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Using the polynomial algorithm given in [T. Jorda� n, On the optimal vertex-con-
nectivity augmentation, J. Combin. Theory Ser. B 63 (1995), 8�20] a k-connected
undirected graph G=(V, E) can be made (k+1)-connected by adding at most
k&2 surplus edges over (a lower bound of) the optimum. Here we introduce two
new lower bounds and show that in fact the size of the solution given by (a slightly
modified version of) this algorithm differs from the optimum by at most
W(k&1)�2X. � 1997 Academic Press

1. INTRODUCTION

A graph G=(V, E) is called k-connected if |V|�k+1 and the deletion
of any k&1 or fewer vertices leaves a connected graph. Given a graph
G=(V, E) and an integer l, the connectivity augmentation problem is to
find a smallest set F of new edges for which G$=(V, E _ F ) is l-connected.
The complexity of this problem is still an exciting open question, even if the
graph G to be augmented is k-connected and l=k+1. (For l�4 the
problem is known to be polynomially solvable. See [2] for a survey of this
area.)

In [4] a polynomial algorithm was given which makes a k-connected
graph (k+1)-connected by adding at most k&2 edges over (a lower
bound of) the optimum. The goal of this note is to introduce two new
lower bounds on the size of an optimal augmentation and to prove that (a
slightly modified version of) our algorithm from [4] produces a solution
of size at most W(k&1)�2X more than the improved lower bound. Our new
gap W(k&1)�2X is sharp in the sense that for every k�3 there exists an
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infinite family of graphs for which the gap between the optimum value and
the size of the solution is W(k&1)�2X. Moreover, there exists an infinite
family for which the gap between the optimum and the lower bound is
w(k&1)�2x.

In the rest of the introduction we introduce the necessary definitions and
briefly summarize the results from [4] we shall rely on in this paper. A vertex
v # V&X is a neighbour of X/V in the graph G=(V, E) if there exists a
vertex u # X such that uv # E. Let 1(X) denote the set of neighbours of
X/V. It is well-known and easy to check that the function |1 | : 2V � Z+

is submodular, that is

|1(X)|+|1(Y)|�|1(X _ Y)|+|1(X & Y)| for every X, Y�V. (1)

Let G=(V, E) be a k-connected graph. For a set K/V of size k, bK (G)
(or simply bK) denotes the number of components in G&K. Let
b(G)=max[bK (G) : K/V, |K|=k]. If bK�2, the set K is a cut of G. A set
P/V is called tight if |1(P)|=k and |V&P|�k+1. The maximum num-
ber of pairwise disjoint tight sets in G is denoted by t(G). We say that
S�V is a tight-set cover of G if S & P{< for every tight set P. Let {t(G)
denote the size of a smallest tight-set cover of G. M(G) denotes the number
max[b(G)&1, Wt(G)�2X]. Suppose that the (for inclusion) minimal tight
sets of G are pairwise disjoint. Then for a minimal tight set Di (1�i�t(G))
we define Si to be the union of those tight sets which include Di but which
are disjoint from every other minimal tight set Dj (i{ j), see also [4,
p. 14].

It is easy to see that M(G) is a lower bound for the minimum number
m(G) of new edges which make G (k+1)-connected. It is known that for
k=1 and k=2 the equality M(G)=m(G) holds. This is not always the
case for k�3. For example m(Kk, k)&M(Kk, k)=k&2 for the complete
bipartite graphs Kk, k . However, as the main result of [4] shows, the gap
between M(G) and m(G) cannot be bigger.

Theorem 1.1 [4, Theorem 1.1]. Let G be a k-connected graph for some
k�2. Then M(G)�m(G)�M(G)+k&2.

The proof of Theorem 1.1 was based on the next two theorems.

Theorem 1.2 [4, Theorem 2.4]. Suppose that b(G)�k+1 and b(G)&
1�Wt(G)�2X in a k-connected graph G. Then m(G)=M(G).

An edge e=xy (x, y # V(G)) is saturating for a k-connected graph G if
t(G+e)=t(G)&2 holds.
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Theorem 1.3 [4, Theorem 3.1]. Let G=(V, E) be a k-connected graph
and suppose that b(G)&1<Wt(G)�2X , t(G)�k+3 and |V|�2k+1. Then
there exists a saturating edge for G.

One can easily check that if we skip the last one and a half paragraphs
in the proof of [4, Theorem 3.1] and observe that the conditions
|V|�2k+1 and b(G)&1<Wt(G)�2X are not used in the proof elsewhere,
we obtain the following result.

