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SUMMARY

The mammalian heart has a remarkable regenera-
tive capacity for a short period of time after birth,
after which the majority of cardiomyocytes perma-
nently exit cell cycle. We sought to determine the
primary postnatal event that results in cardiomyo-
cyte cell-cycle arrest. We hypothesized that transi-
tion to the oxygen-rich postnatal environment is
the upstream signal that results in cell-cycle arrest
of cardiomyocytes. Here, we show that reactive ox-
ygen species (ROS), oxidative DNA damage, and
DNA damage response (DDR) markers significantly
increase in the heart during the first postnatal
week. Intriguingly, postnatal hypoxemia, ROS scav-
enging, or inhibition of DDR all prolong the post-
natal proliferative window of cardiomyocytes,
whereas hyperoxemia and ROS generators shorten
it. These findings uncover a protective mechanism
that mediates cardiomyocyte cell-cycle arrest in ex-
change for utilization of oxygen-dependent aerobic
metabolism. Reduction of mitochondrial-dependent
oxidative stress should be an important component
of cardiomyocyte proliferation-based therapeutic
approaches.
INTRODUCTION

The pathophysiological basis of heart failure is the inability of the

adult heart to regenerate lost or damaged myocardium, and

although limited myocyte turnover does occur in the adult heart,

it is insufficient for restoration of contractile dysfunction (Berg-

mann et al., 2009; Hsieh et al., 2007; Laflamme et al., 2002; Na-

dal-Ginard, 2001; Quaini et al., 2002). In contrast, the neonatal

mammalian heart is capable of substantial regeneration

following injury through cardiomyocyte proliferation (Porrello

et al., 2011b, 2013), not unlike urodele amphibians (Becker

et al., 1974; Flink, 2002; Oberpriller and Oberpriller, 1974) or

teleost fish (González-Rosa et al., 2011; Poss et al., 2002;

Wang et al., 2011). However, this regenerative capacity is lost

by postnatal day 7 (Porrello et al., 2011b, 2013), which coincides

with cardiomyocyte binucleation and cell-cycle arrest (Soonpaa

et al., 1996). Although several regulators of cardiomyocytes cell

cycle postnatally have been identified (Bersell et al., 2009; Chen

et al., 2013; Eulalio et al., 2012; Mahmoud et al., 2013; Porrello

et al., 2011a; Sdek et al., 2011; Xin et al., 2013), the upstream

signal that causes permanent cell-cycle arrest of most cardio-

myocytes remains unknown.

One of many factors shared by organisms that are capable of

heart regeneration is the oxygenation state. For example, the

zebrafish’s stagnant and warm aquatic environment has 1/30th

oxygen capacitance compared to air and is prone to poor

oxygenation, which may explain the remarkable tolerance of
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Figure 1. Oxidation State, Activity of Mitochondrial Respiration, Oxidative Stress, and the Activation of DNA Damage Response Correspond

to Cardiac Regenerative Capacity

(A) Fishes and mammalian fetuses are under low-oxygenated environment, whereas postnatal mammals are in well-oxygenated atmosphere.

(B) qRT-PCR analysis revealed postnatal increase in mitochondrial DNA (mtDNA) contents per gram of tissue (ventricles) until postnatal day 14 (P14). Relative

mtDNA content in adult zebrafish was even smaller than that in P1 mouse.

(C) TEM images of ventricles showedmoremature cristae structure in P7mouse heart comparing with P1mouse heart and adult zebrafish heart (left). The number

of mitochondrial cristae counted from SEM images increased in P7 mouse heart compared to P1 mouse heart (table, blue bars) and also to adult zebrafish heart

(table, red bar).

(D) HPLC detection of a superoxide probe dihydroethidium (DHE) revealed a significant increase in both 2-hydroxyethidium (EOH), a specific product for

superoxide anion radical, and in ethidium (E), oxidized by other reactive oxygen species such as H2O2 (mainly) and ONOO from P1 to P7.

(E) Imaging of ROS on cryosections with dihydrorhodamine 123 staining indicated linear increase in cardiomyocyte ROS level from P1 to P7 (arrows).

(F) Immunostaining with oxidative DNA damage and DNA damage response (DDR) markers. A marker for oxidative base modification in DNA, 8-oxo-7,8-di-

hydroguanine (8-oxoG, left panels), and for activation of DDR, Ser1987 phosphorylated ATM (pATM, right panels) were not detected in cardiomyocyte nuclei at P1

(legend continued on next page)
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zebrafish to hypoxia (Rees et al., 2001; Roesner et al., 2006).

Typical air-saturated water has a PaO2 of 146mmHg and zebra-

fish can tolerate hypoxia at PaO2 of 15 mm Hg (10% air-satura-

tion) for 48 hr and even 8 mm Hg with hypoxic preconditioning.

Moreover, the zebrafish circulatory system is relatively hypox-

emic, as it has a primitive two-chamber heart with one atrium

and one ventricle, which results in mixing of arterial and venous

blood.

The mammalian heart has four chambers with no mixing of

arterial and venous blood; however, during intrauterine life, the

mammalian fetal circulation is shunt-dependent with significant

arteriovenous mixing of arterial and venous blood. Mixing and

shunting of blood occurs at three sites: the ductus venosus,

foramen ovale, and ductus arteriosus. Blood in the umbilical

vein going to the fetus is 80%–90% saturated with a PaO2 of

32–35 mm Hg whereas the fetal venous blood return is quite de-

saturated at 25%–40%. Despite preferential streaming of blood

through the shunts to preserve the most oxygenated blood for

the brain and the myocardium, the saturation of the blood

ejected from the left ventricle is only 65% saturated with a

PaO2 of 25–28 mm Hg (Dawes et al., 1954). Therefore, both

the zebrafish heart and the mammalian fetal heart reside in rela-

tively hypoxic environments (Figure 1A).

