 0;

MD =
⎡
⎣0 0 ×

0 × ×
0 × 0

⎤
⎦ ,

⎡
⎣0 × ×

0 0 ×
0 × 0

⎤
⎦ , (67)

which lead to the constraints, Mττ = 0 and detM = 0.
The remaining 6 structures lead to Class 3 nonstandard constraints:

MD =
⎡
⎣× 0 0

0 0 ×
× 0 ×

⎤
⎦ ,

⎡
⎣ 0 0 ×

× 0 0
× 0 ×

⎤
⎦ , (68)

which lead to the constraints, Meμ = 0 and detM = 0;

MD =
⎡
⎣× 0 0

× 0 ×
0 0 ×

⎤
⎦ ,

⎡
⎣ 0 0 ×

× 0 ×
× 0 0

⎤
⎦ , (69)

which lead to the constraints, Meτ = 0 and detM = 0;

MD =
⎡
⎣× 0 ×

× 0 0
0 0 ×

⎤
⎦ ,

⎡
⎣× 0 ×

0 0 ×
× 0 0

⎤
⎦ , (70)

which lead to the constraints, Mμτ = 0 and detM = 0.
2. ND = 4. Of the 126 different structures of MD in this case, 33 lead to at least three zeros in 

M or C, 3 lead to a block diagonal matrix for M , 18 lead to Class X constraints on M , and 
6 lead to one zero in M and one zero in C, 15 lead to one diagonal zero in M , 12 lead to one 
off-diagonal zero in M , 9 lead to one diagonal zero in C, and 6 lead to one off-diagonal zero 
in C. In addition, there are 3 structures that lead to Class 2 nonstandard constraints:

MD =
⎡
⎣0 × 0

0 × ×
0 × ×

⎤
⎦ , (71)

which leads to the constraints, Mee = 0 and detM = 0;

MD =
⎡
⎣0 × ×

0 × 0
0 × ×

⎤
⎦ , (72)

which leads to the constraints, Mμμ = 0 and detM = 0;

MD =
⎡
⎣0 × ×

0 × ×
0 × 0

⎤
⎦ , (73)

which leads to the constraints, Mττ = 0 and detM = 0.



J. Liao et al. / Nuclear Physics B 900 (2015) 449–476 469
Also, there are 6 structures that lead to Class 6 nonstandard constraints:

MD =
⎡
⎣× × 0

0 × ×
0 0 ×

⎤
⎦ ,

⎡
⎣× × 0

0 0 ×
0 × ×

⎤
⎦ , (74)

which lead to the constraint, MeeCee = detM ;

MD =
⎡
⎣ 0 × ×

× × 0
0 0 ×

⎤
⎦ ,

⎡
⎣ 0 0 ×

× × 0
0 × ×

⎤
⎦ , (75)

which lead to the constraint, MμμCμμ = detM ;

MD =
⎡
⎣ 0 × ×

0 0 ×
× × 0

⎤
⎦ ,

⎡
⎣ 0 0 ×

0 × ×
× × 0

⎤
⎦ , (76)

which lead to the constraint, MττCττ = detM .
There are 6 structures lead to Class 8 nonstandard constraints:

MD =
⎡
⎣× × 0

0 0 ×
× 0 ×

⎤
⎦ , (77)

which leads to the constraint, Mμμ detM = −M2
eμCee;

MD =
⎡
⎣× × 0

× 0 ×
0 0 ×

⎤
⎦ , (78)

which leads to the constraint, Mττ detM = −M2
eτCee;

MD =
⎡
⎣ 0 0 ×

× × 0
× 0 ×

⎤
⎦ , (79)

which leads to the constraint, Mee detM = −M2
eμCμμ;

MD =
⎡
⎣× 0 ×

× × 0
0 0 ×

⎤
⎦ , (80)

which leads to the constraint, Mττ detM = −M2
μτCμμ;

MD =
⎡
⎣× 0 ×

0 0 ×
× × 0

⎤
⎦ , (81)

which leads to the constraint, Mμμ detM = −M2
μτCττ ;

MD =
⎡
⎣ 0 0 ×

× 0 ×
× × 0

⎤
⎦ , (82)

which leads to the constraint, Mee detM = −M2 Cττ .
eτ
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The remaining 9 structures lead to the Class 9 constraint, detM = 0:

MD =
⎡
⎣× 0 ×

× 0 ×
× 0 0

⎤
⎦ ,

⎡
⎣× 0 ×

× 0 0
× 0 ×

⎤
⎦ ,

⎡
⎣× 0 0

× 0 ×
× 0 ×

⎤
⎦ , (83)

⎡
⎣× 0 ×

× 0 ×
0 0 ×

⎤
⎦ ,

⎡
⎣× 0 ×

0 0 ×
× 0 ×

⎤
⎦ ,

⎡
⎣ 0 0 ×

× 0 ×
× 0 ×

⎤
⎦ , (84)

⎡
⎣0 × ×

0 × ×
0 0 ×

⎤
⎦ ,

⎡
⎣0 × ×

0 0 ×
0 × ×

⎤
⎦ ,

⎡
⎣0 0 ×

0 × ×
0 × ×

⎤
⎦ . (85)

A.2.2. MR2
1. ND = 5. Of the 126 different structures of MD in this case, 90 lead to at least three zeros in 

M or C, 12 lead to Class X constraints on M , 6 lead to Class Z constraints on C, and 6 lead 
to one zero in M and one zero in C. In addition, there are 6 structures that lead to Class 2 
nonstandard constraints:

MD =
⎡
⎣0 0 ×

0 × 0
0 × ×

⎤
⎦ ,

⎡
⎣0 0 ×

0 × ×
0 × 0

⎤
⎦ , (86)

which lead to the constraints, Mee = 0 and detM = 0;

MD =
⎡
⎣0 × 0

0 0 ×
0 × ×

⎤
⎦ ,

⎡
⎣0 × ×

0 0 ×
0 × 0

⎤
⎦ , (87)

which lead to the constraints, Mμμ = 0 and detM = 0;

MD =
⎡
⎣0 × 0

0 × ×
0 0 ×

⎤
⎦ ,

⎡
⎣0 × ×

0 × 0
0 0 ×

⎤
⎦ , (88)

which lead to the constraints, Mττ = 0 and detM = 0.
The remaining 6 structures lead to Class 5 nonstandard constraints:

MD =
⎡
⎣ 0 × ×

0 × 0
× 0 0

⎤
⎦ , (89)

which leads to the constraints, Cee = 0 and CμμCeτ = 2CeμCμτ ;

MD =
⎡
⎣ 0 × ×

× 0 0
0 × 0

⎤
⎦ , (90)

which leads to the constraints, Cee = 0 and CττCeμ = 2CeτCμτ ;

MD =
⎡
⎣ 0 × 0

0 × ×
× 0 0

⎤
⎦ , (91)

which leads to the constraints, Cμμ = 0 and CeeCμτ = 2CeμCeτ ;
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MD =
⎡
⎣× 0 0

0 × ×
0 × 0

⎤
⎦ , (92)

which leads to the constraints, Cμμ = 0 and CττCeμ = 2CμτCeτ ;

MD =
⎡
⎣× 0 0

0 × 0
0 × ×

⎤
⎦ , (93)

which leads to the constraints, Cττ = 0 and CμμCeτ = 2CμτCeμ;

MD =
⎡
⎣ 0 × 0

× 0 0
0 × ×

⎤
⎦ , (94)

which leads to the constraints, Cττ = 0 and CeeCμτ = 2CeτCeμ.
2. ND = 4. Of the 126 different structures of MD in this case, 39 lead to at least three zeros 

in M or C, 6 lead to Class Z constraints in C, 18 lead to Class X constraints on M , and 3 
lead to one zero in M and one zero in C, 12 lead to one diagonal zero in M , and 33 lead to 
one diagonal zero in C. In addition, there are 3 structures that lead to Class 2 nonstandard 
constraints:

MD =
⎡
⎣0 0 ×

0 × ×
0 × ×

⎤
⎦ , (95)

which leads to the constraints, Mee = 0 and detM = 0;

MD =
⎡
⎣0 × ×

0 0 ×
0 × ×

⎤
⎦ , (96)

which leads to the constraints, Mμμ = 0 and detM = 0;

MD =
⎡
⎣0 × ×

0 × ×
0 0 ×

⎤
⎦ , (97)

which leads to the constraints, Mττ = 0 and detM = 0.
Also, there are 9 structures leads to Class 6 nonstandard constraints:

MD =
⎡
⎣× 0 ×

0 × ×
0 × 0

⎤
⎦ ,

⎡
⎣× 0 ×

0 × 0
0 × ×

⎤
⎦ ,

⎡
⎣× 0 0

0 × ×
0 × ×

⎤
⎦ , (98)

which lead to the constraint, MeeCee = detM ;

