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Modal transition systems (MTS), a specification formalism introduced more than 20 years
ago, has recently received a considerable attention in several different areas. Many of the
fundamental questions related to MTSs have already been answered. However, the problem
of the exact computational complexity of thorough refinement checking between two finite
MTSs remained unsolved.
We settle down this question by showing EXPTIME-completeness of thorough refinement
checking on finite MTSs. The upper-bound result relies on a novel algorithm running
in single exponential time providing a direct goal-oriented way to decide thorough
refinement. If the right-hand side MTS is moreover deterministic, or has a fixed size, the
running time of the algorithm becomes polynomial. The lower-bound proof is achieved by
reduction from the acceptance problem of alternating linear bounded automata and the
problem remains EXPTIME-hard even if the left-hand side MTS is fixed and deterministic.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Modal transition systems (MTS) is a specification formalism which extends the standard labeled transition systems with
two types of transitions, the may transitions that are allowed to be present in an implementation of a given modal transi-
tion system and must transitions that must be necessarily present in any implementation. Modal transition systems hence
allow to specify both safety and liveness properties. The MTS framework was suggested more than 20 years ago by Larsen
and Thomsen [17] and has recently brought a considerable attention due to several applications to e.g. component-based
software development [20,7], interface theories [25,21], modal abstractions and program analysis [23,11,14,18] and other ar-
eas [10,26], just to mention a few of them. A renewed interest in tool support for modal transition systems is recently also
emerging [8,9,5]. A recent overview article on the theoretical foundations of MTSs and early tool development is available
in [1].

Modal transition systems were designed to support component-based system development via a stepwise refinement pro-
cess where abstract specifications are gradually refined into more concrete ones until an implementation of the system
(where the may and must transitions coincide) is obtained. One of the fundamental questions is the decidability of a
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thorough refinement relation between two specifications S and T . We say that S thoroughly refines T iff every implementa-
tion of S is also an implementation of T . While for a number of other problems, like the common implementation problem,
a matching complexity lower and upper bounds were given [2,16,3], the question of the exact complexity of thorough
refinement checking between two finite MTSs remained unanswered.

In this article, we prove EXPTIME-completeness of thorough refinement checking between two finite MTSs. The hard-
ness result is achieved by a reduction from the acceptance problem of alternating linear bounded automata, a well-known
EXPTIME-complete problem, and it improves the previously established PSPACE-hardness [2]. The main reduction idea is
based on the fact that the existence of a computation step between two configurations of a Turing machine can be locally
verified (one needs to consider the relationships between three tape symbols in the first configuration and the correspond-
ing three tape symbols in the second one, see e.g. [24, Theorem 7.37]), however, a nonstandard encoding of computations
of Turing machines (which is crucial for our reduction) and the addition of the alternation required a nontrivial technical
treatment. Moreover, we show that the problem remains EXPTIME-hard even if the left-hand side MTS is deterministic and
of a constant size.

Initial proof ideas for the containment of the thorough refinement problem in EXPTIME were mentioned in [2] where
the authors suggest a reduction of the refinement problem to validity checking of vectorized modal μ-calculus, which can
be solved in EXPTIME—the authors in [2] admit that such a reduction relies on an unpublished popular wisdom, and they
only sketch the main ideas hinting at the EXPTIME algorithm. In our article, we describe a novel technique for deciding
thorough refinement in EXPTIME. The result is achieved by a direct goal-oriented algorithm performing a least fixed-point
computation, and can be easily turned into a tableau-based algorithm. As a corollary, we also get that if the right-hand
side MTS is deterministic or of a constant size, the algorithm for solving the problem runs in deterministic polynomial
time.

2. Basic definitions

A modal transition system (MTS) over an action alphabet Σ is a triple (P ,���,−→), where P is a set of processes and

−→ ⊆ ���⊆ P × Σ × P are must and may transition relations, respectively. Because in MTS whenever S
a−→ S ′ then neces-

sarily also S
a��� S ′ , we adopt the convention of drawing only the must transitions S

a−→ S ′ in such cases. An MTS is finite
if P and Σ are finite sets.

An MTS is an implementation if ���= −→. As in implementations the must and may relations coincide, we can consider
such systems as the standard labeled transition systems. The class of all implementations is denoted by iMT S .

Definition 2.1. Let M1 = (P1,���1,−→1), M2 = (P2,���2,−→2) be MTSs over the same action alphabet Σ and S ∈ P1,
T ∈ P2 be processes. We say that S modally refines T , written S �m T , if there is a relation R ⊆ P1 × P2 such that (S, T ) ∈ R
and for every (A, B) ∈ R and every a ∈ Σ :

1. if A
a���1 A′ then there is a transition B

a���2 B ′ s.t. (A′, B ′) ∈ R , and

2. if B
a−→2 B ′ then there is a transition A

a−→1 A′ s.t. (A′, B ′) ∈ R .

We often omit the indices in the transition relations and only use the symbols ��� and −→ whenever it is clear from
the context what transition system we have in mind. Note that on implementations modal refinement coincides with the
classical notion of strong bisimilarity, and on modal transition systems without any must transitions it corresponds to the
well-studied simulation preorder. It is also easy to argue that modal refinement is transitive.

Proposition 2.2. The relation �m of modal refinement is transitive.

We shall now observe that the modal refinement problem, i.e. the question whether a given process modally refines
another given process, is tractable for finite MTSs.

Theorem 2.3. The modal refinement problem for finite MTSs is P-complete.

Proof. Modal refinement can be computed in polynomial time by the standard greatest fixed-point computation, similarly
as in the case of strong bisimulation (for efficient algorithms implementing this strategy see e.g. [15,19]). P-hardness of
modal refinement follows from P-hardness of bisimulation [4] (see also [22]). �

For convenient argumentation in some of the later proofs we extend the standard game-theoretic characterization of
bisimilarity to the game characterization of modal refinement.

A modal refinement game (or simply a modal game) on a pair of processes (S, T ) is a two-player game between Attacker
and Defender. The game is played in rounds. In each round the players change the current pair of processes (A, B) (initially
A = S and B = T ) according to the following rule:
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Fig. 1. S �t T but S �m T , and S �t U and S �m U .

1. Attacker chooses an action a ∈ Σ and one of the processes A or B . If he chose A then he performs a move A
a��� A′ for

some A′; if he chose B then he performs a move B
a−→ B ′ for some B ′ .