Transition from embryonic- to postnatal circulation soon after

birth drastically changes the oxygenation state of cardiomyo-

cytes. For example, arterial pO2 increases from 30 mm Hg (Law-

rence et al., 2008;Mitchell and VanKainen, 1992; Reynolds et al.,

1996) to 100 mm Hg (Webster and Abela, 2007) (Figure 1A). In

parallel, energy metabolism of the embryonic and adult heart is

quite distinct. During embryonic development, when cardiomyo-

cytes rapidly proliferate, the relatively hypoxic embryonic heart

utilizes anaerobic glycolysis as a main source of energy (Fisher

et al., 1980; Lopaschuk et al., 1992), whereas adult cardiomyo-

cytes utilize the oxygen-dependent mitochondrial oxidative

phosphorylation as an energy source (Gertz et al., 1988; Wisne-

ski et al., 1985). Nevertheless, the time frame of this metabolic

shift and its relation to cardiomyocyte cell cycle is unknown.

Mitochondrial oxidative phosphorylation produces 18 times as

much ATP as cytoplasmic glycolysis (Dismukes et al., 2001; Se-

menza, 2007). However, the energy advantage of mitochondrial

oxidative phosphorylation over glycolysis is not without delete-

rious consequences, as themitochondrion is considered thema-

jor source of free radical production (Miquel et al., 1980; Turrens,

1997, 2003). Mitochondrial ROS are generated as a conse-

quence of electron leak by the electron transport chain (Koop-

man et al., 2010; Rudolph and Heyman, 1974) and can cause

cellular toxicity by promoting damage of proteins, nucleic acids,

lipids, or DNA, such as oxidized base, single- or double-strand

breaks, resulting in cell-cycle arrest, apoptosis, or cellular senes-

cence (Hoeijmakers, 2009; Marnett et al., 2003; Moos et al.,

2000). The role of mitochondrial ROS or DNA damage response

in postnatal cell-cycle arrest of cardiomyocytes is unknown.
(top panels, white arrows), whereas at P7 (middle panels) and at P14 (lower panels

33258, Ho) indicated by arrows.

(G) Oxidative DNA damage and DDR were induced before P7 in cardiomyocyte.

number of 8-oxoG foci per cardiomyocyte. Right panels: western blot and quanti

used to normalize sample loading. Error bars represent SEM. *p < 0.05; **p < 0.0
Here, we show that early postnatal mouse and zebrafish

hearts share a low mitochondrial content and complexity and

lack markers of DNA damage response, all of which significantly

increase in the postnatal mouse heart within days after birth.

Moreover, we show that there is a temporal shift from glycolytic

to oxidative metabolism, with a subsequent increase in mito-

chondrial ROS production, which induces cardiomyocyte cell-

cycle arrest through activation of the DNA damage response.

Systemic scavenging of ROS, specific scavenging of mitochon-

drial ROS in cardiomyocytes, or inhibition of the DNA damage

response pathway all delay postnatal cell-cycle arrest of cardio-

myocytes. These findings identify ROS-induced activation of the

DNA damage response pathway as an important mediator of

cell-cycle arrest in postnatal cardiomyocytes.

RESULTS

Mitochondrial Characteristics in Neonatal and Zebrafish
Hearts
In order to examine the relationship between mitochondrial

respiration and regenerative potential in vertebrate hearts

amongst species, we first examined mitochondrial DNA content

in the ventricular chamber of the heart with quantitative RT-PCR

(qRT-PCR) (primers are indicated in Table S1) over 2 weeks after

birth in mouse (n = 3) and adult zebrafish (n = 3). Mitochondrial

DNA copy number showed a linear increase in the first 2 weeks

after birth (Figure 1B, blue bars). Intriguingly, mitochondrial DNA

per gram of tissue was low in adult zebrafish and early neonatal

mouse hearts (Figure 1B) compared to in the hearts of later post-

natal age mice. Next, we examined mitochondrial cristae

density, an index of increased proton pumping capacity of mito-

chondria, in adult zebrafish heart (n = 3) and neonatal mouse

hearts (n = 3), using transmission electron microscopy (TEM)

imaging. Mitochondrial cristae were sparse in zebrafish and P1

mouse in ventricular cardiomyocytes, but became dense and

well-organized at P7 and later postnatal time points (Figure 1C).

To further assess capacity of oxidative metabolism in the

postnatal mouse heart, we performed comprehensive mass

spectrometry-based quantification of enzymes involved in both

aerobic and anaerobic metabolism. We found that the majority

of the enzymes related to glycolysis were downregulated from

P1 to P7, and concomitantly, the majority of the enzymes

involved in mitochondrial Krebs cycle were upregulated in the

same time frame (Figure S1A available online). Importantly,

over 80% of fatty acid beta oxidation enzymes, the main source

of energy in mature cardiomyocytes (Lopaschuk et al., 1994),

were upregulated from P1 to P7 (Figure S1A). Finally, we

measured mitochondrial NADH oxidase activity, a direct mea-

sure of NADH flux throughmitochondrial electron transport chain

enzymes, and found a significant increase in the same time

frame, from P1 to P7 (Figure S1B). These results demonstrate

that a precise correlation exists between the regenerative
) both 8-oxoG and pATM showed nuclear localization (colocalized with Hoechst

Left panels: representative images of 3D imaging of 8-oxoG staining and the

fication of pATM indicating upregulation of DDR. Cardiac troponin T (TnT) was

1.
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Figure 2. Postnatal Cardiomyocyte Cell-Cycle Arrest Is Dependent on Environmental Oxygen Concentration

(A) Neonates were exposed to hyperoxic (100% O2) or mildly hypoxic (15% O2) environment from perinatal stage for 4 days (hyperoxia) or 7 days

(hypoxia).

(B) Oxidative DNA damage indicated by nuclear signal with anti-8-oxoG antibody in cardiomyocyte was increased in hyperoxic hearts (left panels) and decreased

in hypoxic hearts (right panels).

