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A b s t r a c t  In this paper, we introduce a new concept of (A, *?)-accretive mappings, which gen- 
eralizes the existing monotone or accretive operators. We study some properties of (A, 7/)-accretive 
mappings and define resolvent operators associated with (A, q)-aecretive mappings. By using the new 
resolvent operator technique, we also construct a new perturbed iterative algorithm with mixed errors 
for a class of nonlinear relaxed cocoercive variational inclusions involving (A, r/)-accretive mappings 
and study applications of (A, r~)-accretive mappings to the approximation-solvability of this class of 
nonlinear relaxed cocoercive variational inclusions in q-unifornfly smooth Banach spaces. Our results 
improve and generalize the corresponding results of recent works. @ 2006 Elsevier Ltd. All rights 
reserved. 

K e y w o r d s - - ( A ,  q)-accretive mapping, Resolvent operator technique, Nonlinear variational inclu- 
sion with relaxed cocoercive mapping, Perturbed iterative algorithm with mixed errors, Convergence 
and stability. 

1. I N T R O D U C T I O N  

Very recently, in order to study extensively variational inequalities and variational inclusions, 
which are providing mathematical models to some problems arising in economics, mechanics, 
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and engineering science, Ding [1], Huang and Fang [2], Fang and Huang [3], Verma [4,5], Fang 
and Huang [6,7], Hnang and Fang [8], Fang st al. [9] introduced the concepts of ~-subdifferential 
operators, maximal ~-monotone operators, generalized monotone operators (named H-monotone 
operators), A-monotone operators, (H, ~)-monotone operators in Hilbert spaces, H-accretive op- 
erators, generalized m-accretive mappings and (H, ~)-accretive operators in Banach spaces and 
their resolvent operators, respectively. Further, by using the resolvent operator technique, which 
is a very important method to find solutions of variational inequality and variational inclusion 
problems, a number of of nonlinear variational inclusions and many systems of variational in- 
equalities, variational inclusions, complementarity problems and equilibrium problems have been 
studied by some authors in recent years. See, for example, [1-16]. 

Motivated and inspired by the above works, in this paper we introduce a new concept of 
(A, ~l)-accretive mappings, which provides a unifying framework for maximal monotone opera- 
tors [17], m-accretive operators, ~/-subdifferential operators [1,15], maximal q-monotone opera- 
tors [2], H-monotone operators [31, generalized m-accretive mappings [8,18], H-accretive opera- 
tors [7], (H, ~)-monotone operators [6], A-monotone mappings [4,5], and (H, r/)-aeeretive opera- 
tors [9]. We study some properties of (A, w)-accretive mappings and define the resolvent operators 
associated with (A, r~)-accretive mappings which include the existing resolvent operators as special 
cases. By using the new resolvent operator technique, we develop a new perturbed iterative algo- 
rithm with errors to solve a class of nonlinear relaxed cocoercive variational inclusions associated 
with (A, rl)-accretive mappings in q-uniformly smooth Banaeh spaces and prove the convergence 
and stability of the iterative sequence generated by the perturbed iterative algorithm. 

2. P R E L I M I N A R I E S  

Let X be a real Banaeh space with dual space X*,  (.,-) be the dual pair between X and 
X*, 2 X denote the family of all the nonempty subsets of X. The generalized duality mapping 
Jq : X ~ 2 X" is defined by 

jq(z)={/*6x*:<x,f*>=llzll",llf*ll=tlzll q-I}, vz6x ,  
where q > 1 is a constant. In particular, -/2 is the usual normalized duality mapping. It is known 
that, in general, Jq (x) = [[x [[ q-2J2 (x) for all x ¢ 0, and Jq is single-valued if X* is strictly convex. 
In the sequel, we always suppose that X is a real Banach space such that Jq is single-valued and 

is a Hilbert space. If X = 7-/, then -/2 becomes the identity mapping on 7-/. 
The modulus of smoothness of X is the function Px : [0, oc) ~ [0, oe) defined by 

px(t) = sup ~(II~ +Yll + I [ x -  YlI) - 1 :  Ilxll - 1, IlYll <-- t 

A Banach space X is called uniformly smooth if 

lim px( t )  _ O. 
t - - 0  t 

X is called q-uniformly smooth if there exists a constant c > 0 such that 

PX (t) < ct q, q > 1. 