2. Defender responds by choosing a transition under a in the other process. If Attacker chose the move from A, Defender

has to answer by a move B
a��� B ′ for some B ′; if Attacker chose the move from B , Defender has to answer by a move

A
a−→ A′ for some A′ .

3. The new current pair of processes becomes (A′, B ′) and the game continues with a next round.

The game is similar to standard bisimulation games with the exception that Attacker is only allowed to attack on the left-
hand side under may transitions (and Defender answers by may transitions on the other side), while on the right-hand side
Attacker attacks under must transitions (and Defender answers by must transitions in the left-hand side process).

Any play (of the modal game) thus corresponds to a sequence of pairs of processes formed according to the above rule.
A play (and the corresponding sequence) is finite iff one of the players gets stuck (cannot make a move). The player who
got stuck lost the play and the other player is the winner. If the play is infinite then Defender is the winner.

The following fact is by a standard argument in analogy with strong bisimulation games: S �m T iff Defender has
a winning strategy in the modal game starting with the pair (S, T ); and S �m T iff Attacker has a winning strategy.

Example 2.4. Consider processes S and T in Fig. 1. We prove that S does not modally refine T . Indeed, Attacker has the

following winning strategy in the modal game starting from (S, T ). Attacker plays S
a��� S1 to which Defender can answer

by entering either T1 or T2. In the first case Attacker wins by playing T1
a−→ T for which Defender has no answer from S1

(no must transition under a is available) and Defender loses. In the second case Attacker wins by playing S1
a��� S and

Defender loses as well because no may transition under a is available from T2. Similarly, one can argue that S �m U .

We proceed with the definition of thorough refinement, a relation that holds for two modal specifications S and T iff
any implementation of S is also an implementation of T .

Definition 2.5. For a process S let us denote by [[S]] = {I ∈ iMT S | I �m S} the set of all implementations of S . We say that
S thoroughly refines T , written S �t T , if [[S]] ⊆ [[T ]].

Clearly, if S �m T then also S �t T because the relation �m is transitive by Proposition 2.2. The opposite implication,
however, does not hold as demonstrated by the processes S and T in Fig. 1 where one can easily argue that every imple-
mentation of S is also an implementation of T . On the other hand, S �t U because a process with just a single a-transition
is an implementation of S but not of U .

3. Thorough refinement is EXPTIME-hard

In this section we prove that the thorough refinement relation �t on finite modal transition systems is EXPTIME-hard
by reduction from the acceptance problem of alternating linear bounded automata. After recalling this acceptance problem,
we show that it is enough to consider thorough refinement on tree implementations and we demonstrate how computation
trees of linear bounded automata can be encoded as tree implementations of two modal transitions systems. The first system
will have (the encoding of) any computation tree as its implementation while the second one will only have computation
trees of incorrect or rejecting computations.

3.1. Alternating linear bounded automata

Definition 3.1. An alternating linear bounded automaton (ALBA) is a tuple M = (Q , Q ∀, Q ∃,Σ,Γ,q0,qacc,qrej,	,
, δ) where
Q is a finite set of control states partitioned into Q ∀ and Q ∃ , universal and existential states, respectively, Σ is a finite
input alphabet, Γ ⊇ Σ is a finite tape alphabet, q0 ∈ Q is the initial control state, qacc ∈ Q is the accepting state, qrej ∈ Q
is the rejecting state, 	,
 ∈ Γ are the left-end and the right-end markers that cannot be overwritten or moved, and
δ : (Q \ {qacc,qrej}) × Γ −→ 2Q ×Γ ×{L,R} is a computation step function such that for all q, p ∈ Q if δ(q,	) � (p,a, D) then
a = 	, D = R; if δ(q,
) � (p,a, D) then a = 
, D = L; if δ(q,a) � (p,	, D) then a = 	; and if δ(q,a) � (p,
, D) then a = 
.

Remark 3.2. W.l.o.g. we assume that Σ = {a,b}, Γ = {a,b,	,
}, Q ∩ Γ = ∅ and that for each q ∈ Q ∀ and a ∈ Γ it holds
that δ(q,a) has exactly two elements (q1,a1, D1), (q2,a2, D2) where moreover a1 = a2 and D1 = D2. We fix this ordering
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and the successor states q1 and q2 are referred to as the first and the second successor, respectively. The states qacc , qrej have
no successors.

A configuration of M is given by its current state, the position of the head and the content of the tape. For technical
reasons, we write it as a word over the alphabet Ξ = Q ∪ Γ ∪ {	,
,∃,∀, 1,2,∗} (where ∃, ∀, 1, 2, ∗ are fresh symbols)
in the following way. If the tape contains a word 	w1aw2
, where w1, w2 ∈ Γ ∗ and a ∈ Γ , and the head is scanning the
symbol a in a state q, we write the configuration as 	w1αβqaw2
 where αβ ∈ {∃∗,∀1,∀2}.

The two symbols αβ before the control state in every configuration are nonstandard, though important for the encoding
of the computations into modal transition systems to be checked for thorough refinement. Intuitively, if a control state q is
preceded by ∀1 then it signals that the previous configuration (in a given computation) contained a universal control state
and the first successor was chosen; similarly ∀2 reflects that the second successor was chosen. Finally, if the control state
is preceded by ∃∗ then the previous control state was existential and in this case we do not keep track of which successor
it was, hence the symbol ∗ is used instead. The initial configuration for an input word w is by definition 	∃∗q0 w
.

Depending on the present control state, every configuration is called either universal, existential, accepting or rejecting.
A step of computation is a relation −→ between configurations defined as follows (where w1, w2 ∈ Γ ∗ , αβ ∈ {∀1,∀2,∃∗},

a,a′,b ∈ Γ , i ∈ {1,2}, and w1aw2 and w1baw2 both begin with 	 and end with 
):

• w1αβqaw2 −→ w1a′∀ipw2
if δ(q,a) � (p,a′, R), q ∈ Q ∀ and (p,a′, R) is the ith successor,

• w1αβqaw2 −→ w1a′∃∗pw2
if δ(q,a) � (p,a′, R) and q ∈ Q ∃ ,

• w1bαβqaw2 −→ w1∀ipba′w2
if δ(q,a) � (p,a′, L), q ∈ Q ∀ and (p,a′, L) is the ith successor, and

• w1bαβqaw2 −→ w1∃∗pba′w2
if δ(q,a) � (p,a′, L) and q ∈ Q ∃ .