(C) Heart weight versus body weight (HW/BW) ratio showed no statistically significant difference in mice exposed to hyperoxia, whereas significantly increased in

mice exposed to hypoxia.

(D) Cardiomyocyte cell size did not show significant difference in hyperoxia and was decreased in hypoxia.

(legend continued on next page)
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zebrafish heart and the early neonatal mouse heart and outline

the time frame of the metabolic switch from anaerobic glycolysis

tomitochondrial oxidative phosphorylation inmouse heart within

one week after birth.

Activation of DNA Damage Response Pathway
in Postnatal Mouse Heart
An important byproduct of mitochondrial respiration is the gen-

eration of reactive oxygen species (ROS), which cause cellular

oxidative stress, in turn inducing various types of cellular toxicity

including widespread damage to proteins, lipids, and nucleic

acids (Judge and Leeuwenburgh, 2007). We therefore assessed

the production of ROS and oxidative stress in postnatal cardio-

myocytes. ROS were measured by the detection of dihydroethi-

dium (DHE) oxidation product 2-hydroxyethidine (EOH), which is

a marker of superoxide generation, and ethidium (E), which is a

marker of hydrogen peroxide (H2O2) primarily and other ROS,

with high-performance liquid chromatography (HPLC) (Figure 1D)

(Zhao et al., 2005). In addition, the fluorescence of ROS indicator

dihydrorhodamine 123 (Figure 1E), as well as 20,70-dichlorofluor-
escein (H2DCF) (Figure S1C) (Mills et al., 1998; Sundaresan et al.,

1995), further supported the increased ROS levels in cardiomyo-

cytes after birth. Moreover, we found that reduced glutathione

(L-g-glutamyl-L-cysteinylglycine [GSH]) and oxidized gluta-

thione disulfide (GSSG) both decreased progressively from P1

to P4 and further at P7 (Figure S1D). However, GSSG decreased

to a greater extent, which resulted in an overall increase in the

GSH:GSSH ratio (Figure S1D). Although the ratio of reduced to

oxidized glutathione is widely used as an index of oxidative

stress (Schafer and Buettner, 2001), recently the absolute levels

of GSSG have been shown to exert significant toxic effects. In

fact, the decline in the intracellular levels of GSSG is considered

a protective mechanism under conditions of oxidative damage.

Therefore, in the current study, the age-dependent reduction in

GSH and the further reduction in GSSG are strong indicators

of the oxidant environment in the postnatal heart, however, it

does not seem that there is an overall increased susceptibility

to oxidative stress given the elevated GSH:GSSG ratio. We

next examined the levels of various antioxidant enzymes by

quantitative mass spectrometry. We found that mitochondrial

superoxide dismutase (SOD2) (Halliwell and Gutteridge, 2007)

was the only antioxidant enzyme that was significantly increased

at P4 and P7 compared to P1, while other antioxidant enzymes

failed to increase (Figure S1E).

These results led us to hypothesize that oxidative DNA dam-

age caused by ROSmay increase in cardiomyocytes postnatally

and plays a role in postnatal cell-cycle arrest. Therefore we

assessed and quantified oxidative base modification of DNA

(8-oxo-7,8-dihydroguanine [8-oxoG]). We found that nuclear

8-oxoG was undetectable at P1, but significantly increased at

P7 and P14 (Figure 1F, left panels). In concert, DNA damage

response pathway was significantly activated as indicated by
(E) Coimmunostaining with anti-phosphohistone H3 Ser10 (pH3) and anti-cardiac

in hyperoxia-exposed hearts, and in contrast, significant increase in cardiomyoc

crease in either treatment as shown by TUNEL staining.

(F) Coimmunostaining with anti-Aurora B and antisarcomeric actinin antibodies

hypoxic hearts. Error bars represent SEM. *p < 0.05; **p < 0.01.
upregulation of phosphorylated ataxia telangiectasia mutated

(pATM), an essential mediator of DNA damage response activa-

tion, at P7 and P14 (Figure 1F, right panels). In addition, further

analysis of nuclear 8-oxoG using high resolution confocal micro-

scopy and quantification of oxidized DNA damage foci revealed

a significant increase in the number of oxidized DNAdamage foci

at P4 and P7 compared to P1 (Figure 1G). Also, quantitative anal-

ysis of nuclear pATM by western blot showed a significant in-

crease in levels as early as P4, with further increase at P7

compared to P1 (Figure 1G). Furthermore, qRT-PCR analysis

for downstream effectors of the DNA damage response pathway

also confirmed upregulation of other DNA damage response

components including genes involved in damaged DNA binding

and repair (Figure S1F). Interestingly, we found that ATM mRNA

was mildly downregulated, despite the significant upregulation

of the active phosphorylated form of ATM. Moreover, and

consistent with our previous findings, 8-oxoG was not detect-

able in zebrafish cardiomyocytes (Figure S2). These results

demonstrate that the increase in mitochondrial respiration corre-

sponds temporally with an increase in ROS in the neonatal heart

and activation of DNA damage response.

Environmental Oxygen Regulates Postnatal
Cardiomyocyte Cell-Cycle Arrest
To directly test that whether inspired oxygen can influence

postnatal cardiomyocyte cell-cycle arrest, we exposed neo-

nates to hyperoxic (100% O2) or mildly hypoxic (15% O2) envi-

ronment starting at E18.5 (n = 3 each, Figure 2A). Remarkably,

oxidative DNA damage and activation of DDR were accelerated

in P4 hyperoxia heart, and in contrast, were repressed in P7

hypoxia heart (Figure 2B). We found that heart weight to

body weight (HW/BW) ratio was normal in neonates under hy-

peroxia, but significantly increased in those under hypoxia (Fig-

ure 2C). Cell size quantification showed a significant decrease

in cardiomyocyte cell size after hypoxia treatment, although hy-

peroxic treatment did not change the size (Figure 2D). The

presence of phosphorylated histone H3 Ser 10 (pH3), a marker

of G2-M progression, was significantly decreased in cardio-

myocyte after hyperoxia treatment and in contrast increased

after hypoxia treatment (Figure 2E). In addition, localization of

Aurora B kinase at the cleavage furrow, a marker for cytoki-

nesis, was decreased in hyperoxic hearts and mildly increased

in hypoxic hearts (Figure 2F). These results strongly indicate

that postnatal oxygen concentration directly affects cardiomyo-

cyte proliferation.