MD =
⎡
⎣ 0 × ×

× 0 ×
0 × 0

⎤
⎦ ,

⎡
⎣ 0 × 0

× 0 ×
0 × ×

⎤
⎦ ,

⎡
⎣ 0 × ×

× 0 0
0 × ×

⎤
⎦ , (99)

which lead to the constraint, MμμCμμ = detM ;

MD =
⎡
⎣ 0 × ×

0 × 0
× 0 ×

⎤
⎦ ,

⎡
⎣ 0 × 0

0 × ×
× 0 ×

⎤
⎦ ,

⎡
⎣ 0 × ×

0 × ×
× 0 0

⎤
⎦ , (100)

which lead to the constraint, MττCττ = detM .
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The remaining 3 structures lead to the Class 9 constraint, detM = 0:

MD =
⎡
⎣0 × ×

0 × ×
0 × 0

⎤
⎦ ,

⎡
⎣0 × ×

0 × 0
0 × ×

⎤
⎦ ,

⎡
⎣0 × 0

0 × ×
0 × ×

⎤
⎦ . (101)

A.2.3. MR3
1. ND = 5. Of the 126 different structures of MD in this case, 90 lead to at least three zeros in 

M or C and 36 lead to Class Z constraints on C.
2. ND = 4. Of the 126 different structures of MD in this case, 45 lead to at least three zeros in 

M or C, 18 lead to Class Z constraints on C, and 63 lead to one diagonal zero in C.

A.2.4. MR4
1. ND = 5. Of the 126 different structures of MD in this case, 72 lead to at least three zeros in 

M or C and 36 lead to a block diagonal matrix for M . The remaining 18 structures lead to 
Class 3 nonstandard constraints:

MD =
⎡
⎣× 0 0

0 × 0
× × 0

⎤
⎦ ,

⎡
⎣× 0 0

0 0 ×
× 0 ×

⎤
⎦ ,

⎡
⎣0 × 0

0 0 ×
0 × ×

⎤
⎦ , (102)

⎡
⎣ 0 × 0

× 0 0
× × 0

⎤
⎦ ,

⎡
⎣ 0 0 ×

× 0 0
× 0 ×

⎤
⎦ ,

⎡
⎣0 0 ×

0 × 0
0 × ×

⎤
⎦ , (103)

which lead to the constraints, Meμ = 0 and detM = 0;

MD =
⎡
⎣× 0 0

× × 0
0 × 0

⎤
⎦ ,

⎡
⎣× 0 0

× 0 ×
0 0 ×

⎤
⎦ ,

⎡
⎣0 × 0

0 × ×
0 0 ×

⎤
⎦ , (104)

⎡
⎣ 0 × 0

× × 0
× 0 0

⎤
⎦ ,

⎡
⎣ 0 0 ×

× 0 ×
× 0 0

⎤
⎦ ,

⎡
⎣0 0 ×

0 × ×
0 × 0

⎤
⎦ , (105)

which lead to the constraints, Meτ = 0 and detM = 0;

MD =
⎡
⎣× × 0

0 × 0
× 0 0

⎤
⎦ ,

⎡
⎣× 0 ×

0 0 ×
× 0 0

⎤
⎦ ,

⎡
⎣0 × ×

0 0 ×
0 × 0

⎤
⎦ , (106)

⎡
⎣× × 0

× 0 0
0 × 0

⎤
⎦ ,

⎡
⎣× 0 ×

× 0 0
0 0 ×

⎤
⎦ ,

⎡
⎣0 × ×

0 × 0
0 0 ×

⎤
⎦ , (107)

which lead to the constraints, Mμτ = 0 and detM = 0.
2. ND = 4. Of the 126 different structures of MD in this case, 27 lead to at least three zeros 

in M or C, 9 lead to a block diagonal matrix for M , 54 lead to one off-diagonal zero in M , 
and 18 lead to one off-diagonal zero in C. The remaining 18 structures lead to the Class 9 
constraint, detM = 0:

MD =
⎡
⎣× × 0

× × 0
× 0 0

⎤
⎦ ,

⎡
⎣× × 0

× 0 0
× × 0

⎤
⎦ ,

⎡
⎣× 0 0

× × 0
× × 0

⎤
⎦ , (108)
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⎡
⎣× × 0

× × 0
0 × 0

⎤
⎦ ,

⎡
⎣× × 0

0 × 0
× × 0

⎤
⎦ ,

⎡
⎣ 0 × 0

× × 0
× × 0

⎤
⎦ , (109)