Remark that Jq is single-valued if X is uniformly smooth. In the study of characteristic inequal- 
ities in q-uniformly smooth Banach spaces, Xu [19] proved the following result. 

LEMMA 2.1. Let  X be a real uniformly smooth Banach space. Then X is q-uniformly smooth  if  
and only i f  there exists a constant Cq > 0 such that for all x,  y C X ,  

I1~ + Y[[q ~ []xl[ q + q (Y, Jq (x)} + Cq [lyll q . 

In the sequel, we give some concept and lemmas needed later. 
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DEFINITION 2 . 1 .  L e t  T, A : X --* X be two single-valued mappings. T is said to be 

(i) accretive i f  
( T ( z ) - T ( y ) ,  J q ( x - y ) } > _ O ,  Vx,  y e Z ;  

(ii) strictly accretive i f  T is accretive and 

(T (x) - T (y) ,  Jq (x - y)) = 0 

if and only i f  x = y; 
(iii) r-strongly accretive if there exists a constant r > 0 such that 

( T ( x ) - T ( y ) ,  J ~ ( x - y ) } > r l l x - y l l  q, Vx ,  y E X ;  

(iv) 7-strongly accretive with respect to A if  there exists a constant 7 > 0 such that 

( T ( x ) - T ( y ) ,  g q ( A ( x ) - A ( y ) ) ) > T H x - y [ I  q, V x , y E X ;  

(v) m-relaxed cocoercive with respect to A if, there exists a constant m > 0 such that 

( T ( x ) - T ( y ) ,  J q ( A ( x ) - A ( y ) ) ) > - m N T ( x ) - T ( y ) I I  q, V x , y E X ;  

(vi) (c~, ~)-relaxed cocoercive with respect to A if, there exist constants c~, ~ > 0 such that 

( T ( x ) - r c y ) ,  J q ( A ( z ) - A ( y ) ) ) > _ - c ~ l l r ( x ) - r C Y D l l q + ~ l l x - Y l l  q, V x , y E X ;  

(vii) s-Lipschitz continuous if  there exists a constant s > 0 such that  

I [ T ( x ) - T ( y ) I I  < _ s l l x - y l l  , Vx ,  y E X .  

REMAaK 2.1. When X = H, (i)-(iv) of Definition 2.1 reduce to the definitions of monotonicity, 
strict monotonicity, strong monotonicity, and strong monotonicity with respect to A, respectively 
(see [3,6]). 

DEFINITION 2 . 2 .  A single-valued mapping ~ : X × X --* X is said to be r-Lipschitz continuous 

if there exists a constant r > 0 such that 

[Iw (x, y)[I _< r l l x - Y l l ,  Vx,  y e X .  

DEFINITION 2.3. Let  r l : X x X --~ X and A , H  : X --* X be single-valued mappings. Then 
set-valued mapping M : X -+ 2 x is said to be 

(i) accretive i f  

(~-v, 4 (x -y ) l>o ,  Vx,yex,  ~eM(x), veM(y); 

(ii) ~-accretive i f  

( u - v ,  J q(r l(x ,y)))>_O, Vx,  y e X ,  u E M ( x ) ,  v E M ( y ) ;  

(iii) strictly ~-accretive i f  M is ~?-accretive and equality holds i f  and only if x = y; 

(iv) r-strongly r]-accretive if there exists a constant r > 0 such that 

(u v, J q ( v ( x , y ) ) ) > _ r l l x - y l l  q, Vx ,  y e X ,  u e M ( z ) ,  v e M ( y ) ;  

(v) c~-relaxed ~]-accretiye i f  there exists a constant c~ > 0 such that 

{ u - v ,  J q ( r ] ( x , y ) ) ) > - c ~ l l x - y l l  q, V x , y E X ,  u e M ( x ) ,  v e M ( y ) ;  