Reactive Oxygen Species Induce Postnatal
Cardiomyocyte Cell-Cycle Arrest
To assess the contribution of oxidative stress to cell-cycle

arrest of postnatal cardiomyocyte, we injected the ROS gener-

ator diquat (5 mg/kg) daily for 3 days after birth (n = 3, Fig-

ure 3A). Strong induction of oxidative DNA damage indicated
Troponin T (TnT) antibodies showed drastic decrease in cardiomyocyte mitosis

yte mitosis in hypoxia-exposed hearts. Cardiomyocyte apoptosis did not in-

showed decreased cytokinesis in hyperoxic hearts, whereas mild increase in

Cell 157, 565–579, April 24, 2014 ª2014 Elsevier Inc. 569
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Figure 3. Injection of ROS Generator Diquat Induced Accelerated Cardiomyocyte Cell-Cycle Arrest
(A) Diquat (5 mg/kg) was injected subcutaneously for 3 days after birth and hearts were harvested at P3.

(B) Immunostaining showed nuclear accumulation of 8-oxoG in cardiomyocytes in diquat injected neonates.

(C) HW/BW ratio has no statistically significant difference.

(D) WGA staining showed significantly increased cardiomyocyte cell size in hearts of diquat injected neonates.

(E) Coimmunostaining with anti-pH3 and anti-TnT antibodies showed drastic decrease in cardiomyocyte mitosis in diquat-injected hearts. TUNEL assay showed

no significant increase in cardiomyocyte apoptosis.

(F) Diquat injection resulted in decreased cardiomyocyte cytokinesis as shown by coimmunostaining with anti-Aurora B, anti-TnT antibodies. Error bars represent

SEM. *p < 0.05; **p < 0.01.
by 8-oxoG (Figure 3B) was observed, and although HW/BW

ratio was unchanged (Figure 3C), we found that the size of in-

dividual cardiomyocytes was significantly increased (Figure 3D).

In addition, cardiomyocyte mitosis assessed by anti-pH3 stain-

ing was drastically reduced in cardiomyocytes in the diquat in-

jected neonates (Figure 3E). TUNEL assay showed no increase

in apoptotic cell death (Figure 3E). Finally, cardiomyocyte cyto-

kinesis assessed by anti-Aurora B staining was also signifi-

cantly decreased in the hearts of diquat injected neonates

(Figure 3F). These finding were further confirmed with the injec-

tion of another ROS generator paraquat (5 mg/kg, n = 3, Fig-

ure S3A). The injection of paraquat induced an increase in

cardiomyocyte cell size (Figure S3B) and a decrease in cardio-

myocyte mitosis, without significant increase in apoptosis

(Figure S3C). Cardiomyocyte cytokinesis was consistently

decreased with paraquat injection (Figure S3D). Moreover, we

directly injected 30 ml of 1 mM H2O2 into the apex of P1 mouse

hearts (n = 3, Figure S4A). Two days after H2O2 injection, strong
570 Cell 157, 565–579, April 24, 2014 ª2014 Elsevier Inc.
induction of phosphorylated ATM was observed (Figure S4B),

and although heart weight to body weight ratio was in normal

range (Figure S4C), the size of individual cardiomyocytes was

significantly increased (Figure S4D). In addition, cardiomyocyte

mitosis was almost completely lost in the H2O2-treated hearts

throughout the entire myocardium (Figure S4E). Although a sig-

nificant increase in apoptotic cardiomyocyte cell death was

shown in the direct H2O2-injected hearts, the vast majority of

the TUNEL positive cells were along the needle track, while

the effect on myocyte proliferation was global throughout the

myocardium (Figure S4F). In combination, these results

strongly indicate that ROS can induce a shift from hyperplastic

to hypertrophic growth in the postnatal mammalian heart. It is

important to note here that although there is a clear inhibitory

effect on cell-cycle in the absence of increased cell death,

the physiological relevance if these stimuli is less certain

because we are unable to control the amount or cellular local-

ization of ROS production.
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Figure 4. Injection of a Scavenger against ROS Suppresses Postnatal Cardiomyocyte Cell-Cycle Arrest

(A) N-acetyl-cysteine (NAC) was administered for 21 days after birth.

(B) ROS level in cardiomyocytes significantly decreased as shown by dihydrorhodamine 123 staining in NAC-treated neonates.

(C) Reduced 8-oxoG staining was seen in NAC-injected heart, demonstrating reduced oxidative DNA damage in cardiomyocyte at P7.

(D) NAC injection suppressed activation of DNA damage response pathway. Coimmunostaining with anti-pATM and anti-a actinin antibodies showed that NAC

treatment reduces nuclear phospho-ATM at P7 compared with control (arrows in left panels).

(E) HW/BW ratio in control and NAC-treated hearts at P14 showed no significant difference.

(F) Cell size quantification using WGA staining showed significantly decreased cell size in NAC-treated hearts.

(legend continued on next page)
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Scavenging Reactive Oxygen Species Prolongs
Postnatal Cardiomyocyte Proliferation
To test whether scavenging ROS can extend cardiomyocyte

proliferation after birth, we administered N-acetylcysteine

(NAC) daily for 3 weeks after birth (n = 3, Figure 4A). Staining

with dihydrorhodamine 123 showed a decreased cellular ROS

level after NAC treatment (Figure 4B). Accordingly, the level of

8-oxoG (Figure 4C) and phosphorylated ATM (Figure 4D) were

markedly decreased in cardiomyocyte nuclei after a 1 week

treatment with NAC, indicating that oxidative DNA damage and

the activation of the DDR by oxidative stress was suppressed.

