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Abstract This paper presents the application of Multi-Objective Genetic Algorithm to solve the

Voltage Stability Constrained Optimal Power Flow (VSCOPF) problem. Two different control

strategies are proposed to improve voltage stability of the system under different operating condi-

tions. The first approach is based on the corrective control in contingency state with minimization

of voltage stability index and real power control variable adjustments as objectives. The second

approach involves optimal placement and sizing of multi-type FACTS devices, Static VAR

Compensator and Thyristor Controlled Series Capacitor along with generator rescheduling for

minimization of voltage stability index and investment cost of FACTS devices. A fuzzy based

approach is employed to get the best compromise solution from the trade off curve to aid the

decision maker. The effectiveness of the proposed VSCOPF problem is demonstrated on two typical

systems, IEEE 30-bus and IEEE 57 bus test systems.
� 2014 Production and hosting by Elsevier B.V. on behalf of Ain Shams University.
1. Introduction

Due to economic and environmental constraints, power

systems are being operated very near to loadability limit. The
rapid increase in load and nonoptimal use of transmission lines
adversely affect the stability of the power systems. Under this
scenario, maintaining a stable and secure operation of power
system is a very challenging issue. Therefore, voltage stability

[1] is being regarded as one of the main concerns to maintain
system security. Voltage stability is the ability of the power
system to maintain acceptable voltage profile under normal

conditions and even after being subjected to disturbances.
Voltage collapse [2] is the process by which the system voltage
falls to a low, unacceptable value as a result of an avalanche of

events accompanying voltage instability. The approaches for
voltage stability assessment can be classified into static and
dynamic approaches. Static voltage stability assessment is

suitable for operational scheduling problems. In this work,
L-index [3] one of the static voltage stability index is used
for assessing voltage stability of the system.
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Voltage security enhancement can be achieved through
preventive or corrective control. Preventive control is applied
so as to ensure that operating point is away from point of col-

lapse in anticipation of incredible contingencies. The corrective
control action on the other hand is activated only when
the contingency has occurred endangering voltage stability.

Corrective control is considered as economic one in the market
environment, nevertheless preventive control is also needed to
reduce system interruption. In this paper, Optimal Power Flow

(OPF) is used for corrective strategies by determining the
optimal settings of control variables to minimize generation
cost in the transmission system. OPF [4–8] is a large scale,
nonconvex, nonlinear static optimization problem with both

discrete and continuous variables. To achieve voltage security
enhancement, the contingency state voltage stability index is
included as additional constraint in the formulation of OPF

problem [9–11] along with the contingency state constraints.
Generation rescheduling [12,13] is necessary to change the real
power settings of the generators in contingency state to

improve the voltage stability of the system. The generator
ramp rates can significantly restrict the speed with which the
active power is rerouted in the network. Monticelli et al. [14]

describe mathematical programming techniques that allow
the iterative solution of economic dispatch and separate
contingency analysis with generation rescheduling to eliminate
constraint violations. In [15], generation rescheduling was

taken to change the system operating conditions to ensure
voltage security margins of contingencies above certain mini-
mal value with a multi-contingency sensitivity based approach.

Abido [16] proposed an effective scheme involving generation
rescheduling by minimizing the real power control variable
adjustments for VAR dispatch problem. Mohapatra et al.

[17] proposed coordinated preventive and corrective reschedul-
ing actions attempt to make the system correctively secure with
respect to line and generator outages. In contingency state, by

including voltage stability index in the objective function, volt-
age stability is achieved at the expense of operating costs. This
increase in operating costs can be reduced by generation
rescheduling in contingency states. Hence, one of the objec-

tives in the security enhancement problem is to minimize the
deviation of control variables in the contingency state from
the base case value. To ensure voltage security of the system,

Flexible AC Transmission Systems (FACTS) [18] devices
based on power electronics technology are a good choice due
to their fast and flexible control. A proper co-ordination

between FACTS devices and conventional power system
control devices is essential to make system voltage secure in
addition to economical aspects. However, to obtain good
performance from these controllers, proper placement and

sizing [19,20] of these devices is crucial. In practical system,
suitable allocation of FACTS devices depends on system sta-
bility and other factors such as installation cost and conditions

also need to be considered [21,22]. In [21], both technical and
economic benefits arising from the installation of FACTS
devices with the emphasis on generator cost reduction is

carried out by solving GA based OPF procedure. Saravanan
et al. [23] proposed the application of PSO technique for opti-
mal placement and sizing of FACTS devices with minimum

cost of installation and to improve system loadability. Phadke
et al. [24] proposed fuzzy performance index based on fuzzy
logic and real coded GA to determine the optimal placement
and sizing of FACTS devices. This paper investigates modal
analysis method [25] to find the optimal location of multi-type
FACTS devices namely: SVC and TCSC to enhance voltage

stability and reduce system losses considering investment cost
of these devices. The issue of optimal settings of the FACTS
devices is formulated as an optimization problem taking

into account the installation cost along with voltage
security enhancement. In this paper, traditional OPF problem
is extended to include multi-type FACTS devices for

improvement in system stability. This objective along with
FACTS investment cost has not been reported in many
literatures. Hence in this paper, rescheduling of generators
by minimizing the deviation of real power control variables

is considered as the other objective in addition to the FACTS
installation cost.