(vi) m-accretive if M is accretive and (I  + p M ) ( X )  = X for all p > O, where I denotes the 
identi ty operator on X ;  

(vii) generalized m-accretive i f  M is ~?-accretive and (I  + p M ) ( X )  = X for all p > O; 
(viii) H-accretive i f  M is accretive and (H + p M ) ( X )  = X for ali p > O; 

(ix) (H, rl)-accretive i f M  is ~-accretive and (H + p M ) ( X )  = X for every p > O. 
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In a similar way, we can define strictly 7]-accretivity and strongly ~-accretivity of the single- 
valued mapping A. 

REMARK 2.2. 

(1) The class of generalized m-accretive operators was first introduced by Huang and Fang 
[18], and includes tha t  of m-accretive operators as a special case. The class of H-accretive 
operators was first introduced and studied by Fang and Huang [7], and also includes that  
of m-accretive operators as a special case. 

(2) When X = ~ ,  (i)-(ix) of Definition 2.3 reduce to the definitions of monotone opera- 
tors, r/-monotone operators, strictly r/-monotone operators, strongly rkmonotone opera- 
tors, relaxed rkmonotone operators, maximal monotone operators, maximal ~-monotone 
operators, H-monotone  operators and (H, ~)-monotone operators, respectively. 

DEFINITION 2.4. L e t  T : X --~ X be a single-valued mapping .  For all x,  y C X ,  the m a p p i n g  

N : X x X --~ X is called to be e-Lipschi tz  cont inuous  w i th  respec t  to the  first argument ,  i f  there 
exists  a cons tant  e > 0 such tha t  

IlN(x,.) N(y,.)ll  llx-yll V x , y e X .  

In a similar way, we can define Lipschitz continuity of the mapping N(. ,-)  with respect to the 
second argument. 

LEMMA 2.2. L e t  r and s be two nonnegat ive  real numbers .  T h e n  

( r + s )  q <_ 2 ~ ( r q + s q ) .  

PROOF. (r + s) q < (2 max{r, s})  q = 2q(max{r, s}) q _< 2q(r q + sq). 

3.  ( A , ~ / ) - A C C R E T I V E  M A P P I N G S  

A N D  R E S O L V E N T  O P E R A T O R S  

In this section we introduce a new concept of (A,7/)-accretive mappings, which provides a 
unifying framework for the existing monotone operators in Hiibert spaces and accretive operators 
in Banach spaces. We study some properties of (A, ~/)-accretive mappings and define the resolvent 
operators associated with (A, ~])-accretive mappings. We also establish the Lipschitz continuity 
of resolvent operators associated with (A, ~)-accretive mappings under suitable conditions. 

DEFINITION" 3.1. L e t  A : X --* X ,  r/ : X × X -~ X be two single-valued mappings .  Then ,  a 

mul t iva lued  m a p p i n g  M : X --~ 2 X is called ( A,  ~])-accretive i f  

(1) M is m-re laxed  q-accretive,  

(2) (A  + p M ) ( X )  = X for every p > 0. 

REMARK 3.1. 

(1) If m = 0, then Definition 3.1 reduces to the definition of (H,r/)-accretive operators due 
to  [9]. 

(2) The definition of (I, r/)-accretive operators is just tha t  of generalized m-accretive operators 
due to [8,18] when m = 0. 

(3) When m = 0 and Tl(x, y) = x -- y for all x, y C X, Definition 3.1 reduces to the definition 
of H-accretive operators due to [7]. 

(4) When m = 0, A = I and ~/(x,y) = x - y for all x , y  C X ,  Definition 3.1 reduces to the 
definition of classical m-accretive operators. 

(5) When X = 7-(, Definition 3.1 reduces to the definition of (A, ~)-monotone operators, which 
is a new concept. 
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(6) When X = ?-I and r l (x ,y  ) -- x - y  for all x , y  C "H, Definition 3.1 reduces to the definition 
of A-monotone operators  due to [4, 5]. 