Note that for an input w of length n all reachable configurations are of length n + 5. A standard result is that one
can efficiently compute the set Comp ⊆ Ξ10 of all compatible 10-tuples such that for each sequence C = c1c2 · · · ck of
configurations c1, c2, . . . , ck , with the length of the first configuration being � = |c1| = n+5, we have c1 −→ c2 −→ · · · −→ ck
if and only if for all i, 0 � i � (k − 1)� − 5,(

C(i + 1), C(i + 2), C(i + 3), C(i + 4), C(i + 5),

C(i + 1 + �), C(i + 2 + �), C(i + 3 + �), C(i + 4 + �), C(i + 5 + �)
) ∈ Comp

where C(i) is the ith element in the string C .
A computation tree for M on an input w ∈ Σ∗ is a tree T satisfying the following: the root of T is (labeled by) the

initial configuration, and whenever N is a node of T labeled by a configuration c then the following hold:

• if c is accepting or rejecting then N is a leaf;
• if c is existential then N has one child labeled by some d such that c −→ d;
• if c is universal then N has two children labeled by the first and the second successor of c, respectively.

Without loss of generality, we shall assume from now on that any computation tree for M on an input w is finite (see
e.g. [24, p. 198]) and that every accepting configuration contains at least four other symbols following after the state qacc .
We call a computation tree accepting if all its leaves are labeled with accepting configurations, otherwise it is a rejecting
computation tree. A tree with nodes labeled by configurations that is neither accepting or rejecting computation tree is
called incorrect.

We say that M accepts w iff there is a (finite) accepting computation tree for M on w . The following fact is well known
(see e.g. [24]).

Proposition 3.3. Given an ALBA M and a word w, the problem whether M accepts w is EXPTIME-complete.

3.2. Encoding of configurations and computation trees

In this subsection we shall discuss the particular encoding techniques necessary for showing the lower bound. For tech-
nical convenience we will consider only tree encodings and so we first introduce the notion of tree-thorough refinement.

Definition 3.4. Let Tree denote the class of all MTSs with their graphs being trees. We say that a process S tree-thoroughly
refines a process T , denoted by S �tt T , if [[S]] ∩ Tree ⊆ [[T ]] ∩ Tree.

Lemma 3.5. For any two processes S and T , S �tt T iff S �t T .



58 N. Beneš et al. / Information and Computation 218 (2012) 54–68
Proof. The if case is trivial. For the only if case, we define an unfold U (S) of a process S over an MTS M = (P ,���,−→)

with an alphabet Σ to be a process S over an MTS U (M) = (P∗,���U ,−→U ) over the same alphabet and where P∗ is the
set of all finite sequences over the symbols from P . The transition relations are defined as follows: for all a ∈ Σ , T , R ∈ P

and α ∈ P∗ , whenever T
a��� R then αT

a���U αT R , and whenever T
a−→ R then αT

a−→U αT R . Since the transitions in U (S)

depend only on the last symbol, we can easily see that U (S) �m S and S �m U (S) for every process S .
Let I be now an implementation of S . Its unfold U (I) is also an implementation of S by U (I) �m I �m S and the tran-

sitivity of �m . By our assumption that S �tt T and the fact that U (I) is a tree, we get that U (I) is also an implementation
of T . Finally, I �m U (I) �m T and the transitivity of �m allow us to conclude that I is an implementation of T . �

Let M = (Q , Q ∀, Q ∃,Σ,Γ,q0,qacc,qrej,	,
, δ) be an ALBA and w ∈ Σ∗ an input word of length n. We shall construct
(in polynomial time) modal transition systems L and R such that M accepts w iff L �tt R . The system L will encode
(almost) all trees beginning with the initial configuration, while the implementations of R encode only the incorrect or
rejecting computation trees.

Configurations, i.e. sequences of letters from Ξ , are not encoded straightforwardly as sequences of actions (the reason
why this naive encoding does not work is explained later on in Remark 3.12). Instead we use two auxiliary actions π and σ .
The intended implementations of L and R alternate between the actions π and σ on a linear path, while the symbols in
the encoded configuration are present as side-branches on the path.

Formally, a sequence a1a2a3 · · ·an ∈ Ξ∗ is encoded as

• • • •

•
begin

π • σ

a1

• π • σ

a2

• π • σ

a3

· · · • π • σ

an

•
end

and denoted by code(a1a2 · · ·an).
We now describe how to transform computation trees into their corresponding implementations. We simply concatenate

the subsequent codes of configurations in the computation tree so that the end node of the previous configuration is merged
with the begin node of the successor configuration. Whenever there is a (universal) branching in the tree, we do not branch
in the corresponding implementation at its beginning but we wait until we reach the occurrence of the symbol ∀. The
branching happens exactly before the symbols 1 or 2 that follow after ∀. This occurs in the same place on the tape in both
of the configurations due to the assumption that the first and the second successor move simultaneously either to the left
or to the right, and write the same symbol (see Remark 3.2). A formal definition of the encoding of computation trees into
implementations follows.

Definition 3.6 (Encoding computation trees into implementations). Let T be a (finite) computation tree. We define its tree
implementation code(T ) inductively as follows:

• if T is a leaf labeled with a configuration c then code(T ) = code(c);
• if the root of T is labeled by an existential configuration c with a tree T ′ being its child, then code(T ) is rooted in

the begin node of code(c), followed by code(T ′) where the end node of code(c) and the begin node of code(T ′) are
identified;

• if the root of T is labeled by a universal configuration c with two children d1 . . .∀1 . . .d1
n and d1 . . .∀2 . . .d2

n that are
roots of the subtrees T1 and T2, respectively, then code(T ) is rooted in the begin node of code(c), followed by two
subtrees code(T1) and code(T2) where the nodes in code(d1 . . .∀) of the initial part of code(T1) are identified with the
corresponding nodes in the initial part of code(T2) (note that by Remark 3.2 this prefix is common in both subtrees),
and finally the end node of code(c) is identified with now the common begin node of both subtrees.

Fig. 2 illustrates this definition on a part of a computation tree, where the first configuration c1 . . . cn is universal and
has two successor configurations d1 . . .∀1 . . .d1

n and d1 . . .∀2 . . .d2
n .

3.3. The reduction—Part 1

We now proceed with the reduction. As mentioned earlier, our aim is to construct for a given ALBA M and a string w
two modal transition systems L and R such that L �tt R iff M accepts w . Implementations of L will include all (also
incorrect) possible computation trees. We only require that they start with the encoding of the initial configuration and do
not “cheat” in the universal branching (i.e. after the encoding of every symbol ∀ there must follow a branching such that at
least one of the branches encodes the symbol 1 and at least another one encodes the symbol 2).