In this paper, a new solution method for VSC-OPF

problem including FACTS devices taking into account the
issues mentioned above is formulated as multi-objective opti-
mization problem and is addressed through two approaches.

Firstly, the problem is formulated in corrective control consid-
ering minimization of real power control variable adjustment
and voltage stability index, L-index in the postcontingency

state. Secondly, the problem is investigated in suitable control
actions with minimization of investment cost of FACTS
devices and voltage stability index along with generation
rescheduling.

The OPF problem based on mathematical programming
techniques such as linear programming [4], nonlinear program-
ming [5], quadratic programming [6], Newton method [7] and

Interior point method [8] in solving large scale problems are
not guaranteed to converge to global optimum. Also, the
discrete variables related to the tap changing transformer

and shunt capacitors cannot be incorporated directly into the
general Optimal Power Flow problem. Recently, evolutionary
computation techniques such as Genetic Algorithm [26] and

Evolutionary Programming [27] have been successfully applied
to solve the OPF problems. Evolutionary computation
techniques do not require any space limitations such as
smoothness, convexity or unimodality of the function to be

optimized. They are not largely affected by the size and
nonlinearity of the problem, and they can perform well in
highly constrained and integer (or mixed integer) optimization

problems. This feature makes it suitable for many real world
applications including the OPF problem.

This paper proposes Multi-Objective Genetic Algorithm

(MOGA) [28] which produces multiple solutions in one single
simulation run for solving this complex multi-objective optimi-
zation problem. Generally, binary strings are used to represent
the decision variables of the optimization problem in the

genetic population irrespective of the nature of decision vari-
ables. This binary coded GA has hamming cliff problems
[29,30] which sometimes causes difficulties in the case of coding

continuous variables. Also, for discrete variables with total
number of permissible choices not equal to 2k (k is an integer)
it becomes difficult to use fixed length binary coding to repre-

sent all permissible values. To overcome the above difficulties,
the control variables namely generator active power settings
(Pgi), generator voltage settings (Vgi) are represented as float-

ing point numbers and variable settings of SVC and TCSC
(SVCi and TCSCi) and transformer tap settings (Tapi) are rep-
resented as integers in the genetic population.



Figure 2 Thyristor Controlled Series Compensator (a) basic

structure (b) model.
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2. Modeling and placement of FACTS devices

It is desirable to install series controller in the line where active
power control is needed, and shunt controller in buses where

reactive power control is needed to support the voltage. This
paper focuses on the optimal location and settings of SVC
and TCSC for voltage security enhancement.

2.1. Mathematical model of SVC and TCSC

SVC is a shunt Compensator and is modeled as series capaci-

tor bank shunted by thyristor controlled reactor as shown in
Fig. 1. It can be used for both inductive and capacitive com-
pensation. In this work, SVC is modeled as ideal reactive
power injection at bus i:

DQi ¼ Qsvc ð1Þ

The SVC has an operating range between �200 MVAR and
200 MVAR and a reference voltage between 0.95 pu and
1.05 pu.

TCSC is a Series Compensator which consists of series
capacitor shunted by Thyristor controlled reactor as shown
in Fig. 2. It acts as the capacitive or inductive compensator

by modifying the reactance of transmission line. In this work,
TCSC is modeled by changing transmission line reactance as
follows:

Xij ¼ Xline þ XTCSC ð2Þ

XTCSC ¼ rTCSC � Xline ð3Þ

where Xline is the reactance of transmission line, rTCSC is the
degree of compensation of TCSC.

The level of applied compensation of TCSC varies from
20% inductive and 80% capacitive.

2.2. Placement of FACTS devices

The suitable locations of SVC and TCSC are determined using
Modal Analysis [25]. The modal analysis technique provides

indications of system conditions with voltage stability prob-
lems. In this approach, the location of system buses and
branches that have the most effect on the critical modes are
identified based on system reduced Jacobian matrix under

contingency conditions. The locations of buses and branches
are identified using participation factor which are computed
using the right and left eigenvectors of the Jacobian

corresponding to the zero eigenvalue at the nose point. The size
Figure 1 Static VAR Compensator (a) basic structure (b) model.
of bus participation in a given mode indicates the effectiveness
of remedial action applied at that bus in stabilizing the mode.
Branch participation indicates the elements which are critical
to the stability of a given mode. A candidate data set is decided,

related to the highest participation factors of buses and trans-
mission lines in the system in which the shunt and series
FACTS controllers are placed which have the highest bus

and branch participation factors.