⎡
⎣× 0 ×

× 0 ×
× 0 0

⎤
⎦ ,

⎡
⎣× 0 ×

× 0 0
× 0 ×

⎤
⎦ ,

⎡
⎣× 0 0

× 0 ×
× 0 ×

⎤
⎦ , (110)

⎡
⎣× 0 ×

× 0 ×
0 0 ×

⎤
⎦ ,

⎡
⎣× 0 ×

0 0 ×
× 0 ×

⎤
⎦ ,

⎡
⎣ 0 0 ×

× 0 ×
× 0 ×

⎤
⎦ , (111)

⎡
⎣0 × ×

0 × ×
0 × 0

⎤
⎦ ,

⎡
⎣0 × ×

0 × 0
0 × ×

⎤
⎦ ,

⎡
⎣0 × 0

0 × ×
0 × ×

⎤
⎦ , (112)

⎡
⎣0 × ×

0 × ×
0 0 ×

⎤
⎦ ,

⎡
⎣0 × ×

0 0 ×
0 × ×

⎤
⎦ ,

⎡
⎣0 0 ×

0 × ×
0 × ×

⎤
⎦ . (113)

Since MR is diagonal in this case, the constraints mainly come from four zeros in MD, and 
they are consistent with the results discussed in Refs. [7,28].

A.3. NR = 2

If MR has two zeros, there are four structures of MR that are not equivalent under permutation. 
They are

MRa =
⎡
⎣ 0 0 ×

0 × ×
× × ×

⎤
⎦ , MRb =

⎡
⎣ 0 × ×

× × 0
× 0 ×

⎤
⎦ ,

MRc =
⎡
⎣× 0 0

0 × ×
0 × ×

⎤
⎦ , MRd =

⎡
⎣× × ×

× 0 ×
× × 0

⎤
⎦ . (114)

All other structures of MR can be obtained by a permutation of the columns and rows of the 
above structure. If MD have more than 6 zeros, M or C would have at least three zeros for all 
three structures of MR , so here we only consider ND ≤ 6.

A.3.1. MRa

1. ND = 6. Of the 84 different structures of MD in this case, 78 lead to at least three zeros in 
M or C, and 6 lead to Class X constraints for M .

2. ND = 5. Of the 126 different structures of MD in this case, 78 lead to at least three zeros in 
M or C, 18 lead to Class X constraints on M , 6 lead to one diagonal zero in M , and 6 lead 
to one diagonal zero in C. In addition, there are 6 structures that lead to Class 2 nonstandard 
constraints:

MD =
⎡
⎣ 0 0 ×

× 0 ×
× 0 0

⎤
⎦ ,

⎡
⎣ 0 0 ×

× 0 0
× 0 ×

⎤
⎦ , (115)

which lead to the constraints, Mee = 0 and detM = 0;
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MD =
⎡
⎣× 0 ×

0 0 ×
× 0 0

⎤
⎦ ,

⎡
⎣× 0 0

0 0 ×
× 0 ×

⎤
⎦ , (116)

which lead to the constraints, Mμμ = 0 and detM = 0;

MD =
⎡
⎣× 0 ×

× 0 0
0 0 ×

⎤
⎦ ,

⎡
⎣× 0 0

× 0 ×
0 0 ×

⎤
⎦ , (117)

which lead to the constraints, Mττ = 0 and detM = 0.
Also, there are 6 structures lead to Class 6 nonstandard constraints:

MD =
⎡
⎣ 0 × 0

× 0 ×
× 0 0

⎤
⎦ ,

⎡
⎣ 0 × 0

× 0 0
× 0 ×

⎤
⎦ , (118)

which lead to the constraint, MeeCee = detM ;

MD =
⎡
⎣× 0 ×

0 × 0
× 0 0

⎤
⎦ ,

⎡
⎣× 0 0

0 × 0
× 0 ×

⎤
⎦ , (119)

which lead to the constraint, MμμCμμ = detM ;

MD =
⎡
⎣× 0 0

× 0 ×
0 × 0

⎤
⎦ ,

⎡
⎣× 0 ×

× 0 0
0 × 0

⎤
⎦ , (120)

which lead to the constraint, MττCττ = detM .
The remaining 6 structures lead to the Class 9 constraint, detM = 0:

MD =
⎡
⎣× × 0

× 0 0
0 × 0

⎤
⎦ ,

⎡
⎣× × 0

0 × 0
× 0 0

⎤
⎦ ,

⎡
⎣× 0 0

× × 0
0 × 0

⎤
⎦ , (121)

⎡
⎣× 0 0

0 × 0
× × 0

⎤
⎦ ,

⎡
⎣ 0 × 0

× × 0
× 0 0

⎤
⎦ ,

⎡
⎣ 0 × 0

× 0 0
× × 0

⎤
⎦ . (122)

A.3.2. MRb

1. ND = 6. Of the 84 different structures of MD in this case, 78 lead to at least three zeros in 
M or C, and 6 lead to Class Y constraints on C.

2. ND = 5. Of the 126 different structures of MD in this case, 78 lead to at least three zeros in 
M or C, 24 lead to one diagonal zero in C, and 12 lead to one off-diagonal zero in C. The 
remaining 12 structures lead to the Class 9 constraint, detM = 0:

MD =
⎡
⎣× × 0

× 0 0
0 × 0

⎤
⎦ ,

⎡
⎣× × 0

0 × 0
× 0 0

⎤
⎦ ,

⎡
⎣× 0 0

× × 0
0 × 0

⎤
⎦ , (123)

⎡
⎣× 0 0

0 × 0
× × 0

⎤
⎦ ,

⎡
⎣ 0 × 0

× × 0
× 0 0

⎤
⎦ ,

⎡
⎣ 0 × 0

× 0 0
× × 0

⎤
⎦ , (124)
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⎡
⎣× 0 ×

× 0 0
0 0 ×

⎤
⎦ ,

⎡
⎣× 0 ×

0 0 ×
× 0 0

⎤
⎦ ,

⎡
⎣× 0 0

× 0 ×
0 0 ×

⎤
⎦ , (125)

⎡
⎣× 0 0

0 0 ×
× 0 ×

⎤
⎦ ,

⎡
⎣ 0 0 ×

× 0 ×
× 0 0

⎤
⎦ ,

⎡
⎣ 0 0 ×

× 0 0
× 0 ×

⎤
⎦ . (126)

A.3.3. MRc

1. ND = 6. Of the 84 different structures of MD in this case, 78 lead to at least three zeros in 
M or C, and 6 lead to a block diagonal matrix for M .

2. ND = 5. Of the 126 different structures of MD in this case, 72 lead to at least three zeros 
in M or C, 12 lead to a block diagonal matrix for M , 24 lead to one off-diagonal zero in 
M , and 12 lead to one off-diagonal zero in C. The remaining 6 structures lead to the Class 9 
constraint, detM = 0:

MD =
⎡
⎣0 × ×

0 × 0
0 0 ×

⎤
⎦ ,

⎡
⎣0 × ×

0 0 ×
0 × 0

⎤
⎦ ,

⎡
⎣0 × 0

0 × ×
0 0 ×

⎤
⎦ , (127)

⎡
⎣0 × 0

0 0 ×
0 × ×

⎤
⎦ ,

⎡
⎣0 0 ×

0 × ×
0 × 0

⎤
⎦ ,

⎡
⎣0 0 ×

0 × 0
0 × ×

⎤
⎦ . (128)

A.3.4. MRd

1. ND = 6. Of the 84 different structures of MD in this case, 78 lead to at least three zeros in 
M or C, and 6 lead to Class Z constraints on M .

2. ND = 5. Of the 126 different structures of MD in this case, 84 lead to at least three zeros 
in M or C, 12 lead to Class Z constraints on C, and 24 lead to one diagonal zero in C. The 
remaining 6 structures lead to the Class 9 constraint, detM = 0:

MD =
⎡
⎣0 × ×

0 × 0
0 0 ×

⎤
⎦ ,

⎡
⎣0 × ×

0 0 ×
0 × 0

⎤
⎦ ,

⎡
⎣0 × 0

0 × ×
0 0 ×

⎤
⎦ , (129)

⎡
⎣0 × 0

0 0 ×
0 × ×

⎤
⎦ ,

⎡
⎣0 0 ×

0 × ×
0 × 0

⎤
⎦ ,

⎡
⎣0 0 ×

0 × 0
0 × ×

⎤
⎦ . (130)

A.4. NR = 1

For ND = 6, of the 84 different structures of MD in this case, 78 lead to more than three zeros 
in M or C, and 6 lead to one diagonal or off-diagonal zero in C.
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