Theorem 1.3b. Let G=(V, E) be a k-connected graph with t(G)�k+3
such that there exists no saturating edge for G. Then for any two sets Si , Sj

1�i{ j�t(G) either

(a) 1(Si)=1(Sj) or
(b) V&1(Si)�1(Sj) holds.

If case (a) holds for every pair Si , Sj , we obtain b(G)=t(G). Case (b)
may hold only if |V|�2k. Also recall that every set Si induces a connected
subgraph and t(G)�k+3 implies that Si is tight and Si & Sj=< for every
1�i{ j�t(G). Two further observations will also be cited from [4].

Lemma 1.4 [4, Lemma 3.4]. Let G=(V, E) be a k-connected graph. Then
m(G)�{t(G)&1.

The proof of [4, Lemma 2.1] and [4, Lemma 3.5, Case II] give:

Lemma 1.5. If t(G)�k+1 in a k-connected graph G then the minimal
tight sets are pairwise disjoint. If t(G)�k+1 then {t(G)�k+1 holds.

2. THE NEW LOWER BOUNDS AND THE ALGORITHM

Let t*(G) denote the number of minimal tight sets in the k-connected
graph G=(V, E). Let S�V be a minimal tight-set cover.

Lemma 2.1. t(G)�|S|�t*(G) and for t(G)�k+1 the equality t(G)=
t*(G) holds. Furthermore, Wt*(G)�2X�m(G).

Proof. The inequality t(G)�|S| is obvious. The minimality of S implies
that for any si # S there exists a minimal tight set Pi for which
Pi & S=[si]. Therefore |S|�t*(G). Lemma 1.5 implies that if t(G)�k+1,
then equality holds everywhere.

To prove that Wt*(G)�2X is a lower bound for the size of an optimal
augmentation suppose that G can be made (k+1)-connected by adding
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a set F of new edges with |F |�Wt*(G)�2X&1. Since F is an augmenting
set, for every tight set X of G there exists an edge e$=x$y$ in F for which
one end-vertex, say x$, is contained by X and y$ belongs to V&X&1(X).
Thus our assumption implies that there exists an edge e=xy # F such
that in G _ F the vertex y is a new neighbour of (at least) two different
minimal tight sets P1 and P2 of G. More precisely, x # P1 & P2 and
y # V&(P1 _ P2 _ 1(P1 _ P2)) hold. This implies that 1(P1 _ P2) separates
y from the set P1 _ P2 . By the k-connectivity of G this gives
|1(P1 _ P2)|�k. Applying (1) we obtain

k+k=|1(P1)|+|1(P2)|�|1(P1 & P2)|+|1(P1 _ P2)|�k+k,

from which we conclude that equality holds everywhere. Thus P1 & P2 is
also tight, contradicting the minimality of P1 . K

Thus a better lower bound for m(G) is M*(G)=max[b(G)&1,
Wt*(G)�2X]. The following example shows that there can be a gap between
m(G) and M*(G) as well for any k�3 and for arbitrarily high number of
vertices. Take a complete bipartite graph Kk, k=(A, B ; E) and replace
some vertex v # B by a copy of Kr for some r�k+1 and give different end-
vertices to the k edges entering the Kr . This graph H r

k is k-connected with
M*(H r

k)=k and m(H r
k)=k+w(k&1)�2x . (A smallest augmenting set con-

sists of k&1 edges connecting the k components of H r
k&A and a set of

Wk�2X edges which cover the vertices of A.) On the other hand we shall
prove that this is (almost) the biggest possible gap if |V|�2k+1.

To show a similar gap (and for the analysis of the algorithm) in the
case |V|�2k we need another new lower bound. We call two cuts K, L
overlapping if V&K�L (and hence V&L�K) holds. It is easy to see that
for a family K$ of pairwise overlapping cuts �K # K$ (bK&1)�m(G). Let
b*(G)=max[�K # K$ (bK&1): K$ is a family of pairwise overlapping cuts
of G]. Clearly, overlapping cuts exist only if |V|�2k. Thus b*(G)=
b(G)&1 if G has at least 2k+1 vertices.

Now suppose that |V|�2k, t(G)�k+3 and there exists no saturating
edge for G. Let D1 , ..., Dt denote the minimal tight sets in G and S1 , ..., St

denote the corresponding (tight) sets. Let K=[K1 , ..., Ks] (s�t) denote
the different members of [1(S1), ..., 1(St)]. By Theorem 1.3b the family K

consists of pairwise overlapping cuts (and s�2). Hence b*(G)�
�s

i=1 (bKi
&1). Observe that if Di �C for some minimal tight set Di and

some component C of G&1(Sj), then C=Si must hold by Theorem 1.3b.
Thus for each Kj # K every component of G&Kj equals Si for some i and
includes precisely one minimal tight set Di .