(7) When  X - ~ ,  m = 0, Definition 3.1 reduces to the definition of (H, v)-monotone operators  
due to [6]. 

(8) When X = ~ ,  m = 0 and A = I ,  Definition 3.1 reduces to the definition of maximal  
q-monotone operators  due to [2]. 

(9) When  X = ~ ,  m = 0, A = I and V(x,y) = x - y  for all x , y  C ~ ,  Definition 3.1 reduces 
to the definition of classical maximal  monotone operators  (see [17]). 

TIIEOREM 3.1. Let  A : X -~ X be a r-s trongly V-accretive mapping, M : X --~ 2 x be an 

(A, V)-aeeretive mapping, and x,  u E X be given points. I f  (u - v, Jq(V(X, y))) >_ 0 holds for a11 

(y, v) C Graph  (M),  where Graph(M)  = {(a, b) E X x X :  b E M(a)} ,  then (x, u) E Graph (M).  

P a o o F .  Since M is (A, V)-accretive, (A + p M ) ( X )  = X holds for every p > 0. Then  there exists 
(z0, u0) E Graph (M)  such tha t  

A(xo)  + puo = A(x )  + pu. (3.1) 

Since M is m-relaxed v-accretive and A is r -s t rongly q-accretive, we have 

- m  II x -  x011 q < P ( U -  u0, Jq (V (x, x0))) -- - (A (x) - A(x0 ) ,  Zq (V(X, X0))) < - r  II ~ -  x0[I q. 

This implies tha t  x = xo. From (3.1), we know tha t  u = u0. Thus (x ,u)  E Graph (M) .  This 
completes the proof. 

REMARK 3.2. Theorem 3.1 generalizes and improves (1) of Theorem 2.1 of [2], Proposi t ion 2.1 
of [3], Theorem 2.1 of [7], Theorem 3.1 of [6], and Theorem 3.1 of [9]. 

THEOREM 3.2. Let  A : X --~ X be a r-s trongly v-accretive mapping,  M : X --* 2 x be an 

(A, V)-aceretive mapping. Then, the operator ( A + p M )  -1 is single-valued. 

P a o o F .  For any given z C X,  and x , y  C (A + p M ) - ~ ( z ) ,  it follows tha t  - A ( x ) +  z ~ p M ( x )  

and - A ( y )  + z E pM(y ) .  Since M is m-relaxed v-accretive and A is r -s t rongly v-accretive, 

~ I1~ - yl[ q ~ ( ( - A  (x) + z)  - ( - A  (y) + z ) ,  Jq (I] (x, y) ) )  

-- - (A (x) - A (y ) ,  ffq (V ( x , y ) ) )  _< - r  I1~ - yll q. 

This implies tha t  x = y. Thus (A + p M )  -1 is single-valued. The proof  is completed. 

REMARK 3.3. Theorem 3.2 generalizes and improves (2) of Theorem 2.1 of [2], Theorem 2.1 
of [31, Theorem 2.2 of [7], Theorem 3.2 of [6], Proposit ion 2 of [16], and Theorem 3.2 in [9]. 

p,A Based on Theorem 3.2, we can define the resolvent opera tor  Rv, M associated with an (A, V)- 
accretive mapping  M as follows. 

DEFINITION 3.2. Let  A : X ~ X be a s tr ic t ly  v-accretive mapping  and M : X ~ 2 X be an 
p,A (A, v)-accretive mapping. The resolvent operator R~,M : X ~ X is defined by 

p,A Rv,M(U ) = (A + p M ) - l ( u ) ,  V u  C X .  (3.2) 

REMARK 3.4. Resolvent operators  associated with (H,v)-accre t ive  mappings  include as spe- 
cial eases the corresponding resolvent operators  associated with (H,~/)-monotone operators  [6], 
H-accret ive operators  [7], generalized m-accret ive operators  [8,18], maximal  v-monotone opera- 
tors [2], H-mono tone  operators  [3], A-monotone operators  [4], ~/-subdifferential operators  [1,15], 
the classical m-accret ive and maximal  monotone operators  [17]. 