As L should capture implementations corresponding to computations starting in the initial configuration, we set L to be
the begin of code(	∃∗q0 w
) and denote its end by M . After the initial configuration has been forced, we allow all possible
continuations of the computation. This can be simply done by setting
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Fig. 2. Computation tree encoding.

for all a ∈ Ξ \ {∀}
M•

π
Ma• a

σ

Xa•

Fig. 3. Fragment of the process L.

code of the initial configuration︷ ︸︸ ︷
• • for all a ∈ Ξ \ {∀}

L• π •
	

σ π •



σ M•
π

π

Ma• a

σ

•

• •2

σ

• 1

σ

• M∀• ∀

σ

•

•
M ′

π

π

Fig. 4. Full specification of the process L.

M
π��� Ma

Ma
σ−→ M

Ma
a−→ Xa

for all letters a ∈ Ξ \ {∀} where the state Xa has no outgoing transitions as depicted in Fig. 3.
Finally, we add a fragment of MTS into the constructed process L which will guarantee the universal branching as

mentioned above whenever the symbol ∀ occurs on a side-branch. The complete modal transition system L is now depicted
in Fig. 4.

We now observe some simple facts regarding tree implementations of the process L.

Proposition 3.7. Every tree implementation I of the process L satisfies that

1. every branch in I is labeled by an alternating sequence of π and σ actions, beginning with the action π , and if the branch is finite
then it ends either with the action σ or with an action a ∈ Ξ \ {∀}, and
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2. every state in I with an incoming transition under the action π has at least one outgoing transition under the action σ and at
least one outgoing transition under an action a ∈ Ξ , and

3. whenever from any state in I there are two outgoing transitions under some a ∈ Ξ and b ∈ Ξ then a = b, and moreover no further
actions are possible after taking any transition under a ∈ Ξ , and

4. every branch in I longer than 2(n + 5) begins with the encoding of the initial configuration 	∃∗q0 w
 where n = |w|, and
5. every state in I with an incoming transition under σ from a state where the action ∀ is enabled satisfies that every outgoing

transition under π leads to a state where either the action 1 or 2 is enabled (but not both at the same time), and moreover it has
at least one such transition that enables the action 1 and at least one that enables the action 2.

Of course, not every tree implementation of the process L represents a correct computation tree of the given ALBA.
Implementations of L can widely (even uncountably) branch at any point and sequences of configurations they encode on
some (or all) of their branches may not be correct computations of the given ALBA. Nevertheless, the encoding of any
computation tree of the given ALBA is an implementation of the processes L, as stated by the following lemma.

Lemma 3.8. Let T be a computation tree of an ALBA M on an input w. Then code(T )�m L.

Proof. We shall describe Defender’s winning strategy in the modal refinement game starting from the begin node of
code(T ) and the process L. The tree code(T ) clearly begins with the encoding of the initial configuration and an iden-
tical part is contained also in the beginning of the process L. Hence the game surely continues from the begin node of the
code of the next configuration(s) in T and the process M (otherwise Attacker loses immediately, should he choose any of
the side-branches). Now Attacker must attack under the action π in the left-hand side tree (no must transitions are enabled
on the right-hand side from M) and Defender is matching this move from M in two different ways. Should the Attacker’s
next state contain a branch with a label a such that a ∈ Ξ \ {∀} then Defender plays π and enters the process Ma on the
right-hand side. In order for Attacker to still have a chance to win, he must play the action σ in either of the processes
and the players return to the situation where the right-hand side process is again in M . On the other hand if Attacker’s
next state after playing π in the left-hand side process contains a branch with the label ∀, then Defender enters under π
the state M∀ . As before, the only reasonable continuation for Attacker is to play σ in one of the processes and the players
reach a pair of states where the left-hand side process branches under π into two different paths (due to Definition 3.6 of
code(T )) and the right-hand side process is in the state M ′ . Attacker can now choose one of the branches in either of the
processes but Defender can safely match such an attack and the players after two rounds return to the situation where the
right-hand side is again in the state M . To sum up, Defender has a winning strategy and thus code(T ) �m L. �
3.4. The reduction—Part 2

We now proceed with the construction of the right-hand side process R . Its implementations should be the codes of
all incorrect or rejecting computation trees. To cover the notion of incorrect computation, we define the so-called bad path
(see p. 57 for the definition of the relation Comp).

Definition 3.9. A sequence

c1c2c3c4c5 a1a2 . . .an−6an−5︸ ︷︷ ︸
n−5 elements from Ξ

d1d2d3d4d5

is called a bad path if (c1, c2, c3, c4, c5,d1,d2,d3,d4,d5) ∈ Ξ10 \ Comp.

To cover the incorrect or rejecting computations, we loop in the process R under all actions, including the auxiliary
ones, except for qacc . For convenience we denote Ξ ′ = Ξ ∪ {π,σ }. For any bad path, the process R can at any time nonde-
terministically guess the beginning of its first quintuple, realize it, then perform n − 5 times a sequence of π and σ , and
finally realize the second quintuple. Moreover, we have to allow all possible detours of newly created branches to end in the
state U where all available actions from Ξ ′ are always enabled and hence the continuation of any implementation modally
refines U . Formally, for any (c1, c2, c3, c4, c5,d1,d2,d3,d4,d5) ∈ Ξ10 \ Comp we add (disjointly) the following fragment into
the process R (see also Fig. 5).

R
π��� V 1

V j
σ−→ W j

π−→ V j+1 for 1 � j < n + 5

V j
c j−→ X j for 1 � j � 5

Vn+ j
d j−→ X5+ j for 1 � j � 5

V j
x��� U , W j

x��� U , Vn+5
x��� U for 1 � j < n + 5 and x ∈ Ξ ′
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Fig. 5. A fragment of the system R for a bad path c1c2c3c4c5 . . .d1d2d3d4d5.

U
x��� U for all x ∈ Ξ ′

R
x��� R for all x ∈ Ξ ′ \ {qacc}

We also add ten new states N1, . . . , N9, N X and the following transitions: R
π��� N1

Ξ ′
��� N2

Ξ ′
��� N3

Ξ ′
��� N4

Ξ ′
��� · · · Ξ ′

��� N9

and N1
qacc−→ N X where any transition labeled by Ξ ′ is the abbreviation for a number of transitions under all actions

from Ξ ′ .