Although HW/BW ratio was normal (Figure 4E), cardiomyocyte

cell size was significantly decreased in NAC-treated neonates

(Figure 4F). This suggests that NAC treatment delays the post-

natal switch from hyperplastic to hypertrophic growth. To

confirm this finding, we performed a number of additional

studies. First, we observed that NAC treatment increased the

total number of cardiomyocytes (Figure 4G). We next examined

cardiomyocyte proliferation in NAC-treated hearts. Cardiomyo-

cyte mitosis (Figure 4H) in the NAC-treated hearts compared

to control hearts at both P7 and P14 (Figure 4H) and cytokinesis

were significantly increased in theNAC-treated hearts (Figure 4I).

In addition, we found that the NAC-treated hearts had signifi-

cantly more mononucleated and less binucleated cardiomyo-

cytes (Figure 4J). Finally, TUNEL assay showed no increase in

cell death (Figure 4K). In addition, NAC treatment on isolated

neonatal rat cardiomyocytes significantly increased DNA syn-

thesis and mitosis and also reduced polyploidy (Figure S5).

However, we noted that cardiomyocyte proliferation gradually

decreased over time in the NAC-treated heart within 1 month

after birth (data not shown). Detection of the DHE products with

HPLC also indicates that both superoxides and other ROS were

significantly reduced upon NAC treatment (Figure S6A). qRT-

PCR and quantitative mass spectrometry analyses showed little

change in levels of proteins involved in oxidative phosphorylation

in the NAC-treated p7 hearts compared to control p7 hearts (Fig-

ure S6C). The measurement of NADH oxidase activity revealed

increase in mitochondrial respiration at P7 even upon NAC

administration (Figure S6D). Overall, these results are consistent

with amodel in which an increase in reactive oxygen species trig-

gers cardiomyocyte cell-cycle arrest shortly after birth.

Mitochondrial-Specific Scavenging of ROS Induces
Postnatal Cardiomyocyte Proliferation
To selectively examine whethermitochondrial ROS production is

involved in postnatal cell-cycle arrest of cardiomyocytes, we uti-

lized a genetic model to overexpress a radical scavenger specif-

ically in cardiomyocyte mitochondria. We crossed floxed-stop
(G) Total number of cardiomyocyte was significantly increased in NAC-treated h

(H) Coimmunostaining with anti-pH3 and anti-TnT antibodies showed increased

PBS-injected control or NAC-injected neonates at P14.

(I) NAC injection induced cardiomyocyte cytokinesis indicated by Aurora B and T

(J) Percentage of binucleated cardiomyocytes was significantly decreased and

Immunocytochemistry on isolated myocyte with anti-Cx43 antibody and Hoechst

each cardiomyocyte, respectively.

(K) Apoptotic cell death visualized with TUNEL assay was not increased in NA

**p < 0.01.
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mCAT (mitochondrial-specific catalase) mice, in which floxed

transcriptional stop sequences are inserted in between universal

GAPDH enhancer/promoter andmCAT (Dai et al., 2011; Schriner

et al., 2005), with Myh6-Cre mice to generate mice expressing

mCAT only in cardiomyocytes by cardiomyocyte-specific dele-

tion of floxed-stop with Myh6 enhancer/promoter-driven Cre re-

combinase (hereinafter called mCAT mice, Figure 5A).

We found that ROS levels were decreased in the mCAT hearts

by dihydrorhodamine 123 staining (Figure 5B). Quantification of

ROS by HPLC detection of EOH peak showed no significant

change in the level of superoxide and significant reduction in

the E peak, indicative of substantial decrease in H2O2 (as ex-

pected given that catalase primarily acts on H2O2, Figure S6B).

Accordingly, oxidative DNA damage (Figure 5C) and the activa-

tion of DDR pathway (Figure S6E) were suppressed. In mCAT

mice, HW/BW ratio was normal (Figure 5D), however, cardio-

myocyte cell size in mCAT mice at P14 was significantly smaller

than that in control mice (Figure 5E). In addition, cardiomyocyte

mitosis (Figure 5F), as well as cytokinesis (Figure 5G), were

increased in mCAT hearts. Accordingly, the total number of

cardiomyocyte in mCAT mice was significantly increased in

comparison with that in control mice (Figure 5H). The number

of proliferative mononucleated cardiomyocytes was increased

and binucleated cardiomyocytes were decreased in mCAT heart

(Figure 5I). Cardiomyocyte apoptosis was in the normal range

in mCAT heart (Figure 5J). These results indicate that mitochon-

drial ROS production induces postnatal cell-cycle arrest of

cardiomyocytes.

NAC Injection Improves Cardiac Function after Injury
We next tested whether ROS scavenging can extend the regen-

erative potential ofmammalian heart.We injectedNACdaily after

birth and induced ischemia reperfusion (IR) injury at P21 (n=12), a

time point well beyond the P7 where the postnatal heart loses

its regenerative potential (Figure 6A). It is important to note

here that the control mice also received NAC at the time of IR

injury to equalize any effect of NAC injection of ROS-induced

infarct expansion following ischemia reperfusion.Cardiomyocyte

viability assessed with 2,3,5-trimethyl tetrazolium chloride (TTC)

staining was not significantly different between long-term NAC-

treated and control hearts (n = 3, Figure 6B). One week and

1 month after the IR injury, there was no significant change in

heart size in the NAC-treated animals (Figure 6C). WGA staining

showed a significant decrease in cardiomyocyte cell size at

1 month after IR injury, which along with the unchanged

HW/BW suggests that the NAC-treated hearts have more cardi-

omyocytes (Figure 6D). In addition, systolic function was signifi-

cantly improved in the NAC-treated group (Figure 6E). Fibrotic
eart at P21.

cardiomyocyte mitosis in NAC-treated hearts. Images shown are hearts from

nT double-positive cardiomyocytes.

mononucleation was significantly increased in NAC-treated hearts at P14.