Let the augmenting set F=�s
i=1 Fi be defined as follows. For every

Ki # K let Fi contain bKi
&1 edges which make V&Ki connected such that
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every vertex which is an end-vertex of some edge in Fi is contained by some
minimal tight set. Such sets clearly exist and |F |�b*(G). The next lemma
shows that F is an (optimal) augmenting set.

Lemma 2.2. G$=(V, E _ F ) is (k+1)-connected.

Proof. Suppose that |1(X)|=k and X*=V&X&1(X){< for some
X/V in G$. Clearly 1(X)=1(X*). Now t(G)�k+3 and |1(X)|=k,
hence there exist (at least three) sets among the pairwise disjoint sets Si

(1�i�t(G)) which are included in X _ X*. Since there are no edges
between X and X* and each Si induces a connected subgraph, we may
assume (possibly by changing the role of X and X*) that Sj �X holds for
some 1� j�t(G). Let D=[Dl : Dl �X* is a minimal tight set in G].
Focus on some Dl # D. By Theorem 1.3b either 1(Sj)=1(Sl) or Dl�
Sl�1(Sj) holds. Since there are no neighbours of Sj in X*, the latter case
is impossible. Thus 1(Sj)=1(Sl). This shows that there are no neighbours
of Sl in X*, thus Sl&X&1(X) is a component of G&1(X). This implies
that every vertex of 1(X)&Sl is a neighbour of Sl . Hence for any minimal
tight set Dp for which Dp & 1(X){< (and hence p{l and Dp & Sl=<)
we obtain 1(Sl) & Sp {< and hence 1(Sl){1(Sp) holds.

Wlog let Kj=1(Sj). The above facts imply that Kj=1(Sr) holds for any
Dr # D. Let D=�Di # D Di . By definition, D�X*. By the choice of Fj there
exists an edge e # Fj connecting D to some Du , where Du & D=< and
1(Su)=Kj . We saw that Du & 1(X){< would imply for an arbitrary
Dl # D that 1(Su){1(Sl)=Kj . Du �X* is also impossible by the defini-
tion of D. Thus e connects some vertex of D�X* to a vertex of X, a
contradiction. K

Theorem 2.3. For any k-connected (k�3) graph G=(V, E) the
inequality m(G)�max[M*(G), b*(G)]+W(k&1)�2X holds.

Proof. First suppose that |V|�2k+1. In this case we prove the
inequality by induction on t(G). First observe that if t(G)�k+2 then we
have {t(G)�k+2 by Lemma 1.5. Thus by Lemmas 1.4 and 2.1 we get
m(G)&M*(G)�m(G)&Wt*(G)�2X�{t(G)&1&W{t(G)�2X�W(k&1)�2X ,
as required.

Let us assume now that t(G)�k+3. (In this case t(G)=t*(G) by
Lemma 1.5.) If there exists no saturating edge for G then we are done, since
by Theorem 1.3b we obtain t(G)=b(G), hence m(G)=M(G)=M*(G)
holds by Theorem 1.2.

Now consider the case where there exists a saturating edge e for G. If
b(G)&1�Wt(G)�2X&1 then Wt(G)�2X&1=Wt(G+e)�2X=M*(G+e) and
m(G+e)�m(G)&1 hold, thus the addition of e does not decrease the
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value m&M*. Since the required inequality holds for G+e by the induc-
tion hypothesis, we are done. If b(G)&1�Wt(G)�2X , we distinguish two
subcases. In the first subcase b(G)�k+1, where m(G)=M(G)=M*(G)
holds by Theorem 1.2, and the inequality follows.

In the second subcase b(G)&1�Wt(G)�2X and b(G)�k. Now let G$ be
a maximal supergraph of G for which k+1�t(G$)�t(G)&2 and
2( |E(G$)|&|E(G)| )=t(G)&t(G$) holds. There exists a saturating edge for
G, therefore such a G$ exists. If we can reach t�k+2 by adding saturating
edges, that is, t(G$)�k+2, then we have m(G)&M*(G)�m(G)&
Wt*(G)�2X�m(G$)&Wt*(G$)�2X�W(k&1)�2X by the induction hypothesis
(and using the fact that the addition of a saturating edge does not decrease
m(G)&Wt(G)�2X). If t(G$)�k+3 then (since there is no saturating edge
for G$) by Theorem 1.3b we obtain that k+3�t(G$)=b(G$)�b(G), con-
tradicting the assumption b(G)�k. This proves the theorem in the case
|V|�2k+1.