The following theorem establishes Lipschitz continuity of resolvent operators  associated with 
(A, ¢/)-accretive mappings,  which plays a prominent  role in the resolvent opera tor  technique as- 
sociated with an (A, v)-aecretive mapping.  
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THEOREM 3.3. Let  ~ : X x X --* X be T-Lipschitz continuous, A : X --* X be a r-strongly ~?- 

accretive mapping and M : X ~ 2 x be an (A, q)-aecretive mapping. Then the resolvent operator 
p,A RmM : X -~ X is 7q-1/(r pm)-Lipschitz  continuous, i.e., 

p,A p,A Tq-- i 
I I R , , M ( x )  - G,M(Y)II  -< - - I I x  - YlI, Vx, y ~ X,  

r - p m  

where p C (0, r / m )  is a constant. 

PROOF. For given x , y  E X ,  from (3.2), we have 

R~:~ (x) = (A + p M ) - '  (x) ,  R~: A (y) = (A + pM)  -~ (y).  

It follows that  

p ' p " 

S ince  M is m - r e l a x e d  r / - a c c r e t i v e ,  we  ge t  

p,A 
~?, - -  p 

i p,A 

It follows that 

Tq--1 

Therefore, 

> 

ilx - y l l  n~:~f  (x)  - R ~ : ~  (y) q - '  

p A  

,.l-q-1 
R f , ' , ~ ( x ) - n ~ ' f i ( y )  <_ - -  I l x - y l l ,  Vx, y e X .  

7 "  - pm 

This completes the proof. 

REMARK 3.5. Theorem 3.3 extends Theorem 3.3 of [9] and Lemma 2 of [5], and so extends 
Theorem 2.2 of [2], Theorem 2.2 of [3], Theorem 2.3 of [7], Theorem 3.3 of [6], Theorem 2.2 of 
[1], and Lemma 3 of [15]. 

4 .  N O N L I N E A R  V A R I A T I O N A L  I N C L U S I O N S  

In this section, by using resolvent operator technique associated with (A, q)-accretive mappings, 
we shall develop a new perturbed iterative algorithm with mixed errors for solving the class 
of nonlinear relaxed cocoercive variational inclusion problems in Banach spaces and prove the 
convergence and stability of the iterative sequence generated by the per turbed iterative algorithm. 

Let A , S , V  : X --~ X,  F : X x X --~ X be single-valued mappings and M : X -+ 2 x be an 
(A, q)-accretive mapping. For any given a E X,  A > 0, we consider the problem of finding x C X 
such that  

a E F ( S ( x ) , V  (x)) + A M ( x ) .  (4.1) 
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If a = 0, A = 1 a n d  F ( S ( x ) , V ( x ) )  = T(x)  for all x e X ,  where  T :  X ~ X is a s ingle-valued 

mapp ing ,  t hen  the  p rob lem (4.1) can be replaced to f inding x c X such t h a t  

0 ~ T ( x )  + M (x ) ,  (4.2) 

which is considered by Bi et al. [12]. 

If X = X* = ~ ,  rl(x,y) = x - y and  M = Ag), where  A p  denotes  the  subdif ferent ia l  of 
a proper  convex lower semicon t inuous  func t ion  ~ on H,  t h e n  the  p rob lem (4.2) becomes the  

following classical va r ia t iona l  inequal i ty.  

F i n d  x E X such t h a t  

( T ( x ) , y - z ) + ~ ( y ) - p ( x ) > _ O ,  V y c X .  

DEFINITION 4.1.  Let S be a self-map of X ,  Xo E X ,  and  let Xn+l = h(S, xn) define an iteration 

procedure which yields a sequence of points {x~}.°°__ 0 in X .  Suppose that  {x C X : S x  = x} ¢ 

and  {Xn}~=0 converges to a/~xed point x* o r S .  Let {un} C X a n d  let e,~ = Ilu.+~ - h ( S , u , ) l l .  

I f  l ime, ,  = 0 implies that u,~ --* x*, then the iteration procedure defined by X~+l = h(S ,x~)  is 

said to be S-stable or stable with respect to S. 