33258 (Ho) nuclear-specific dye were used to visualize boundary and nuclei of

C-treated heart at neither P7 nor P14. Error bars represent SEM. *p < 0.05;
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Figure 5. Scavenging Reactive Oxygen Species in Mitochondria Suppresses Postnatal Cardiomyocyte Cell-Cycle Arrest

(A) Mitochondrial-targeted catalase (mCAT) was overexpressed in cardiomyocyte by flipping floxed-stop cassette between GAPDH promoter and mCAT by

crossing with mice harboring Myh6 promoter driven Cre recombinase. Myh6-Cre; floxed-stop mCAT mice are hereinafter called mCAT mice. Litter-mate Myh6-

Cre mice were used as control.

(legend continued on next page)
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scar formation was also decreased after NAC treatment (Fig-

ure 6F). Finally, by assessing the number of pH3 positive cardio-

myocyte at 3daysafter IR (Figure 6G) andBrdU incorporation into

cardiomyocytes nuclei at 7 days after IR (Figure 6H), we showed

that cardiomyocyte proliferation was significantly increased in

the NAC-treated hearts. These data indicate that scavenging

ROS can extend regenerative potential of the heart beyond

1 week after birth. It is important here to note that there may be

several effects of NAC going on concomitantly; for example,

although we administered NAC to the control group for a short

period of time after injury in an attempt counteract any effect of

NAC on ROS-mediated reperfusion injury, it is likely that the

continued NAC administration over 1 month also resulted in

decreased cardiomyocyte loss and remodeling following injury.

Pharmacological Inhibition of DNA Damage Response
Pathway Extends the Window of Cardiomyocyte
Proliferation in the Postnatal Mouse Heart
In order to determine whether DNA damage-induced activation

of cell-cycle checkpoint pathway is involved in cardiomyocytes

cell-cycle arrest, we examined the Wee1-dependent activation

of G2-M cell-cycle checkpoint in postnatal cardiomyocytes.

Activation of ATM or ATR kinase in response to DNA damage

in turn activates Wee1 kinase, a repressor of CDK1-dependent

G2-M transition (Figure 7A) (Heald et al., 1993; Parker and

Piwnica-Worms, 1992; Santamarı́a et al., 2007). We found

that nuclear Wee1 was absent from cardiomyocyte nuclei

immediately after birth, but became strongly expressed at P7

as well as P14 (Figure 7B, left). Western blot confirmed the

increased in Wee1 at p4 and further at P7 (Figure 7B, right).

To test whether Wee1 plays a role in postnatal cardiomyocyte

cell-cycle arrest, we injected Wee1 inhibitor MK-1775 daily

from birth until 2 weeks of age (n = 3, Figure 7C). Wee1 inhibi-

tion resulted in a trend toward decrease in heart size, which

was not statistically significant (Figure 7D). Notably, Wee1 in-

hibitor-treated hearts showed robust induction of cardiomyo-

cyte proliferation at P14 indicated by both anti-pH3 (Figure 7E)

and anti-Aurora B (Figure 7G) immunostaining, as well as

reduced cardiomyocyte cell size (Figure 7F). TUNEL assay

showed no increase in apoptotic cell death in Wee1 inhibitor-

treated hearts (Figure 7H). Moreover, total number of cardio-

myocytes in Wee1 inhibitor-treated P14 hearts was significantly

increased both at P7 and at P14 (Figure 7I), and cardiomyocyte

binucleation was inhibited (Figure 7J). Furthermore, Wee1 was

downregulated when ROS was scavenged in NAC injected or

mCAT mice (Figure S6B) at P7. These results suggest that

Wee1 mediates postnatal cardiomyocyte cell-cycle arrest and
(B) The level of ROS in cardiomyocyte decreased in mCAT heart compared with

(C) mCAT significantly suppressed DNA damage shown by 3D imaging and the q

(D) HW/BW ratio in control and mCAT mouse hearts at P14 and in the adult was

(E) WGA staining showed a decrease in cell size in mCAT hearts.

(F) Increased cardiomyocyte mitosis in mCAT mouse hearts at p14 indicated by

(G) Increase in cardiomyocyte cytokinesis shown by immunostaining with anti-A

(H) Total number of cardiomyocyte was significantly increased at P14 in mCAT m

(I) Number of binucleated cardiomyocytes was significantly decreased and mono

(J) TUNEL positive apoptotic cell death was within normal range in mCAT heart.
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that blocking Wee1 kinase is sufficient to extend the postnatal

proliferative window.

In summary, our results indicate that a postnatal increase in

mitochondrial-derived reactive oxygen species induces cell-

cycle arrest through activation of the DNA damage response

pathway in mouse heart within 7 days after birth. Moreover, it

is intriguing that the oxidation status and regenerative capacity

are well correlated among regenerative lower vertebrates and

the early postnatal mammalian heart.

DISCUSSION

One of the long-standing mysteries in cardiovascular biology

is the permanent cell-cycle arrest of adult cardiomyocytes,

both from an etiological as well as mechanistic perspective.

From a mechanistic perspective, several regulators of cardio-

myocyte cell cycle have been identified (Agah et al., 1997; Ber-

sell et al., 2009; Chen et al., 2013; Eulalio et al., 2012; Jackson

et al., 1990; Liao et al., 2001; Liu et al., 2010; Mahmoud et al.,

2013; Porrello et al., 2011a; Reiss et al., 1996; Sdek et al.,

2011; Xin et al., 2013) including both direct and indirect cell-

cycle regulators. However, the upstream event that triggers

these cascades is unknown. A more important question is

why are adult cardiomyocytes unable to re-enter cell cycle

on demand, for example after injury? In the current report,

we show that the increase in environmental oxygen, and the

subsequent upregulation of oxidative metabolism, is the up-

stream signal that triggers cell-cycle exit of cardiomyocytes

shortly after birth.