3. Problem formulation

In this work, the voltage stability enhancement problem is
addressed through corrective control strategy. Under this strat-
egy, two different cases are considered. In the first case, minimi-

zation of real power control variable adjustment in
postcontingency state from base case value and voltage stability
index, Lmax in the contingency states under stressed conditions

are taken as objectives of the optimization problem. In the sec-
ond case, the minimization of investment cost of FACTS
devices and voltage stability index, Lmax in the contingency
states under stressed conditions along with generation resched-

uling are considered as objectives. The above different combina-
tions of objectives for voltage stability enhancement are carried
out satisfying system equality and inequality constraints.

3.1. Objective functions

3.1.1. Minimization of voltage stability index, Lmax

L-index method [3] is an approximate measure of closeness of
the system to voltage collapse. The bus with the highest L

index value will be the most vulnerable bus in the system.
The L-indices for a given load condition are computed for
all the load buses and the maximum of the L-indices (Lmax)
gives the proximity of the system to voltage collapse. The

L-index has an advantage of indicating voltage instability
proximity of current operating point without calculation of
the information about the maximum loading point. Hence

the minimization of L-index makes the system less prone
to voltage collapse. The calculation of L-index is given in
Appendix A.

3.1.2. Minimization of real power control variable adjustment

While enhancing the voltage security of the system, it is pre-
ferred to have minimum deviation of the generator real power

from the base value. This is stated as,

FC ¼
XNc

i¼1
wi

ui � u0i
umax
i � umin

i

� �
ð4Þ
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where Nc is the number of control variables, ui and u0i are the

new and initial settings of the ith control variable respectively,
wi is the weighting factor to reflect the relative cost of the ith
control variable, umax

i and umin
i are the maximum and minimum

limits of the ith control variable.

3.1.3. Minimization of FACTS Investment cost

It is important to take the economical aspects of the TCSC

devices installed in the power system due to high investment
and operating costs. Using database of [31], cost function of
SVC and TCSC are modeled as follows:

CSVC ¼ 0:0003s2 � 0:3051sþ 127:38 ðUS$=kVArÞ ð5Þ

CTCSC ¼ 0:0015s2 � 0:713sþ 153:75 ðUS$=kVArÞ ð6Þ

where s is the operating range of the FACTS devices in kVAr
and Csvc and CTCSC are in US$/kVAr

3.2. System constraints

3.2.1. Equality constraint

The real and reactive power balance equations are:

Pi�Vi

XNB

j¼1
VjðGijCoshijþBijSinhijÞ¼ 0; i¼ 1;2; . . .NB�1 ð7Þ

Qi�Vi

XNB

j¼1
VjðGijSinhij�BijCoshijÞ¼ 0; i¼ 1;2; . . .NPQ ð8Þ
3.2.2. Inequality constraints

AVR constraint:

Vmin
i � Vi � Vmax

i i 2 NB ð9Þ

Generator reactive power generation constraint:

Qgmin
i � Qgi � Qgmax

i i 2 Ng ð10Þ

Reactive power generation constraint of capacitor banks

Qmin
Ci < QCi � Qmax

Ci i 2 NC ð11Þ

Transformer tap setting constraint:

tmin
k � tk � tmax

k k 2 NT ð12Þ

Transmission line flow constraint:

Sl � Smax
l l 2 Nl ð13Þ

Reactive power constraint of SVC

�200MVAR < QSVCi � 200MVAR i 2 NSVC ð14Þ

Reactance constraint of TCSC

�0:5 XL < XTCSCi < 0:5Xc i 2 NTCSC ð15Þ

The above conflicting objectives are considered in the pro-
posed approach of VSC-OPF problem and are solved using

Multi-Objective Genetic Algorithm.

4. Multi-Objective Genetic Algorithm

An optimization problem in which more than one objective is
involved is called as multi-objective optimization problem. A
Multi-Objective optimization Problem (MOP) can be mathe-
matically stated as,

MinFðxÞ ¼ ½f1ðxÞ; . . . fmðxÞ� ð16Þ

Subject to:

gjðxÞ ¼ 0 j ¼ 1; . . .M

hkðxÞ 6 0 k ¼ 1; . . .K

where F(x) consists of m conflicting objective functions, x is
the decision vector, gj is the jth equality constraint and hk is

the kth inequality constraint.
The improvement of one objective may lead to deteriora-

tion of another. Thus, a single solution that can optimize all

objective functions does not exist. The best trade-offs solutions
called the pareto optimal solutions can be obtained using
Evolutionary Algorithms.