Remark 3.10. We do not draw these newly added states N1, . . . , N9, N X into Fig. 5 in order not to obstruct its readability
because the reason why these states are added is purely technical. It is possible that there is an incorrect computation that
ends with the last symbol qacc but it cannot be detected by any bad path as defined in Definition 3.9 because that requires
(in some situations) that there should be present at least four other subsequent symbols. By adding these new states into
the process R , we guarantee that such situations where a branch in a computation tree ends in qacc without at least four
additional symbols will be easily matched in R by entering the state N1.

Lemma 3.11. Let I be a tree implementation of L such that every occurrence of qacc in I is either preceded by a code of a bad path or
does not continue with the encoding of at least four other symbols. Then I �m R.

Proof. We synthesize a winning strategy for Defender starting from the root of I and the process R in order to prove
I �m R .

Note that as long as the right-hand side process is in the state R then Attacker can attack only from the left-hand side
processes. Defender’s strategy is as follows:

1. If Attacker attacks under a π transition leading to a subtree from which at least one branch begins with the encoding
of a bad path, Defender answers by a π transition from R leading to a state V 1 representing the fragment in the
right-hand side process corresponding to this bad path. After that, Attacker is forced to switch sides and play under
the must transitions the whole sequence of σ and π actions until reaching Vn+5; Defender will match this sequence
by following the branch corresponding to this bad path in the left-hand side process and finally win. Should Attacker
during this phase at any time decide to play again from the left-hand side, Defender will “escape” immediately to the
state U from which Defender has a clear winning strategy.

2. On any other Attacker’s move, Defender simply loops in R and Attacker cannot have played the action qacc yet (the only
action disabled in R) due to the assumption of the lemma. Should Attacker play a π transition enabling qacc such that
there is no continuation with at least 9 other transitions (i.e. 4 additional encoded symbols), Defender will enter the
state N1 (see Remark 3.10) and win.

The above defined strategy is winning for Defender and so I �m R . �
Remark 3.12. Lemma 3.11 demonstrates the point where we need our special encoding of configurations using the alterna-
tion of π and σ actions together with side-branches to represent the symbols in the configurations. If the configurations
were encoded directly as sequences of symbols on a linear path, the construction would not work. Indeed, the must path
of alternating σ and π actions in the process R is necessary to ensure that the bad path entered in the left-hand side
implementation I is indeed realizable. This path cannot be replaced by a linear path of must transitions containing directly
the symbols of the configurations because the sequence of n − 5 symbols in the middle of the bad sequence would require
exponentially large MTS to capture all such possible sequences explicitly and the reduction would not be polynomial.
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Fig. 6. Full specification of the process R .

Let us now finish the definition of the process R . Note that in ALBA even rejecting computation trees can still con-
tain several correct computation paths ending in accepting configurations. We can only assume that during any universal
branching in a rejecting tree, at least one of the two possible successors forms a rejecting branch. The process R must thus
have the possibility to discard the possibly correct computation branch in universal branching and it suffices to make sure
that the computation will continue with only one of the branches.

So in order to finish the construction of R we add an additional fragment to R as depicted in Fig. 6 (it is the part
below R that starts with branching to U1 and U2).

The construction of the process R is now finished (recall that the part of the construction going from R to the right is
repeated for any bad path of the machine M). Because the newly added part of the construction does not use any must
transitions, it does not restrict the set of implementations and hence Lemma 3.11 still holds. The following two lemmas
show that the added part of the construction correctly handles the universal branching.

Lemma 3.13. Let I be a tree implementation of L which is not, even after removing any of its branches, a code of any accepting
computation tree of M on the input w. Then I �m R.

Proof. For any tree implementation I �m L, which cannot be pruned to a code of any accepting computation tree, we extend
the strategy for Defender from Lemma 3.11. The first rule remains unchanged.

Otherwise, if Attacker chose a π transition leading to a state in the left-hand side process with the action ∀ enabled, we
know (from the definition of the process L, see Proposition 3.7 parts 2 and 5) that a σ action must follow and then there
are at least two branches under π , one of them enabling the action 1 and the other one the action 2; because I is not
an encoding of an accepting computation tree (not even after being pruned out) either (i) all subtrees beginning with the
action 1 are either rejecting or incorrect or (ii) all subtrees beginning with the action 2 are either rejecting or incorrect. In
case (i) Defender responds by entering U1, in case (ii) by entering U2. After Attacker plays the above mentioned action σ
followed by one of the π actions, Defender responds by the σ action leaving (i) U1 or (ii) U2 and then by one of the two π
actions so that the Attacker’s move on the left-hand side is correctly matched. In case (i) if Attacker plays the π move with
a following branch under 2, or in case (ii) if Attacker plays the π move with the following branch under 1, Defender will
aim at entering the process U ′ and after the following σ move wins as any implementation is a refinement of U ′ . Hence
Attacker is forced to choose, in case (i), some first branch and, in case (ii), some second branch and after the necessary
action σ the game continues from a configuration where the right-hand side process is again in R .

Finally, if none of the previous cases applies, Defender simply mimics any Attacker’s move by looping in R . Note that in
this case Attacker cannot have played the action qacc because we assume that the implementation I , even after removing
any of its branches, does not encode any accepting computation tree.

As the above defined strategy is winning for Defender, we conclude that I �m R . �
Lemma 3.14. Let T be an accepting computation tree of an ALBA M on the input w. Then code(T ) �m R.

Proof. Note that in T every branch ends with a configuration containing the accepting state qacc . It is so clear that Attacker
can easily win by playing repeatedly the transition π followed by the transition σ in the tree code(T ). Defender is forced
to stay in the state R because any branch in the tree is correct and hence Defender cannot “escape” by playing the π
move to the state V 1 for any bad path (should Defender play like this, Attacker would switch the sides and play the must
sequence of π and σ transitions until Defender is proven to be cheating and Attacker wins).
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• • for all a ∈ Ξ
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Fig. 7. Modified process L′ .

The only situation when Defender can play a π move going to the state U1 or U2 is when Attacker (in the left-hand side
process) is inside a code of a configuration following a universal configuration and after he played π the next label is ∀. In
case that Defender entered U1, Attacker simply continues on the left-hand side by taking the first successor configuration,
and in case that Defender entered U2, Attacker chooses the second successor configuration. After the sequence of one π and
one σ move in the left-hand side process, Defender is forced to return to the state R (otherwise Attacker wins by playing
the action 1 respectively 2 in the left-hand side process). Eventually, after reaching an accepting leaf configuration in T ,
Attacker will play the action qacc in the left-hand side process to which Defender has no answer from the process R . As we
have described Attacker’s winning strategy, we conclude that code(T ) �m R . �
3.5. Summary

We can now combine the facts about the constructed systems L and R in the following theorem.