We provide multiple levels of evidence to support our hypoth-

esis that increased environmental oxygen, with the subsequent

increase in mitochondrial oxidative metabolism, induces cardio-

myocyte cell-cycle arrest through activation of the DNA damage

response. First, we show that the regenerative zebrafish heart,

similar to the early postnatal mouse heart, has very low mito-

chondrial content and complexity, and shows no evidence of

activation of the DDR pathway. Second, we show that the post-

natal increase in mitochondrial mass, complexity, and activity,

increased ROS, increased markers of DNA damage, and activa-

tion of DDR pathway, all correlate temporally with cell-cycle exit

of cardiomyocytes. Third, we show that postnatal hypoxemia

inhibits DNA damage and prolongs the postnatal window of

cardiomyocytes proliferation, while postnatal hyperoxemia

potentiates DNA damage and early cell-cycle arrest. Fourth,

we show that ROS generators induce DDR and early cell-cycle

arrest, while both nonspecific and mitochondrial-targeted ROS

scavenging delays activation of the DNA damage response
control.

uantification of 8-oxoG foci in cardiomyocyte.

not changed.

coimmunostaining with anti-pH3 and anti-troponin T antibodies.

urora B antibody.

ouse heart.

nucleated cardiomyocytes was significantly increased in mCAT hearts.

Error bars represent SEM. *p < 0.05; **p < 0.01.
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Figure 6. Scavenging ROS Extends Postnatal Cardiac Regeneration Window
(A) Animals were treated with NAC from P0 and subjected to ischemia reperfusion (IR) surgery at P21. Viability was investigated 24 hr after injury to evaluate the

consistency of the IR surgery, and cardiac function was examined by echocardiography at 1 week and 1 month after injury.

(B) TTC staining showed no significant difference in the size of injury between control and NAC-pretreated hearts.

(C) HW/BW ratio at 1 week or 1 month after IR surgery between control and NAC-pretreated mice was not changed.

(D) WGA staining showed a decrease in cell size in NAC-treated hearts 1 month after IR injury compared to control hearts, indicating the NAC treatment did not

induce cardiomyocyte hypertrophy.

(E) Left ventricular systolic function quantified by ejection fraction (EF) and shortening fraction (SF) (n = 6 per group) before IR surgery (left), 1 week after surgery

(middle), and 1 month after surgery (right) showed more functional recovery in NAC-pretreated hearts compared with control hearts.

(F) Histological analysis with Masson trichrome staining showed reduced fibrotic scar formation in NAC-treated hearts.

(G) Cardiomyocyte mitosis was increased in NAC-treated mice as indicated by anti-pH3 and anti-TnT coimmunostaining at 3 days after IR injury.

(H) Immunostaining with anti-BrdU and anti-Actinin antibodies showed increased cardiomyocyte BrdU incorporation in NAC-pretreated heart. Error bars

represent SEM. *p < 0.05; **p < 0.01.
and delays cell-cycle arrest of cardiomyocytes. Finally, we show

that pharmacological inhibition of the DDR pathway prolongs the

postnatal window of cardiomyocyte proliferation. It is important

to note here that although we were able to prolong the postnatal
window of myocyte proliferation with ROS scavenging, we were

unable to prevent cell-cycle arrest. The inevitable cell-cycle exit

of cardiomyocyte is likely multifactorial and possibly related to

our inability to completely prevent DNA damage, or other factors
Cell 157, 565–579, April 24, 2014 ª2014 Elsevier Inc. 575
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Figure 7. Inhibition of an Effector of DNA Damage Response, Wee1 Kinase, Suppresses Postnatal Cardiomyocyte Cell-Cycle Arrest

(A) DNA damage response pathway activates Wee1 kinase that inhibits cell cycle regulator Cyclin/CDKs, resulting in cell-cycle arrest.

(B) Immunostaining with anti-Wee1 and anti-TnT antibodies showed no expression of Wee1 protein in cardiomyocytes at P1 (arrows), and then nuclear localized

Wee1 protein at P7 and P14 (arrows).

(C) Daily injection of Wee1 kinase inhibitor MK-1775 was performed from birth until P14.

(D) Wee1 inhibitor injection resulted in slight, but not statistically significant, decrease in HW/BW ratio compared with control.

(E) Inhibition of Wee1-induced mitosis in cardiomyocyte at P14 shown by pH3/TnT immunostaining.

(F) Quantification of cell size with WGA staining showed decreased cardiomyocyte size in Wee1 inhibitor-treated hearts.

(G) AuroraB/TnT immunostaining showed increased cardiomyocyte cytokinesis in Wee1 inhibitor-treated hearts.

(H) No increase in apoptotic cell death in cardiomyocyte indicated by TUNEL assay.

(I) Total number of cardiomyocyte was increased at P7 and P14 in Wee1 inhibitor-treated hearts.

(J) Number of binucleated cardiomyocytes was reduced, andmononucleated cardiomyocyte was increased in Wee1 inhibitor-treated heart. Error bars represent

SEM. *p < 0.05; **p < 0.01.
such as the postnatal change in type and abundance of nutrients

(Siggens et al., 2012) or increased hemodynamic stress. Simi-

larly, pharmacological inhibition of Wee1 delayed, but did not

prevent, cell-cycle arrest. This is, perhaps, not surprising given

the downstream cell-cycle targets of the DDR pathway that do

not involve Wee1, which regulates cyclin B/CDK1, while cyclin

E/CDK2 is targeted by other components of the DDR pathways.