LEMMA 4.1. (See [20].) Let {a,~}, {bn}, {cn} be three nonnegatiue real  sequences  satisfying the 

following condition: there  exists a n a t u r a I  n u m b e r  no such that 

an+l <_ (1 -- t~) a~ + b,,t~ + c~, V n  >>_ no, 

where t,~ E [0, 1], o~ t oo 0 (n  --~ oc). Y~,~=0 n 0% linl~__.oo b~ = 0, Y~n=0 c~ < oc. Then a~ --* 

From Defini t ion 3.2, we can  ob t a in  the  following conclusion.  

LEMMA 4.2.  Let  A : X --* X be r-strongly r]-accretive, M : X --* 2 x is (A,~)-aecretive and  

F : X x X --* X a n d  S, V : X --* X be an y  nonlinear mappings. Then, an  element x is a solution 

to the probIem (4.1) if  and only i f  x satisfies 

x = "~n,MPPX'A (A (x) - p ( F  (S (x ) ,  V (x)) - a)) , (4.3) 

ppX,A (A + pAM) -1 and p > is a constant. where "%M = 

REMARK 4.1.  The  equal i ty  (4.3) can be wr i t t en  as 

where p, A > 0 are cons tants .  

i t e ra t ive  a lgor i thm.  

ALGORITHM 4.1.  

z = A ( x )  - p ( F  ( S  ( x )  , V ( x ) )  - a ) ,  

ppA ,A  
x = ~%hM (Z) ,  

This  fixed poin t  fo rmula t ion  enables  us to  suggest  the  following 

For any given zo C X ,  we choose xo E X such that 

DPX,A 
230 ~ ~%LM ( zO)" 

Let 

zl = (1 - no) zo + ao [A (xo) - p ( F  (S (xo) ,  V (xo)) - a)] + aoeo + fo. 

For zl,  we take x l  C X such that 
r)pA,A r z 

X l  ~- I~T1,M [ 1) .  

Let 

z~ = (1 - (~'1) Zl -~ o~'1 [A (Xl) - p ( F  (S (Xl) ,  V (Xl)) - a)] -[- o~lel -~ f l .  
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Continuing this way, we can obtain sequence {xn} satisfying 

I~PA,A 
5 .  = - ~ , M  (~n) ,  (4.4) 

Zn+ 1 = (1 - c~,~) z,~ + O~n [A (Xn) -- p ( F  (S (xn) ,  V (Xn)) - a)] + a,~e,~ + fn,  

where p, ..k > 0 are constants, {an} is a sequence in [0, 11 with oo and f n  C X E n = O  O~n = OO, en~ 

(n > O) are errors to take into account a possible inexact computat ion  of  the resolvent operator 

point  satisfying the following conditions. 
I I I .  (i) e~ = % + e~, 

(ii) l imn~oo Ile;~ll = 0; 
(iii) 2n°°__0 Ile~ll < oo, En%0 II/nll < ~ .  

Furthermore, let {u~} be a sequence in X such that  sequences {sn} and {Un} sat is fy  

e,~ = I l u n + l - { ( 1 - c ~ n D u n + C ~ n [ A ( t n )  p ( F ( S ( t n ) , V ( t n ) )  a)]+c~ne,~+ f ,  d l l ,  

tn = R px'A (4.5) ,~,~ (~n) .  

Now, we prove the existence of a solution of problem (4.1) and the convergence of Algori thm 4.1. 