Theorem 3.15. An ALBA M accepts an input w iff L �t R.

Proof. If M accepts the input w then clearly it has an accepting computation tree T . By Lemma 3.8 code(T ) �m L and by
Lemma 3.14 code(T ) �m R . This implies that L �t R .

On the other hand, if M does not accept w then none of the tree implementations of L represents a code of an accepting
computation tree of M on w . By Lemma 3.13 this means that any tree I such that I �m L satisfies that I �m R and hence
L �tt R which is by Lemma 3.5 equivalent to L �t R . �
Corollary 3.16. The problem of checking thorough refinement on finite modal transition systems is EXPTIME-hard.

3.6. Deterministic and fixed process L

We can strengthen the above hardness result by adapting the described reduction to the situation where the left-hand
side system is deterministic (meaning that for every state and every action there is at most one outgoing may transition)
and of a fixed size.

Theorem 3.17. The problem of checking thorough refinement on finite modal transition systems is EXPTIME-hard even if the left-hand
side system is deterministic and of a fixed size.

Proof. The MTS L of the previous construction is nondeterministic, as the process M reachable from L has several outgoing
π transitions. Its size also depends on the size of the acceptance problem, as it contains the code of the initial configuration
of the ALBA.

We now show a different construction with a deterministic fixed-size left-hand side process. This construction will be
a modification of the original one. To make the explanation easier to follow, we split the modification into two steps. In the
first step, we modify L and R into modal transition systems L′ and R ′ such that L′ is deterministic and L′ �t R ′ if and only
if M accepts w . In the second step, we modify L′ and R ′ into L′′ and R ′′ such that L′′ is both deterministic and of a fixed
size and still L′′ �t R ′′ if and only if M accepts w .

We introduce L′ in Fig. 7. The modification is as follows. The process M is changed into M ′ which has only one outgoing
may transition to N ′ labeled with π . The process N ′ then has outgoing may transitions for each symbol of Ξ (including ∀),
leading to a process with no transitions. It is easy to see that L �m L′ and thus every implementation of the original L is
also an implementation of L′ . Therefore, if there exists an implementation of L that is an encoding of a correct accepting
tree, L′ also possesses such implementation. However, L′ has more implementations representing incorrect computation
trees than L. They are of the following types (we only consider tree implementations here):

(a) tree implementations that possess at least one branch with a sequence of the form J
π−→ J ′ σ−→ J ′′ without any

transitions labeled with symbols from Ξ outgoing from J ′ ,
(b) tree implementations possessing at least one branch with a sequence of the form J

π−→ J ′ σ−→ J ′′ with at least two

transitions outgoing from J ′ labeled with different symbols of Ξ , i.e. J ′ x−→ and J ′ y−→ where x �= y, x, y ∈ Ξ ,
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for all a ∈ Ξ
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Fig. 8. Process L′′ .

(c) tree implementations in which a process K is reachable such that K
∀−→ and neither K

σ−→ π−→ 1−→ nor K
σ−→ π−→ 2−→,

and
(d) tree implementations in which a process K is reachable such that K

∀−→ and either K
σ−→ π−→ 1−→ or K

σ−→ π−→ 2−→
but not both.

We first discuss the implementations of the forms (b), (c) and (d) and claim that they are already implementations of R
of the original construction.

(b) If the implementation contains a branch with a sequence J
π−→ J ′ σ−→ J ′′ such that J ′ has two different outgoing Ξ

transitions then surely one of these transitions is a part of a code of a bad path. Therefore, such implementation is
clearly matched by R .

(c) Similarly, a sequence containing ∀ followed by something else than 1 or 2 is a part of a bad path.

(d) Suppose the implementation has a reachable process K such that K
∀−→ and only one of K

σ−→ π−→ 1−→ or

K
σ−→ π−→ 2−→ holds. Then clearly K is an implementation of R as it can be matched by one of the two paths from R

to U ′ . Therefore also the implementation that has a path to K has to be an implementation of R .

However, the implementations of the form (a) may not be implementations of R . We thus modify R into R ′ by adding
an extra outgoing transition that matches such implementations. The process R ′ is therefore equivalent to R with the

following addition: R ′ π��� S ′ , S ′ σ��� T ′ , T ′ Ξ ′
��� T ′ , where S ′ and T ′ are new processes. Clearly this modification does not

allow R ′ to possess as an implementation an encoding of a correct computation tree, and thus L′ �t R ′ if and only if M
accepts w .

We now proceed with the second step. Clearly, there are two places in the system for L′ (and also L) that are dependent
on the size of the original ALBA M and the word w to be accepted.

First, it is the encoding of the initial configuration (the path from L to M) and second, it is the number of outgoing
transitions from N ′ which is dependent on the number of ALBA’s states.

The interesting part is that of the encoding of the initial configuration. We change the left-hand side process L′ into L′′
by eliminating the path representing the initial configuration. (Thus, L′′ is equivalent to M ′ of the previous construction.)
This new process is depicted in Fig. 8. Clearly, L′′ has more implementations than the process L′ , namely those that have
a branch which starts with something different than the encoding of the initial configuration. Thus, we need to extend the
right-hand side process so that it also admits this kind of implementations.

The new process R ′′ is built as follows. There are paths encoding the incorrect initial configurations, one for each position
of the configuration, i.e. there is a path representing that an error (incorrect symbol in the initial configuration) happens
at the first symbol of the configuration, a path representing an error at the second symbol, etc. Similarly to the previous
construction we also include may transitions for escaping to universal process, to allow for arbitrary branching in the
implementations. To this we furthermore add all transitions the process R ′ has, including transitions to R ′ itself. Note that
this implies that R ′ �m R ′′ . Formally, the process R ′′ is defined as follows (see Fig. 9 for illustration):

R ′′ π��� Sk1 for 1 � k � n + 5

R ′′ x��� X whenever R ′ x��� X

Sk�
σ−→ Tk� for 1 � � < k � n + 5

Sk�
i�−→ Xk� i� is the �th symbol of the initial configuration

Sk�

x��� U ′′ for all x ∈ Ξ ′

Skk
σ��� U ′′

Skk
x��� Xkk for all x ∈ Ξ \ {ik}

Tk�
π−→ Sk(�+1) for 1 � � < k � n + 5

U ′′ x��� U ′′ for all x ∈ Ξ ′
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Fig. 9. Process R ′′ that accepts all branches not starting with the initial configuration 	 ∃ ∗ . . . 
 or entering R ′ .