Genetic Algorithms (GA) [32] are generalized search

algorithms based on the mechanics of natural genetics. A
population of candidate solutions or individuals is main-
tained and they are made to compete with each other for sur-

vival. They combine solution evaluation with stochastic
genetic operators namely, selection, crossover and mutation
to obtain optimality. Being a population based approach,

GAs are well suited to solve multi-objective optimization
techniques. MOGA [33] was the first multi-objective GA that
explicitly used pareto based ranking and niching techniques

together to encourage the search toward the true pareto front
while maintaining diversity in the population. The flowchart
of MOGA is shown in Fig. 3. The details of MOGA are
explained below:

The main difference between classical GA and MOGA
resides in the assignment of fitness. Once fitness has been
assigned, selection can be performed and genetic operators

are applied as usual. To a solution i, a rank equal to one plus
the number of solutions gi that dominate solution i is assigned:

ri ¼ 1þ gi ð17Þ

The rank one is assigned to nondominated solutions since

no solution would dominate a nondominated solution in a
population. After ranking, raw fitness is assigned to each solu-
tion based on its rank by sorting the ranks in ascending order

of magnitude. Then, a raw fitness is assigned to each solution
by linear mapping function. Thereafter, solutions of each rank
are considered at a time and their averaged raw fitness are
called assigned fitness. Thus the mapping and averaging proce-

dure ensures that the better ranked solutions have a higher
assigned fitness. To maintain diversity in the population, nich-
ing is introduced among solutions of each rank. The niche

count is calculated by summing the sharing function value as
below:

nci ¼
XlðriÞ
j¼1

ShðdijÞ ð18Þ

where lðriÞ is the number of solutions in a rank and ShðdijÞ is
the sharing function value of two solution i and j.

The sharing function is calculated by using objective func-
tion as distance metric as:

ShðdijÞ ¼
1� dij

rshare

� �a
if d 6 rshare

0 otherwise

8<
:

9=
; ð19Þ



Figure 3 Flowchart of MOGA.
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The parameter d is the distance between any two solutions

in the population and rshare is the sharing parameter which sig-
nifies the maximum distance between any two solutions before
they can be considered to be in the same niche. The above

function takes a value in [0,1] depending on the values of d
and rshare. If a = 1 is used, the effect linearly reduces from
one to zero.

The normalized distance between any two solutions can be
calculated as follows:

dij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXM
k¼1

f
ðiÞ
k � f

ðjÞ
k

fmax
k � fmin

k

 !2
vuut ð20Þ

where fmax
k and fmin

k are the maximum and minimum objective
function value of the kth objective.
In MOGA, the shared fitness is calculated by dividing the
fitness of a solution by its niche count. Although all solutions
of any particular rank have the identical fitness, the shared fit-

ness value of each solution residing in less crowded region has
a better shared fitness which produces a large selection pres-
sure for poorly represented solutions in any rank.

As the fitness of the solution is reduced by dividing the
assigned fitness by the niche count, to keep the average fitness
of the solutions in a rank same as before sharing, the fitness

values are scaled. This procedure is continued until all ranks
are processed. Thereafter, tournament selection, BLX-a cross-
over [29] and nonuniform mutation operators are applied to
create a new population.
4.1. Best compromise solution

It is often practical to choose one solution from all solutions
that satisfy different goals after the pareto optimal set is
obtained. Due to imprecise nature of the Decision Maker’s

(DM) judgement, it is natural to assume that the DM may
have fuzzy or imprecise nature of goals of each objective
function. Hence in this work, a technique based on fuzzy set
theory [34] was applied to extract the best compromise

solution. Using linear membership function, a membership
function is assigned for each objective functions and is defined
as follows:

li ¼
1; Fi P Fmax

i
Fmax
i
�Fi

Fmax
i
�Fmin

i

; Fmin
i < Fi < Fmax

i

0; Fi 6 Fmin
i

8><
>: ð21Þ

where Fmax
i and Fmin

i are the maximum and minimum value of
the ith objective function among all non-dominated solutions.
The above equation gives a degree of satisfaction for each

objective function for a particular solution and maps the
objectives in the range of 0 to 1.

The membership function for the nondominated solutions
in a fuzzy set is calculated as follows:

lk ¼
PNobj

i¼1 lk
iPM

k¼1
PNobj

i¼1 lk
i

ð22Þ

where M is the number of nondominated solutions and Nobj is

the number of objectives. Finally, the best compromise solu-
tion is the one achieving the maximum membership function.
5. Results and discussion

The proposed voltage stability enhancement technique is

implemented on IEEE 30 bus and IEEE 57 bus test systems
and the results are presented. The generators are modeled as
PV buses with reactive power limits and the loads are repre-
sented by constant PQ loads. The power system is stressed

by including the concept of (N � 1) contingency analysis and
increase in load. (N � 1) contingency analysis is performed
considering the outage of lines and selecting the worst contin-

gency based on voltage stability index, Lmax.
The IEEE 30 bus system [35] consists of 6 generators, 24

loads and 4 transformers with off nominal tap ratio and 41

transmission lines. The lower voltage magnitudes at all buses
are 0.95 pu for all buses and the upper limits are 1.1 pu for



Table 1 Simulation Results for MOGA- bi objective optimization under corrective control including generation rescheduling

considering contingency (28–27)(125% loaded condition).

