NOTE

NATURAL SPANNING TREES OF $\mathbf{Z}^{\boldsymbol{d}}$ ARE RECURRENT

Peter GERL
Mathematisches Institut der Universität Salzburg, A-5020 Salzburg, Austria

Received 24 January 1984
Revised 10 December 1985
We show that the simple random walk on the natural spanning tree of \mathbb{Z}^{d} is recurrent for every $d(=1,2,3, \ldots)$ and determine the asymptotic behaviour of the probability of returning to the origin in n steps $(n \rightarrow \infty)$. This is in contrast to a result of Polya [6]: \mathbb{Z}^{d} is recurrent for $d=1,2$ and transient for $d \geqslant 3$.

The result

The simple random walk on a graph is defined as a Markov chain with one-step transition probabilities

$$
p(x, y)=\left\{\begin{aligned}
\frac{1}{d(x)} & \text { if } x, y \text { are adjacent vertices } \\
0 & \text { otherwise }
\end{aligned}\right.
$$

where $d(x)=$ degree of the vertex x. We write $p^{n}(x, y)$ for the corresponding n-step transition probabilities:

$$
p^{n}(x, y)=\sum_{z} p(x, z) p^{n-1}(z, y)
$$

(see [2,3] or [7] for more information about random walks on graphs).
An old result of Polya [6] says that the simple random walk on \mathbb{Z}^{d} is recurrent for $d=1,2$ and transient for $d \geqslant 3$. More precise results are known (e.g. [8]) namely

$$
p^{2 n}(O, O)_{n \rightarrow \infty} c_{d} \cdot n^{-d / 2} \quad \text { on } \mathbb{Z}^{d}
$$

The natural spanning tree T_{d} of \mathbb{Z}^{d} connects the origin $O=(0,0, \ldots, 0)$ to every other vertex $\left(a_{1}, a_{2}, \ldots, a_{d}\right)$ (in some cartesian coordinate system) by geodesics (see Fig. 1) through the points $\left(a_{1}, 0, \ldots, 0\right),\left(a_{1}, a_{2}, 0, \ldots, 0\right)$, 0012-365X/86/\$3.50 © 1986, Elsevier Science Publishers B.V. (North-Holland)

$$
T_{3}:
$$

Fig. 1.
$\ldots,\left(a_{1}, a_{2}, \ldots, a_{d-1}, 0\right)$. The distances from the origin to every other vertex are the same in \mathbb{Z}^{d} and T_{d}. We prove the following

Theorem. If $p^{n}(O, O)=\operatorname{Prob}($ to walk from O to O in n steps), then

$$
\begin{aligned}
& p^{2 n+1}(O, O)=0, \\
& p^{2 n}(O, O)_{n \rightarrow \infty}^{\sim} \frac{d \cdot 2^{-1+2^{1-d}}}{\Gamma\left(2^{-d}\right)} \cdot n^{-1+2^{-d}} \text { on } T_{d}(d \geqslant 1) .
\end{aligned}
$$

Corollary. The simple random walk on every tree $T_{d}(d=1,2,3, \ldots)$ is recurrent.

Some remarks

(i) Call a graph recurrent (transient) if the simple random walk on it is recurrent (transient). To find out for a given graph if it is recurrent or transient is called the type problem. This is in many cases much easier to solve for trees. So one is led to the

Question 1. Can the type problem for a graph be solved by considering its spanning subtrees?

The theorem (corollary) shows that one has to be careful.
(ii) It can be shown (see [4] or [7]) that \mathbb{Z}^{d} has transient (spanning) subtrees for $d \geqslant 3$, while every subtree of \mathbb{Z}^{1} or \mathbb{Z}^{2} is recurrent. So one is led to the

Question 2. Which subtrees of $\mathbb{Z}^{d}(d \geqslant 3)$ are transient?
Intuitively a tree is transient if it has many branching vertices (i.e., vertices of degree $\geqslant 3$), but to be a subtree of \mathbb{Z}^{d} implies that there cannot be too many branchings (slow growth). How can this be made precise?
(iii) In general the answer to Question 1 is no. There is an example by Peter Doyle of a transient graph without transient subtree but in some sense this graph (although transient) is similar to a recurrent tree. This leads to

Question 3. Which (transient) graphs have transient subtrees?
This is true for $\mathbb{Z}^{d}(d \geqslant 3)$ and perhaps for all transient Cayley graphs (of groups).