Let us assume now that |V|�2k. If t(G)�k+2, we get m(G)&
M*(G)�W(k&1)�2X as before. Otherwise let us saturate G as long as
possible, that is, let G$ be a maximal supergraph of G for which k+1�t(G$)
and 2( |E(G$)|&|E(G)| )=t(G)&t(G$) holds. If t(G$)�k+2, we obtain
m(G)&M*(G)�m(G)&Wt*(G)�2X�m(G$)&Wt*(G$)�2X�W(k&1)�2X using
the same argument as above. If t(G$)�k+3, Theorem 1.3b and Lemma 2.2
imply that m(G$)=b*(G$). Since t(G$)�k+3, the minimal tight sets are
pairwise disjoint in G$ (and in G), thus the saturating edges in
E(G$)&E(G) are pairwise independent. This gives |E(G$)|&|E(G)|�
w(k&3)�2x in our case of |V|�2k. Also observe that b*(G)�b*(G$), since
overlapping cuts of G$ correspond to overlapping cuts in G. Hence m(G)&
b*(G) � m(G$) + w(k&3)�2x & b*(G) � b*(G$) + w(k&3)�2x & b*(G$)
� W(k&1)�2X, as required. K

Following the steps of the previous proof the algorithm given in [4, Sec-
tion 4] can be modified easily in such a way that the size of the solution
it produces is at most m(G)+W(k&1)�2X . To obtain the better perfor-
mance guarantee we need the following changes (which do not effect the
running time O(n5)). After Phase 1 (and in Phase 3) in the case of
k+3�t(G)�2k&1 we still need to search for and add saturating edges
until it is possible. (But the parameter b(G) need not be computed.) When
we reach t(G$)�k+2, we may choose an arbitrary minimal tight-set cover
and find a solution as in Phase 5. If t(G$)�k+3 for the graph G$ which
contains no further saturating edges then either we can identify a cut in G$
with bK (G)�bK (G$)�k+1 and hence bK (G)&1�Wt(G)�2X , in which
case an optimal augmentation can be found like in Phase 4, or |V|�2k
and the augmenting set F as defined before Lemma 2.2 makes G$ optimally
(k+1)-connected. To find F it is enough to compute the minimal tight sets
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Di and the corresponding sets Si in G$, which can be done by max-flow
computations. The correctness and the preformance guarantee of this
modified algorithm follows from the proof of Theorem 2.3 and Lemmas 2.1
and 2.2.

Note, that t*(G) need not be computed during the algorithm��although
it can be computed in polynomial time by max-flow calculations.

3. REMARKS

Observe the slight difference between the gap guaranteed by Theorem 2.3
and the gap of the example graph H r

k . The sharp value seems to be
w(k&1)�2x. This would follow if Theorem 1.3 and 1.3b were valid for
t(G)=k+2, as well. This looks true for k�2.

The graphs H r
k can be modified to show that the algorithm may add

W(k&1)�2X surplus edges over the optimum in some cases. For this let r be
sufficiently large and attach 2k&1 new vertices of degree k to the copy of
Kr in such a way that their sets of neighbours are pairwise different. For
this graph H$ we have m(H$)=2k&1 since the addition of a set of 2k&1
independent edges, pairing the new vertices and the ``old'' vertices of degree
k makes H$(k+1)-connected. On the other hand, the algorithm may start
by adding k&1 saturating edges pairing 2k&2 new vertices and then adding
saturating edges connecting old vertices of degree k. In this case the solution
it produces may contain 2k&1+W(k&1)�2X edges.

Recently Cheriyan and Thurimella [1] gave a more efficient algorithm
with running time O(min(k, n1�2) k2n2+(log n) kn2) for computing an
augmentation of size at most m(G)+k&2. Using their method, the smaller
gap described here can also be achieved in a more efficient way.

Another idea is to define an even stronger lower bound as follows.
Replace every edge of G by two oppositely directed edges and let m(Gd) be
the minimum number of new directed edges which make the new graph Gd

(k+1)-connected. Clearly, Wm(Gd)�2X is a lower bound for m(G).
However, our previous example graph H r

k shows that we cannot achieve a
better gap using this bound instead of Wt*(G)�2X. (The parameter m(Gd)
can be computed in polynomial time, see [3]. It is easy to see, as in
Lemma 2.1, that m(Gd)�t*(G).)

Finally note that for all the graphs we have showing that the gap in
Theorem 2.3 is almost sharp (like in the case of H r

k) the size of an optimal
augmentation is small, that is, it can be bounded by a function of k. This
suggest the following conjecture: there exists a function f (k) such that for
a k-connected graph G with m(G)� f (k) the equality m(G)=M(G)
holds.
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