Control variables Best minimum control

variable adjustment

Best Lmax Best compromise

solution

Real power settings of generators in

base case, Pvar

P1 160.2856 162.7092 160.7757

P2 68.4705 68.8223 68.4143

P5 34.6984 34.655 34.6833

P8 19.9052 19.9145 19.8544

P11 21.5204 21.3407 21.5119

P13 23.2622 21.6196 22.9246

Real power settings of generators in

contingency case, Pcvar

Pc1 160.2599 160.9576 162.2478

Pc2 67.921 68.3289 67.924

Pc5 34.4509 34.4554 34.3977

Pc8 20.0776 20.1719 20.4179

Pc11 22.2114 26.2394 23.931

Pc13 23.6058 23.6195 23.6148

Generator voltage magnitudes, Vvar V1 1.0457 1.0457 1.0457

V2 1.0319 1.0384 1.0369

V5 1.0197 1.0207 1.0197

V8 1.0227 1.0229 1.0228

V11 1.0999 1.0998 1.0999

V13 1.0998 1.0998 1.0997

Transformer Tap settings, Tvar T6-9 1.075 1.075 1.075

T6-10 0.9 0.9 0.9

T4-12 0.95 0.95 0.95

T28-27 0.925 0.925 0.925

Settings of shunt capacitors, Cvar Qc10 4 4 4

Qc12 2 2 2

Qc15 4 4 4

Qc17 5 5 5

Qc20 5 5 5

Qc21 4 4 4

Qc23 5 5 5

Qc24 5 5 5

Qc29 1 1 1

Objective values

Lmax 0.517 0.5152 0.5155

Transmission loss (MW) 9.89 10 9.88

Minimum control variable Adjustment 0.2457 1.1953 0.6541

Figure 4 Pareto optimal front of MOGA under corrective

control including generation Rescheduling under line outage

(28–27) in Case 30 (125% loaded condition).

794 J. Preetha Roselyn et al.
generator buses and 1.05 pu for remaining buses. The active
and reactive powers of system load are 283.4 MW and 126.2
MVAR respectively. As a preliminary computation, the

(N � 1) contingency analysis is carried out. According to these
results, the line outage (28–27) is the most severe contingency
in IEEE 30 bus system.

The IEEE 57-bus system [36] was chosen as the second test

system to demonstrate the method’s usefulness on a large sys-
tem. IEEE 57-bus system has 4 generators, 3 synchronous con-
densers, 50 load buses, 80 transmission lines and 16 tap

changing transformers. From the contingency analysis, line
outage (46–47) is found to be the most severe case with the
Lmax value of 0.4598. The simulation studies were carried

out on Pentium IV, 2.4 GHz system in MATLAB 7.1
environment.

Case 1: Corrective control using generation rescheduling:

In this case, power generation rescheduling is carried out to
get more reduction in power flows and hence increase in system
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security and reliability. The two objective functions considered
here are as follows: minimization of L-index and minimization
of deviation in real power adjustments control variables from

base case to contingency state. The generation cost function is
minimized than the approach without generation rescheduling
to obtain more economical corrective control action. In the

first approach of corrective control including generation
rescheduling, the decision variables are real power settings of
generators (Pgi) and post-contingency state (Pgc), voltage mag-

nitudes of generators (Vgi), tap settings of transformers (Tci),
Table 2 Simulation Results for MOGA-bi objective optimizatio

contingency (46–47) (150% loaded condition) along with generation

Control variables Best m

variab

Real power settings of generators in

base case, Pvar

P1 480.55

P2 35.057

P3 81.508

P6 95.782

P8 361.96

P9 61.062

P12 168.21

Real power settings of generators in

contingency case, Pcvar

Pc1 518.74

Pc2 34.483

Pc3 49.266

Pc6 65.972

Pc8 378.53

Pc9 62.354

Pc12 188.03

Generator voltage magnitudes, Vvar V1 1.0464

V2 1.0193

V3 1.0036

V6 1.009

V8 1.0151

V9 0.9838

V12 0.9889

Transformer Tap settings, Tvar T4–18 1.1

T21–20 0.9

T24–25 1.1

T24–26 0.95

T28–29 0.95

T34–35 1.1

T22–38 0.9

T38–44 0.975

T15–45 1.05

T14–46 1.025

T10–51 0.95

T13–49 1.025

T11–43 0.975

T40–56 0.9

T39–57 0.95

T9–55 0.975

Capacitor settings, Cvar Cvar30 1

Cvar32 3

Cvar31 2

Cvar33 3

4

Objective values

Minimum control variable adjustment 4.89

Lmax 0.58

Transmission loss (MW) 12.29
reactive power settings of capacitor banks (Qci). The operating
range of transformer is between 0 and 8 with step size equal to
0.025 and the capacitor is in the range of 0–5 MVAR. The best

solutions of L-index and control variable adjustment opti-
mized individually for IEEE 30 bus system in line outage
(28–27) under 125% loaded condition are presented in Table 1.