THEOREM 4.1. Let  X be a q-uniformly smooth  Banach space and A : X ~ X be r-s trongly  

~-accretive and ¢-Lipschi tz  continuous, respectively. Let  S, V : X -* X be ( -Lipschi t z  continuous 

and ( -Lipschi tz  continuous, respectively. Suppose that  ~ : X x X --* X be T-Lipschitz  continuous 

and M : X --* 2 x be an (A, ~)-aceretive. Let  F : X x X --* X be (s, t)-relaxed cocoercive 

with respect to A and &Lipschi tz  continuous in the first argument,  (d, o)-relaxed cocoercive with 

respect  to A and e-Lipschitz continuous in the second argument,  respectively. I f  there exists a 

constant  p > 0 such that  

~q qP (~ + ~) + qP (sSq~q + & q u )  + 2 % P  ~ (sq~q + d U )  < ~q(~-ql (r _ pare)q,  r > pare, 

(4.6) 
where Cq is the constant  as in L e m m a  2.1, then 

(1) the problem (4.1) has a unique solution x , 

(2) the i terative sequence {Xn} generated by Algori thm 4.1 converges s trongly  to x* ; 

(3) if, in addition, there exists  a c~ > 0 such that  c~,~ >_ a for all n >_ O, then 

lim u ~ = x *  if and only if lim a n = 0 ,  
m---*oo n---+oo 

where en is defined by (4.5). 

PROOF. From L e m m a  4.2, for every x E X, take 

P (x) = R p~'A (A (x) - p (F  (S (x) ,  V (x)) - a)) (4.7) ,?,/~f 

Then x* is tile unique solution of problem (4.1) if and only if x* is the unique fixed point of P.  
In fact, it follows from the assumptions,  (4.7), Theorem 3.3, and Lemmas  2.1 and 2.2 tha t  

l i P (  x ) - P ( y ) I I  

= RPX,A , p p ~ , A ( A ( y )  p ( F ( S ( y ) , V ( y ) ) - a ) )  ~,.M (A (x) - p (F (S (x) V (~)) - a)) - "~,,M 

Tq--I 
_< - -  IIA (~) - A (y) - p [F (S  (5 ) ,  V (~))  - F (S  ( y ) ,  V (y))] II, 

r - pm 

IIA (z) - A (y) - p [F (S (x) ,  V (x)) - f (S (y) ,  V (Y))]lf 

_~ II A (x) - A (Y)l f  + 2qcqpq l ie  (S  (x ) ,  V (x))  - F (S  (y ) ,  V (~))11 q 

+ 2%qpq IIF (S  (y ) ,  v (x))  - F (S  (y ) ,  V (y))ll q 
(4.8) 

- q p ( F  (S ( x ) , V  (x)) - F ( S ( y ) ,  V (5)), Jq (A (z) - A (y))} 

- q p ( F  ( S ( y ) , V  (5)) - F ( S ( y ) ,  V (y)) ,  Jq (A(x )  - A (y))) 
~ [G q -[- 2 q c q p  q ((Jq~q -[- e q ( q )  -- qp( t  -F ~ --  s(~q~ q --  d e q ( q ) ]  [Ix - yH q . 
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Thus, 

where 

l iP (x)  - P (y)l l  ~ o I1~ - y l l ,  

0 Tq--1 i = - - .  ~ + 2~c~p~ ( ~  + ~ )  - q ;  (~ + ~ -  s S , ~  - dE~¢~). 
r - p m  

It  follows from (4.6) tha t  0 < 0 < 1 and so P : X ~ X is a contractive mapping,  i.e., P has a 
unique fixed point in X. 

Next,  let z* A (x* )  p ( F ( S ( x * ) ,  V(z*)) a) and x* ~ ; x  A , . ,  . . . .  ~ , ) ~  Lz ). Then,  by (4.4) and the 
proof of (4.8), we know tha t  

t [ ~÷ ,  - z*ll  < (1 - o ~ ) I l z n  - z*ll  + ~n  (11~'~11 + I1~11) 4 - I I f~ l l  

+ ~,~ IIA (x,d - A (x*)  - p (F  (S (x~) ,  V (x,,)) - F (S ( x * ) ,  V (:~*)))11 

< (1 - ~ n ) I I = n  z*ll +~,~ I1~'11 + (l le"l l  + 113,11) 

+ Ct~v/(Tq + 2qcqpq (Sq(q + eqCq) - qp (~ 4- e -- sSq(q -- deqCq) I1~,, - ~*11. 