The proof

1) Let O be the origin of \mathbb{Z}^{d} and write

$$
\begin{aligned}
& p_{d}^{n}(O, O)=\operatorname{Prob}(O \xrightarrow[\text { in } T_{d}]{\text { in } n \text { teps }} O), \\
& f_{d}^{n}(O, O)=\operatorname{Prob}(O \xrightarrow[\text { in } T_{d}]{\text { in } n \text { steps, but not earlier }} O), \\
& q_{d}^{n}(O, O)=\operatorname{Prob}(O \xrightarrow[\text { the first step is in direction } x_{1} ; \text { in } T_{d}]{\text { in } n) .} \text {. } O) .
\end{aligned}
$$

All these probabilities are zero for n odd. The corresponding generating functions are

$$
\begin{aligned}
G_{d}(x) & =\sum_{n \geqslant 0} p_{d}^{2 n}(O, O) x^{n}, \quad F_{d}(x)=\sum_{n \geqslant 1} f_{d}^{2 n}(O, O) x^{n} \\
Q_{d}(x) & =\sum_{n \geqslant 1} q_{d}^{2 n}(O, O) x^{n}
\end{aligned}
$$

A flow chart analysis (see e.g. [5]) shows that for $d \geqslant 1$

$$
\begin{align*}
F_{d} & =\frac{d-1}{d} F_{d-1}+\frac{1}{d} Q_{d} \tag{1}\\
Q_{d} & =\frac{\frac{1}{2 d} x}{1-\frac{d-1}{d} F_{d-1}-\frac{1}{2 d} Q_{d}} \tag{2}
\end{align*}
$$

and

$$
\begin{equation*}
G_{d}=\left(1-F_{d}\right)^{-1} \tag{3}
\end{equation*}
$$

(From here the corollary follows immediately since $F_{d}(1)=1$.)
2) Eliminating Q_{d} from (1) and (2) gives

$$
d \cdot F_{d}=d-\left(\left(d-(d-1) F_{d-1}\right)^{2}-x\right)^{\frac{1}{2}} .
$$

From this and (3) we infer, writing $G_{d}=d \gamma_{d}$,

$$
\begin{equation*}
\gamma_{d}=\gamma_{d-1}\left(1+2 \gamma_{d-1}+(1-x) \gamma_{d-1}^{2}\right)^{-\frac{1}{2}} \tag{4}
\end{equation*}
$$

Since $\gamma_{1}=G_{1}=(1-x)^{-\frac{1}{2}}$, all the functions γ_{d} and G_{d} have a singularity at $x=1$ (and this is the only singularity on the circle of convergence $|x|=1$). From (4) we find the local behaviour of γ_{d} (and G_{d}) at the singularity $x=1$, namely

$$
\begin{equation*}
\gamma_{d}=(1-x)^{-2^{-d}} g_{d}\left((1-x)^{2^{1-d}}\right), \tag{5}
\end{equation*}
$$

where $g_{d}(t)$ is analytic in t and $g_{d}(0)=2^{-1+2^{1-d}}(>0)$. This follows by recurrence after some calculations.
3) If we write down (5) more explicitely it yields

$$
G_{d}(x)=(1-x)^{-2^{-d}} h_{1}(x)+(1-x)^{2^{-d}} h_{2}(x)+\cdots+(1-x)^{\left.\left(2^{d}-3\right)\right)^{2-d}} h_{2^{d-1}}(x),
$$

where $h_{i}(x)$ are analytic near $x=1$ and

$$
h_{1}(1)=d \cdot g_{d}(0)=d \cdot 2^{-1+2^{1-d}}
$$

Now we may apply the method of Darboux (see e.g. [1]) to each summand and infer that

$$
p_{d}^{2 n}(O, O) \underset{n \rightarrow \infty}{\sim} \frac{h_{1}(1)}{\Gamma\left(2^{-d}\right)} n^{-1+2^{-d}} .
$$

This completes the proof.

References

[1] E.A. Bender, Asymptotic methods in enumeration, SIAM Rev. 16 (1974) 485-515.
[2] P. Gerl, Continued fraction methods for random walks on \mathbb{N} and on trees, in: H. Heyer, ed., Probability measures on groups, Springer Lecture Notes in Math., 1064.
[3] P. Gerl and W. Woess, Simple random walks on trees, (1983) preprint (to appear in Europ. J. Combin.).
[4] P. Gerl, Rekurrente and transiente Bäume (Publ. IRMA, Strasbourg, 1984) 80-87.
[5] R.A. Howard, Dynamic Probabilistic Systems, Vol. 1 (Wiley, New York, 1971).
[6] G. Polya, Über eine Aufgabe der Wahrscheinlichkeitsrechnung betreffend die Irrfahrt im Straßennetz, Math. Ann. 84 (1921) 149-160.
[7] J.L. Snell and P. Doyle, Random Walks and Electric Networks (MAA, Carus mathematical monographs No. 22, 1985).
[8] F. Spitzer, Principles of Random Walk (Van Nostrand, Princeton, 1964).