Further, from the fuzzy decision making strategy, the best
compromise solution in the overall nondominated solutions
is also presented. This demonstrates the effectiveness of the

proposed approach as the best solutions of both objectives
n under corrective control in case 57 bus system considering

rescheduling.

inimum control

le adjustment

Best Lmax Best compromise

solution

51 436.0265 484.2221

1 35.166 35.1026

7 107.9117 88.6669

4 94.7868 95.4347

84 379.8003 353.4883

2 60.712 60.1716

29 168.1368 167.46

82 514.66 514.6214

2 33.8825 34.3387

5 56.6855 51.8811

32.2915 87.4182

56 378.5378 378.5533

1 78.7796 62.0098

6 396.5799 290.4687

1.0465 1.0465

1.0188 1.0192

1.0036 1.0036

1.0095 1.0087

1.0151 1.0151

0.9838 0.9838

0.9891 0.9889

1.1 1.1

0.9 0.9
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Figure 6 Pareto optimal front of MOGA under corrective

control including FACTS devices along with including generation

rescheduling under line outage (28–27) in Case 30 (125% loaded

condition).

796 J. Preetha Roselyn et al.
along with a set of nondominated solutions can be obtained in
a single run. Fig. 4 depicts the pareto optimal set of case 1 for
IEEE 30 bus system. It can be seen that MOGA is more effi-

cient in the point of optimality and distribution of solutions
in the trade-off surface. From the best compromise solution,
it is worth mentioning that the inclusion of power generation

rescheduling in the VSC-OPF problem considerably reduces
the production cost by 16.5% in the severe contingency state
and L-index by 35% than before optimization.

Similarly in IEEE 57 bus test system, postcorrective control
strategy is followed in which the system is 150% overloaded
and severe line (46–47) is out of service. Table 2 presents the
optimal control settings of VSC-OPF problem including gener-

ation rescheduling in corrective control strategy. From this
table, it is clear that MOGA has reduced the generation
rescheduling cost by 23% and L-index by 45% thereby

improving the voltage profile of the system and also consider-
able reduction in operating cost. Thus by reducing the voltage
stability index, the transmission losses are also reduced in the

post-contingency condition. The voltage violations that were
observed in load buses before optimization have also been cor-
rected after the application of the proposed methods. Fig. 5

depicts the pareto optimal front obtained with voltage stability
index and real power control variable minimization for IEEE
57 bus system. The best compromise solution of Lmax and real
power adjustments obtained are 0.45 and 8.51 which shows

46% reduction in L-index and 26% reduction in control vari-
able adjustment. The best compromise is almost close to the
optimized values with single objective approach. The pareto

optimal front of MOGA for this system presented in Fig. 5
clearly states that search space is well explored by the proposed
approach.

Case 2: Corrective control using FACTS devices and gener-
ation rescheduling:

The problem was handled as a multi-objective problem
where both investment cost of FACTS devices and voltage sta-
bility index were optimized simultaneously with the proposed

optimization techniques. To reduce the number of location
of FACTS devices, computation based on modal analysis
was performed to rank the buses and branches according to
Figure 5 Pareto optimal front of MOGA under corrective

control including generation Rescheduling under line outage (46–

47) in Case 57 (150% loaded condition).
their participation factors out of which best candidate buses

and critical lines were selected to site new multi-type FACTS
devices namely, SVC and TCSC. In order of priority, the
bus candidates for SVC are load buses 30, 29 and 26 while
the line candidates to site TCSC are 24–26, 27–29 and 24–25

in IEEE 30 bus system. In the second approach of corrective
control approach including generation rescheduling with
FACTS devices, the decision variables in the system are real

power settings of generators (Pgi) and post-contingency state
(Pgc), voltage magnitudes of generators (Vgi), reactive power
settings of FACTS devices namely, SVC (SVCi) and TCSC

(TCSCi). The optimal location of SVC and TCSC are decided
by modal analysis method. The reactance of TCSC is consid-
ered as a continuous variable which varies between 20% induc-

tive and 80% capacitive of the line reactance. Similarly, the
SVC is considered as a generator (or absorber) of reactive
power which varies continuously between �200 MVAR and
200 MVAR. All MOGA algorithms ran with the population

size of 50, generations of 150, crossover probability of 0.9
and mutation probability of 0.015 in two test systems. Fig. 6
shows the pareto-optimal set of corrective control including

FACTS devices with generation rescheduling in IEEE 30 bus
system. It can be seen that the obtained solutions are well dis-
tributed on trade-off surface, except some discontinuity,

caused by the discrete decision variables. From this figure,
we confirm the superiority of the proposed method, MOGA
in point of view of well distribution and optimality of solu-
tions. The optimal solution of each objective and the extreme

points given by MOGA in first system are presented in Table 4.
The comparison of the extreme points obtained for L-index
and installation cost of FACTS devices is almost the same

and hence it is concluded that the proposed optimization tech-
niques are robust. From the best compromise solution in
Table 3, the maximum L-index has decreased from 0.5155 to

0.4762, a reduction of about 39% and the minimum voltage
of the system have been increased from 0.7118 to 0.9674, an
improvement of about 26% has been obtained by proposed

approach. The voltage profile improvement in the load buses
after the inclusion of FACTS devices in IEEE 30 bus system
is shown in Fig. 7. Most of the voltage violations buses are
eliminated by the installation of multi-type FACTS devices.