The effect of ROS on cell cycle is complex and probably

greatly influenced by level, source, type, compartmentalization,

and duration of exposure to ROS. Evidence suggests that ROS
576 Cell 157, 565–579, April 24, 2014 ª2014 Elsevier Inc.
can be proproliferative in several scenarios (Leslie, 2006; To-

thova et al., 2007) and can stimulate differentiation of several

cell types (Lee et al., 2005; Owusu-Ansah and Banerjee, 2009;

Tsatmali et al., 2006) including cardiomyocytes. In vitro studies

using embryonic stem (ES) cells have shown that redox balance

is a critical regulator of cardiomyocyte differentiation (Birket

et al., 2013). ROS mediates mechanical strain and electrical

stimulation-induced cardiomyocyte differentiation of ES cells

(Pucéat et al., 2003), while ROS scavengers impair cardiomyo-

cyte formation in embryoid bodies (Pi et al., 2013; Sauer



et al., 2000; Yoneyama et al., 2010). In contrast, ROS-mediated

senescence and cell-cycle exit is a well-recognized character-

istic of stem cells (Takahashi et al., 2006; Trachootham et al.,

2009).

The current report demonstrates that the neonatalmouseheart

and the zebrafish heart may have more in common than previ-

ously recognized. The hypoxic nature of the zebrafish external

and circulatory environments prevents activation of the DDR

and cell-cycle arrest of myocytes. In support of this notion, addi-

tional hypoxia actually enhances myocyte proliferation and

regenerative capacity of zebrafish hearts (Jopling et al., 2012;

Marques et al., 2008) and in the current report, prolongs the post-

natal window of myocyte proliferation in mammals. Shortly after

birth, the metabolic switch that occurs in the mammalian heart

confers significant energy efficiency through oxidative meta-

bolism, unfortunately at the expense of proliferative competency.

We conclude that mitochondrial ROS-mediated activation of the

DDR is an important upstream event that mediates cell-cycle

arrest of postnatal cardiomyocytes.

EXPERIMENTAL PROCEDURES

Animal Breeding and Genotyping

All protocols were approved by the Institutional Animal Care and Use Commit-

tee of the University of Texas Southwestern Medical Center (UTSW). All exper-

iments were performed on age- and sex-matched mice, with equal ratio of

male to female mice. The number of animals used for each experiment;

n = 3. Transgenic mCAT mice were kindly provided by Dr. Ravinovitch.

Mice were genotyped as described previously (Dai et al., 2011; Schriner

et al., 2005).

Drug Injection

N-acetyl-L-cysteine (NAC, Sigma) was reconstituted in PBS to concentrations

of 10 mg/ml. CD-1 (Charles River) mice were weighed daily and 75 mg/kg of

NAC was injected daily subcutaneously or intraperitoneal from day 0 to day

14. Wee1-inhibitors (MK-1775, Selleck) were reconstituted in diluted DMSO.

CD-1 mice were injected daily with 2.5 mg/kg subcutaneously or intraperito-

neal from day 0 to day 14. Diquat, paraquat, and H2O2 were diluted in PBS

and injected into CD-1 neonates as described in Results.

Histology

Hearts were harvested and fixed in 4% paraformaldehyde (PFA)/PBS solu-

tion overnight at room temperature and then processed for paraffin

sectioning. Masson’s trichrome staining was performed according to stan-

dard procedures at UTSW core histology facility on paraffin sections. TUNEL

staining was performed according to manufacturer’s recommendations (In

Situ Cell Death Detection Kit, Fluorescein, catalog number 11684795910,

Roche).

Immunostaining

Following antigen retrieval with 1 mM EDTA in boiling water, sections were

blocked with 10% serum from host animal of secondary antibodies, and incu-

bated with primary antibodies overnight at 4�C. Sections were subsequently

washed with PBS and incubated with corresponding secondary antibodies

conjugated to Alexa Fluor 350, 488, or 555 (Invitrogen). Primary antibodies

used are following: anti-phospho Histone H3 Ser10 (Millipore 06-570, 1:100),

anti-Aurora B (Sigma A5102, 1:100), anti-Troponin T, Cardiac Isoform Ab-1,

Clone 13-11 (Thermo Scientific MS-295-P1, 1:100), anti-Bromodeoxyuridine

(Roche 11170376001, 1:25), anti-Sarcomeric Alpha Actinin (Abcam,

ab68167, 1:100), anti-Oxoguanine 8 (Abcam Ab64548, 1:100), anti-phosphor-

ylated ATM (Santa Cruz Biotechnology sc-47739, 1:100), anti-Wee1 (Abcam

ab137377, 1:100), and anti-wheat germ agglutinin (WGA) conjugated to Alexa

Fluor 488 (50 mg/ml, Invitrogen).
Cardiomyocyte Isolation

The isolation of cardiomyocyte from neonatal hearts and staining with anticon-

nexin 43 antibody were performed as previously described (Mahmoud et al.,

2013).

Reactive Oxygen Species Determination

Dihydrorhodamine 123 (Life Technologies, D-23806) or CM-H2DCFDA (Life

Technologies, C6827) and HPLC detection of DHE were used to detect

ROS. See Extended Experimental Procedures for detailed methods.

Cristae Measurement

Spacings between cristae in individual mitochondria were quantified using

ImageJ. Only mitochondria with several well-defined, parallel cristae were

selected for analysis. The ImageJ line tool was used to draw a line across

the stack of cristae, perpendicular to the orientation of the cristae, and the

number of cristae crossing the line was counted interactively. The pixel size

defined in the image metadata was used to obtain the length of the line profile

in mm.

Western Blotting

Western blot was performed using standard protocols. See Extended Exper-

imental Procedures for detailed methods.

Statistical Analysis

One-tailed or two-tailed Student’s t test was used to determine statistical sig-

nificance and *p < 0.05 and **p < 0.01 was considered statistically different. All

quantification is blinded.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Extended Experimental Procedures, six

figures, and one table and can be found with this article online at http://dx.
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