We now need to show two things. First, that any implementation of L′′ that is not an encoding of a correct accepting
computation tree even after pruning is an implementation of R ′′ , and second, that the encoding of a correct accepting
computation tree is not an implementation of R ′′ .

Regarding the first claim let us fix an implementation I of L′′ that is not a correct accepting computation tree. Consider
transitions from I placed on branches that do not start with an encoding of the initial configuration. These are matched by
the newly created transitions from R ′′ to the paths encoding the branches that begin with an error. Let us further consider
all transitions from I that are placed only on branches beginning with correct encodings of the initial configuration. The cor-
responding subtrees are then implementations of R ′ . But we know that R ′ �m R ′′ , so the whole I is also an implementation
of R ′′ .

The second claim then easily follows from the fact that the encoding of a correct accepting computation tree is neither
an implementation of R ′ , nor can be matched by any of the bad paths added to R ′′ , as it clearly has to start with a correct
initial configuration. Thus we have that the given ALBA accepts the input w if and only if L′′ �t R ′′ .

What remains is to cope with the number of states of the original ALBA so that Ξ is of constant size. That can be dealt
with in a straightforward manner by encoding the states with binary strings of two symbols, say q0 and q1. This changes the
compatible 10-tuples into compatible (2 · �log2 |Q |�+ 8)-tuples, but this change does not affect the construction heavily. �
4. Thorough refinement is in EXPTIME

In this section we provide a direct algorithm for deciding thorough refinement between MTSs in exponential time. Given
two processes A and B over some finite-state MTSs, the algorithm will decide if there exists an implementation I that
implements A but not B , i.e. I �m A and I �m B .

For a modal transition systems B , we introduce the syntactical notation B to denote the semantical complement of B ,
i.e. I �m B iff I �m B . Our algorithm now essentially checks for consistency (existence of a common implementation) be-
tween A and B with the outcome that they are consistent if and only if A �t B . Note that we never use the system B in
any of the constructions, it is introduced purely for notational reasons so that I �m B is an abbreviation for I �m B .

In general, we shall check for consistency of sets of the form {A, B1, . . . , Bk} in the sense of existence of an implemen-
tation I such that I �m A but I �m Bi for all i ∈ {1, . . . ,k}. Before the full definition is given, let us get some intuition by
considering the case of consistency of a simple pair A, B . During the arguments, we shall use CCS-like constructs (summa-
tion and action-prefixing) for defining implementations.

Clearly, if for some B ′ with B
a−→ B ′ and for all Ai with A

a−→ Ai we can find an implementation Ii implementing Ai
but not B ′ (i.e. we demonstrate consistency between all the pairs Ai, B ′), we can claim consistency between A and B: as
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a common implementation I simply take H +∑
i a.Ii , where H is some arbitrary implementation of A with all a-derivatives

removed. Clearly, I �m A but I �m B . In this case of a must transition in B that is unrealized in A, we will store this
information by setting B ′ ∈ unrealizeda .

We may also conclude consistency of A and B , if for some A′ with A
a��� A′ , we can find an implementation I ′ of A′ ,

which is not an implementation of any B ′ where B
a��� B ′ . Here a common implementation would simply be H + a.I ′

where H is an arbitrary implementation of A. However, in this case we will need to determine the consistency of the set

{A′} ∪ {B ′ | B
a��� B ′} which is in general not a simple pair. In this case of a may transition in A that is not allowed in B , we

will store this information by setting B ∈ disalloweda .
Thus consistency can be shown by either of the two ways and for any letter of the alphabet. We formalize this in the

following definition.

Definition 4.1. Let M = (P ,���,−→) be an MTS over the action alphabet Σ . The set of consistent sets of the form
{A, B1, . . . , Bk}, where A, B1, . . . , Bk ∈ P , is the smallest set Con such that {A, B1, . . . , Bk} ∈ Con whenever k = 0 or there
are sets of processes unrealizeda and disalloweda for every a ∈ Σ , such that for every B ∈ {B1, . . . , Bk} either B ∈ disalloweda

for some a ∈ Σ , or B
a−→ B ′ for some a ∈ Σ and B ′ ∈ unrealizeda , so that for every a ∈ Σ

1. for all A
a−→ A′ we have {A′} ∪ {B ′ | B ′ ∈ unrealizeda} ∈ Con, and

2. for all B ∈ disalloweda there is A
a��� A′ with {A′} ∪ {B ′ | B

a��� B ′} ∪ {B ′ | B ′ ∈ unrealizeda} ∈ Con.

Lemma 4.2. Given processes A, B1, . . . , Bk of some finite MTS, there exists an implementation I such that I �m A and I �m Bi for all
i ∈ {1, . . . ,k} if and only if {A, B1, . . . , Bk} ∈ Con.

Proof. We prove both directions by induction.
‘If ’ part (soundness of the construction). Because Con is defined as the smallest set, let by Con0,Con1,Con2, . . . denote

the nondecreasing sequence of sets according to in which round the elements (consistent sets) where added to Con. So
Con0 contains exactly all the consistent sets of the form {A}, Con1 contains all the consistent sets that were added to Con0
in one iteration of the definition, etc.

We prove by induction on n that whenever {A, B1, . . . , Bk} ∈ Conn then there exists an implementation I such that
I �m A and I �m Bi for all i ∈ {1, . . . ,k}.

The base case n = 0 is trivial. For the induction step assume that {A, B1, . . . , Bk} ∈ Conn+1. Then for every a ∈ Σ there
exist sets disalloweda and unrealizeda satisfying the conditions of Definition 4.1.