Table 3 Simulation Results for MOGA-bi objective optimization under corrective control with FACTS devices considering

contingency (28–27) (125% loaded condition) along with generation rescheduling.

Control variables Best FACTS cost ($/Kvar) Best Lmax Best compromise solution

Real power settings of generators in

base case, Pvar

P1 128.1 128.04 128.07

P2 74.58 77.36 76.78

P5 45.29 44.07 45.61

P8 31.23 31.01 31.64

P11 29.85 29.85 29.85

P13 38.14 38.32 38.14

Real power settings of generators in

contingency case, Pcvar

Pc1 137.25 141.76 132.22

Pc2 69.97 69.83 69.98

Pc5 42.11 42.11 42.11

Pc8 33.01 33.4 33.08

Pc11 26.28 24.39 24.49

Pc13 32.89 32.75 32.90

Generator voltage magnitudes, Vvar V1 1.0299 1.0299 1.0299

V2 1.0137 1.0136 1.0137

V5 0.9812 0.9811 0.9812

V8 0.9896 0.9896 0.9897

V11 1.0608 1.0811 1.0724

V13 1.0357 1.0357 1.0357

Transformer Tap settings, Tvar T6-9 1 1 1

T6-10 0.925 0.925 0.925

T4-12 0.95 0.95 0.95

T28-27 1 1 1

SVC settings, SVC SVC30 0.2416 0.2416 0.2416

SVC29 1.5541 1.5541 1.5541

SVC26 0.7118 0.7118 0.7118

TCSC settings, TCSC TCSC24–26 0.0382 0.0382 0.0382

TCSC27–29 �0.5 �0.5 �0.5
TCSC24–25 �0.2216 �0.2216 �0.2216

Objective values

FACTS cost ($/h) 6.8339 · 106 6.8882 · 106 6.8529 · 106

Lmax 0.4805 0.4727 0.4762

Transmission loss (MW) 8.59 8.55 8.56

Minimum control variable adjustment 2.4 2.94 2.72

Figure 7 Voltage profile improvement in case 30 for (28–27) line outage (125% loaded condition).
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The extreme points of pareto optimal front by MOGA and the
best solutions of each functions optimized individually by GA
are identical which is given in Table 4. Hence it is verified that

the proposed method is capable of exploring more efficient
search space. With the proposed method, it is observed that
MOGA gives better optimization thereby improving the volt-

age stability of the system.
In IEEE 57 bus test system, according to modal analysis

method, the best locations for installing TCSCs are: lines con-

nected between 14–46, 13–49 and 44–45 and the best three
locations for installing SVCs are the buses 31, 33 and 25.
The optimal control variable settings of the best FACTS
investment cost and best L-index along with best compromise
Table 5 Simulation Results for MOGA-bi objective optimizatio

contingency (46–47) (150% loaded condition) including FACTS dev

Control variables Best FACT

Real power settings of generators in

base case, Pvar

P1 211.8251

P2 41.5905

P3 134.4559

P6 53.8663

P8 395.8342

P9 99.7156

P12 330.2349

Real power settings of generators in

contingency case, Pcvar

Pc1 367.3228

Pc2 60.3646

Pc3 108.0406

Pc6 70.9449

Pc8 397.4674

Pc9 79.2341

Pc12 220.6049

Generator voltage magnitudes, Vvar V1 1.0126

V2 1.0025

V3 0.9888

V6 0.9876

V8 1.0005

V9 0.9818

V12 1.015

SVC settings, SVC SVC31 0.4016

SVC33 1.276

SVC25 1.7866

TCSC settings, TCSC TCSC14–46 0.1287

TCSC13–49 0.546

TCSC44–45 0.1984

Objective values

Minimum control variable adjustment 5.4

FACTS cost($/h) 6.835 · 106

Lmax 0.455

Transmission loss (MW) 11.98

Table 4 Best solution of two functions optimized individually and

GA MOGA

Best L-index Best FACTS cost ($/Kvar) Best L

Lmax 0.4727 0.4802 0.4727

FACTS cost 6.8872 · 106 6.8348 · 106 6.8882
solution after the application of the MOGA for the severe line
outage (46–47) under 150% stressed system condition are sum-
marized in Table 5. Corresponding to these control variable

settings, there is no limit violations in any of the state variables
in the base case and contingency states. The comparison of the
extreme points obtained by MOGA indicates that the search

space is well explored by the proposed approach. Fig. 8 depicts
the pareto optimal front of corrective control including
FACTS in the second system. From this figure, it is worth

mentioning that proposed MOGA is capable of exploring
more efficient noninferior solutions. The improvement of volt-
age profile of the system after the application of the algorithm
under contingency (46–47) is displayed in Fig. 9. From the best
n under corrective control in case 57 bus system considering

ices along with generation rescheduling.