(4.9) 

On the other hand, we find tha t  

Z*) Tq--1 
_ " ~ ' ~  " ~ ' ~  _< I l z n -  z*lL. (4.10) 

Combining (4.9) and (4.10), we get 

I1~,~÷, - z*l l  ~ ( I  - c~n ( i  - 0))I1~,~ --  z*ll  + ~,~ ( I  - 0 ) .  ~ 114,11 + (114~11 + l l f~l l )  • (4.11) 

Since }-~,~--0 a ,  = oc, it follows from Lemma  4.1 and (4.11) tha t  I1~. -~*11 -~ 0(n -~ o~). Hence, 
by (4.10), we know tha t  the sequence {z,~} converges to x*. 

Now, we prove the conclusion (3). By (4.5), we know 

I l u ~ ÷ l  - x *  II 

II (1 - ~n) ~n + ~ [A (t,,) - p ( F  (S ( t , , ) ,  V (t , ,)) - a)] + a~en + f i ,  z*  II + ~ -  
(4.12) 

As the proof of inequality (4.11), we have 

II (1 - ~,~) ~ + ~,~ [A (tn) -- p ( f  (S ( t ,0 ,  V (t~)) - a)] + c~en + fn  - x* II 

_< (1 - ~,~ (1 - 0 ) ) I I ~ n  - z*l l  + ~, ,  (1 - 0 ) .  ~ I1~'11 + (114'11 + I If , , l l )  - 
(4.13) 

Since 0 < a _< ch~, it follows fi'om (4.12) and (4.13) tha t  

[l?/.n+l-z*ll __~ ( 1 -  Ct n ( 1 -  0))tlu,~ z*l[ + c ~  ( 1 -  0) .  ~ (lle~l[ + ~ )  + (I]e~[I + [Ifnll). 

Suppose tha t  l imzn = 0. Then from Y~=0 ctn = ec and L e m m a  4.1, we have l imu,,  = x*. 
Conversely, if l imu~ = x*, then we get 

s,~ --  II~,,~÷l - { (1  - ~ n )  ~, ,  + ~,~ [A ( t . )  - p ( F  ( S  ( t ~ ) ,  V (t , , ) )  - a)] + ~ , , e , ,  + fn} l l  

_< II~n÷x - x* II + II (1 - a,~) un + aN [A (t, ,)  - p ( F  ( S  ( t n ) ,  V ( t~ ) )  - a)] + a . e , ,  + f~  - x* II 

-< I I ~ + ~  - ~*ll + (1 - ~ (1 - 0))I1~,~ - F l l  + ~ , ,  IIg, ll + (ll~',~ll + IIf~ll) ~ 0 

as n ~ oo. This completes the proof. 



1538 HENO-YOU LAN et al. 

REMARK 4 .1 .  I f  en = 0 or f n  = 0 (n  > 0) in  A l g o r i t h m  4.1, t h e n  t h e  conc lu s ions  of  T h e o r e m  4.1 

also hold. The results of Theorem 4.1 improve and generalize the corresponding results of [1,20]. 
For other related works, we refer to [13,14,16]. 

REMARK 4.2. If X is 2-uniformly smooth Banach space and there exists p E ( O , r / ( A m ) )  such 
that  

.~2m2 
k = d2~ 2 + e 2 ¢  2 > - -  

4C2T2 

x / ( ~ 2 ~ 2  - r2) (4c2k~2 - ~ 2 r n ~ )  + ~ m  h = ~ + ~ - s S ~  2 - d e 2 ~  2 >  
T2 

~ 2 h  - A m  V / ( r 2 h  _ ,Xrn) 2 _ ( r 2 ~ 2  _ r2)  ( 4 c 2 k r 2  - ,X2m2) 
p 

- 4 c ~ 2 - _ - ~ - r n  2 < 4c2kr2  - A2rn2 , 

then (4.6) holds. We note tha t  Hilbert space and Lp (or lp) (2 < p < ec) spaces are 2-uniformly 
smooth Banach spaces. 

REMARK 4.3. If M is a (H, r/)-accretive operator, then we can obtain the corresponding results 
of Theorem 4.1. Our results improve and generalize the corresponding results of recent works. 
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