From the first clause, it follows from the induction hypothesis that for every A
a−→ A′ there exists I A′ such that I A′ �m A′

and I A′ �m B ′ for all B ′ ∈ unrealizeda . Similarly, from the second clause, it follows from the induction hypothesis that for

every B ∈ disalloweda there exists A
a��� AB and an implementation I AB such that I AB �m AB and I AB �m B ′ for all B ′ with

B
a��� B ′ or B ′ ∈ unrealizeda . Now we define an implementation I witnessing the correctness of {A, B1, . . . , Bk} ∈ Con:

I ≡
∑
a∈Σ

( ∑
A′.A

a−→A′
a.I A′ +

∑
B∈disalloweda

a.I AB

)

We shall prove that I �m A and I �m Bi for all i ∈ {1, . . . ,k}. Let us first establish I �m A. Assume that A
a−→ A′ , then

I
a−→ I A′ will provide the match. For the other direction assume that I

a��� I X , then A
a��� X provides the match. To see that

I �m Bi , we distinguish two cases. Either Bi ∈ disalloweda for some a ∈ Σ and then I
a��� I ABi

cannot be matched by any

may transition Bi
a��� B ′; or there is Bi

a−→ B ′ ∈ unrealizeda for some a ∈ Σ that can be matched by neither I
a−→ I A′ nor

I
a−→ I ABi

.

‘Only-if ’ part (completeness of the construction). Let us define I �n
m S if either n = 0 or (i) whenever I

a��� I ′ then S
a��� S ′

with I ′ �n−1
m S ′ and (ii) whenever S

a−→ S ′ then I
a−→ I ′ with I ′ �n−1

m S ′ . Hence the relation �n
m is a natural generalization

of the classical bisimulation approximations to modal refinement, and clearly (on finite MTS) we have that I �m S iff I �n
m S

for all n.
We prove by induction on n that whenever there exists an implementation I such that I �m A and I �n

m Bi for all
i ∈ {1, . . . ,k} then {A, B1, . . . , Bk} ∈ Con.

The base case n = 0 is trivial as in this case k = 0 and hence {A, B1, . . . , Bk} = {A} ∈ Con. For the induction step assume
that I �m A and I �n+1

m Bi for some I . We define the following sets of processes for every a ∈ Σ :

disalloweda = {
B ∈ {B1, . . . , Bk}

∣∣ ∃I
a��� I ′. ∀B

a��� B ′. I ′ �n
m B ′}

unrealizeda = {
B ′ ∣∣ ∃B ∈ {B1, . . . , Bk}. ∃B

a−→ B ′. ∀I
a−→ I ′. I ′ �n

m B ′}
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Note that due to the definition of the modal refinement, these sets satisfy the conditions of Definition 4.1 once we establish
its two clauses.

As for the first clause, for every A
a−→ A′ there is I

a−→ I ′ where I ′ �m A′ and by definition of unrealizeda also I ′ �m B ′
for B ′ ∈ unrealizeda . Thus by induction hypothesis {A′} ∪ {B ′ | B ′ ∈ unrealizeda} ∈ Con. As for the second clause, for every

B ∈ disalloweda we have I
a��� I ′ (hence I ′ �m A′ for some A

a��� A′) with I ′ �n
m B ′ for all B

a��� B ′ by definition of disalloweda .

Since also I ′ �n
m B ′ ∈ unrealizeda using the definition of unrealizeda , induction hypothesis guarantees {A′} ∪ {B ′ | B

a��� B ′} ∪
{B ′ | B ′ ∈ unrealizeda} ∈ Con.

It follows that the sets disalloweda and unrealizeda provide the evidence required by the definition to conclude that
{A, B1, . . . , Bk} ∈ Con. �

Computing the collection of consistent sets {A, B1, . . . , Bk} over an MTS (P ,���,−→) may be done as a simple (least)
fixed-point computation. The running time is polynomial in the number of potential sets of the form {A, B1, . . . , Bk} where
A, B1, . . . , Bk ∈ P , hence it is exponential in the number of states of the underlying MTS. This gives an exponential time
algorithm to check for thorough refinement.

Theorem 4.3. The problem of checking thorough refinement on finite modal transition systems belongs to EXPTIME.

Example 4.4. Consider S and T from Fig. 1. We have already mentioned in Section 2 that S �t T . To see this, we will
attempt (and fail) to demonstrate consistency of {S, T } according to Definition 4.1, which essentially asks for a finite tableau
to be constructed. Now, in order for {S, T } to be concluded consistent, we have to establish consistency of {S1, T 1, T 2}—as
T has no must transitions the only choice is unrealizeda = ∅ and thus disalloweda = {T }. Now, to establish consistency of
{S1, T 1, T 2} both unrealizeda = ∅ and unrealizeda = {T } are possibilities. In the former case disalloweda = {T1, T2} and in the
latter case T2 ∈ disalloweda . However, in both cases the requirement will be that {S, T } must be consistent. Given this cyclic
dependency together with the minimal fixed-point definition of Con it follows that {S, T } is not consistent, and hence that
S �t T .

Example 4.5. Consider S and U from Fig. 1. Here S �t U clearly with I = a.0 as a witness implementation. Let us demon-
strate consistency of {S, U }. Choosing unrealizeda = ∅ and disalloweda = {U }, this will follow from the consistency of {S1, U 1}.
To conclude this, note that unrealizeda = {U1} and disalloweda = ∅ will leave us with the empty collection of sets—as S1 has
no must transitions—all of which are obviously consistent.

Note that in the case of B being deterministic, we only need to consider pairs of the form {A, B} for determining
consistency. This results in a polynomial time algorithm (see also [6] for an alternative proof of this fact). Similarly, if the
process B is of a constant size, our algorithm runs in polynomial time as well.

Corollary 4.6. The problem of checking thorough refinement on finite modal transition systems with the right-hand side system deter-
ministic or of fixed size belongs to P.

To conclude, by Theorem 4.3 and Corollary 3.16 we get our main result.

Theorem 4.7. The problem of checking thorough refinement on finite modal transition systems is EXPTIME-complete.

5. Conclusion

We proved that the problem of checking the thorough refinement relation between two finite-state modal transition
systems is EXPTIME-complete. This result completes related complexity results achieved in [3] as the thorough refinement
relations on both modal and mixed (where the must transition relation is not necessarily included in the may transition
relation) specifications, the common implementation problems on modal and mixed specifications, as well as the consis-
tency problem on mixed specifications are now all EXPTIME-complete. Our EXPTIME-hardness result is proved by reduction
from the acceptance problem for alternating linear bounded automata because the problems of consistency and common
implementation mentioned above did not seem to provide suitable starting problems for the reduction.

The fact that the thorough refinement relation is computationally hard means that the relation of modal refinement is
more suitable for practical purposes, even though it describes a less desirable notion of syntactic refinement. On the other
hand, much of the recent work in the area focuses to a large extent on deterministic specifications (see e.g. [12,13]) and
here the two notions of refinement coincide. A detailed study of computational complexity of the problems on deterministic
modal transition systems is provided in [6].
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