S cost ($/Kvar) Best Lmax Best compromise solution

249.864 239.2783

41.542 41.5947

79.7293 85.9034

70.6601 75.457

395.8366 395.8396

99.8381 99.4393

330.2856 330.1597

367.2566 367.0646

60.4223 60.4098

76.8928 78.5111

72.0092 70.4637

397.6531 397.2698

79.256 79.2904

220.6102 220.6177

1.0126 1.0126

1.0025 1.0025

0.9888 0.9888

0.9876 0.9876

1.0005 1.0006

0.9818 0.9818

1.0149 1.0154

0.4016 0.5342

1.276 1.276

1.7866 1.798

0.1287 0.0983

0.452 0.356

0.1454 0.1104

20 10.3

6.89 · 106 6.852 · 106

0.375 0.41

10.5 10.87

MOGA solution for IEEE 30 bus system.

-index Best FACTS cost ($/Kvar) Best compromise solution

0.4805 0.4762

· 106 6.8339 · 106 6.8529 · 106
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compromise solution in Table 5, the minimum voltage of the
system has increased from 0.6795 to 0.9956, an improvement
of 32% has been obtained by proposed approach. Hence the

improvement in voltage profile of the system after the applica-
tion of the proposed algorithm is evident from this result. The
extreme points of pareto optimal front by MOGA and the best

solutions of each functions optimized individually by GA are
identical which is given in Table 6. This shows the efficiency
of the proposed algorithm in diversity and convergence charac-

teristics in solving the VSCOPF problem.
Figure 8 Pareto optimal front of MOGA under corrective

control including FACTS devices along with including generation

rescheduling under line outage (46–47) in Case 57 (150% loaded

condition).

Figure 9 Voltage profile improvement in case 57 f

Table 6 Best solution of two functions optimized individually and

GA MOGA

Best L-index Best FACTS cost ($/Kvar) Best L

Lmax 0.369 0.443 0.375

FACTS cost 6.8872 · 106 6.8348 · 106 6.89 ·
6. Conclusion

In this paper, an optimal procedure to improve voltage stabil-
ity of the power system during emergency condition through

corrective control strategy is proposed. The voltage stability
margin of the system is calculated using a suitable indicator,
L-index which is a quantitative measure for the estimation of

the distance of the actual state of the system to the stability
limit and describes the stability of the complete system. The
bus with the highest L-index value can represent the stability
status of the whole power system which makes the indicator

more reliable. The proposed methodology provides techno-
economic assessment of multi-type FACTS devices contribu-
tion to voltage stability enhancement. A multi-objective for-

mulation of OPF problem has been developed in which
candidate solutions are selected for conflicting objectives in
two studies: corrective control including generation reschedul-

ing and corrective control with FACTS including generation
rescheduling. To improve the efficiency of the Genetic algo-
rithm in the search process, the optimization variables were

represented in natural form. As the proposed OPF problem
include stability constraints, possible enhancement in steady
state and improved results in higher loading condition is
achieved. A fuzzy based mechanism is employed to extract

the best compromise solution from the pareto front. The
method does not impose any limitation in the number of
objectives. The proposed approaches have been tested on

IEEE 30 bus system and IEEE 57 bus test system under nor-
mal and stressed system conditions. The proposed MOGA is
or (46–47) line outage (150% loaded condition).

MOGA solution for IEEE 57 bus test system.

-index Best FACTS cost ($/Kvar) Best compromise solution

0.455 0.41

106 6.835 · 106 6.852 · 106
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better in characterizing the pareto optimal front in solving the
multi-objective OPF problem by its well distribution and
diversity characteristics.

Appendix A

The L-index calculation for a power system is briefly discussed

below:
Consider an N-bus system in which there are Ng generators.

The relationship between voltage and current can be expressed

by the following expression:

IG
IL

� �
¼ YGG YGL

YLG YLL

� �
VG

VL

� �
ðA1Þ

where IG, IL and VG, VL represent currents and voltages at the

generator buses and load buses.
Rearranging the above equation we get,

VL

IG

� �
¼ ZLL FLG

KGL YGG

� �
IL
VG

� �
ðA2Þ

where

FLG ¼ �½YLL��1 ½YLG� ðA3Þ

The L-index of the jth node is given by the expression,

Lj ¼ 1�
XNg

i¼1
Fji

Vi

Vj

\ðhji þ di � djÞ
					

					 ðA4Þ

where

Vi Voltage magnitude of ith generator.
Vj Voltage magnitude of jth generator.

hji Phase angle of the term Fji.
di Voltage phase angle of ith generator unit.
dj Voltage phase angle of jth generator unit.
Ng Number of generating units.

The values of Fji are obtained from the matrix FLG.
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