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1. INTRODUCTION 

The purpose of this paper is to develop a chapter in the theory of the 
small vibrations of mechanical systems which is the consequence of some 
recent work in matrix theory. The results which we shall obtain are based 
primarily upon papers of Parter [I] and Maybee [24]. And, while we shall 
expound our theory in the context of mechanics, the methods and results 
are applicable in other areas as well, in particular in electrical vibrations. 

We shall be interested in the vibrations of a mechanical system for which 
the kinetic energy T has the form 

T = 4 i m&2, mj > 0, 1 <j < n, 
I=1 

(1.1) 

and the potential energy V has the form 

v = i sijqiqj . 

ij=l 
(1.2) 

Here the variables q1 ,..., qn are the generalized coordinates of the system, 
and the matrix S = [sij]; has properties which we will now specify. To this 
end we require some preliminary ideas. 

(i) If A = [a& satisfies the condition aij # 0 iff aji # 0, we say it is 
combinatorially symmetric. 

(ii) If A is a combinatorially symmetric matrix, the graph of A, G(A) 
consists of n vertices v, ,..., vfi with an edge joining vi and vi , i # j if aii # 0. 
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Observe that in this definition, we have not made use of the elements aii , 
1 < i < n; hence, G(A) is loop free. 

(iii) A graph T is called a tree if it is connected and has no circuits. 

DEFINITION 1. The square matrix A = [a& is said to be of class Q2+ 
if G(A) is a tree and if 

Ujj > 0, 1 <j<% 
uijaji > 0, for i #j. 

(1.3) 

DEFINITION 2. A mechanical system will be called a vibration tree if 
the kinetic and potential energies are given by (I. 1) and (1.2) where the matrix 
S is symmetric and positive definite and G(S) is a tree. 

We note that the hypotheses of symmetry and positive definiteness guaran- 
tee that conditions (1.3) are satisfied for S, hence S E Q,+. 

In addition to the matrix S, we have two other matrices associated with a 
vibration tree; first, the matrix M = diag[m, ,..., m,], which is a diagonal 
matrix with positive diagonal entries, and also 

u = W’S, (1.4) 

which we shall call the matrix of the system. Let us derive the properties 
of u. 

In the first place, U E Qa+ since S E Qa+ and multiplication of the ith row 
of S by the positive number l/mi does not affect the membership of S in Qs+. 
Also, u is not symmetric, but it is a wellknown fact that a positive definite 
nonsingular matrix L exists such that u = L-l u L is symmetric. In the 
present case, L can be chosen to be a positive diagonal matrix (see [2]). In 
fact, it is easy to see that if 

u = [7& and i7 = [uij];, 

then for i fj 

uij = sgn v,~(v,~v#/~, 

where 

1 

1 if Vij > 0, 
sgnvij = -1 if Vij < 0, 

0 if Vij = 0. 

Now consider the free vibrations of a vibration tree. Using the Lagrange 
equations of motion, we have 

Mq + Sq = 0, 
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where q = (ql ,..., qJ. We can also write this system in the form 

<+ uq =o. (1.5) 

Thus, we can characterize a vibration tree as a system of the form (1.5) where 
the matrix U E Qpi. 

2. EXAMPLES OF VIBRATION TREES 

EXAMPLE 1. A mechanical system is called a Sturm system if the kinetic 
energy is given by (1.1) and the potential energy has the form 

V = i aiqi2 - 2 nfl bdqiqi+l , ai > 0, 1 ,< i < n, 
i=l i=l 

b,>O, 1 <i<n-I. (2.1) 

Charles Sturm was the first to investigate the oscillations of such systems 
in detail: His work was discovered in manuscripts found after his death (see 
[5]). Moreover, his remarkable theorem of algebra was also discovered in the 
course of these investigations. 

The matrix S for the Sturm system is a Jacobi or tridiagonal matrix. That is, 
wehavesii=Oif(i--jI>I,sii=ai,l~i~n,andsiitl=Si+li=-bi, 
1 ,(i<n-l.Th e graph of S is shown in Fig. 1. For convenience, we shall 
call such a graph a Sturm graph. 

1 2 3 n-l 
0 - - -------- --e--i 

FIG. 1. G(S) for a Sturm system. 

Among the many physical problems which lead to Sturm systems, we 
mention only one, viz. the transverse oscillations of a weightless ideally 
flexible thread with n beads. This problem has an honorable place in the 
history of mechanics, having been studied by d’Alembert, Daniel Bernoulli, 
Euler, and Lagrange. With appropriate hypotheses on the motion, the prob- 
lem has the form 

T = 3 $ m<$i2, - Yi)*, Yo = Yn+1 = 09 (2.2) 
2=1 

where yj is the displacement of the jth bead, mi is the mass of the jth bead, 
Zj the segment of the thread between the (j - 1)th and jth beads, and (T 
is the (constant) tension in the thread. The formulas (2.2) are correct if both 
ends of the thread are stationary. 
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EXAMPLE 2. Consider the system of springs and masses illustrated in 
Fig. 2. By use of a free body diagram and some simple manipulation, the 
equations for the free vibrations of this system can be put into the form (1.5). 
Let us set 

FIGURE 2. 

Then, corresponding to the matrix U in (1.5), we have the symmetric matrix 

il 
b, b, ... b,-, 
y1 0 ... 0 

i? = b, 0 yz ‘.. 0 I 1 . (2.3) 
. . . . . . . . . . . . . . . . . . . 
b,-, 0 0 Yn-1 

A matrix having the form (2.3) is usually called a bordered diagonal matrix, 
and, for this reason, we shall refer to any mechanical system with such a 
matrix as a bordered diagonal vibration tree. The graph of u is shown in 
Fig. 3. 

/‘I 
/Ah 

I 
2 3 n-l n 

FIG. 3. Graph of bordered diagonal matrix. 
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As one might conjecture, the fundamental properties of the bordered 
diagonal vibration tree are quite different from those of the Sturm system. 

3. FUNDAMENTAL SPECTRAL PROPERTIES OF VIBRATION TREES 

We have seen in the Introduction that the natural frequencies and modes 
of vibration of a vibration tree can be obtained from the study of the sym- 
metric matrix U. The matrix D is also positive definite since S is positive 
definite, hence U = M-IS is also, and, thus, so is u = D-IUD by two 
applications of the Binet-Cauchy formula. It follows that if h, ,..., h, are the 
eigenvalues of the matrix u, we can assume that 

0 < A1 < A, < ... < A,. (3.1) 

Our purpose in this section is to refine the sequence of inequalities (3.1) and 
to deduce some facts concerning certain of the eigenvectors of a vibration 
tree. To achieve this, we must first introduce an additional concept. 

Let us denote by C,, the closed qualitative cone in 92” containing in its 
interior the vector x = (1, l,..., l), i.e., the vector with n components all 
equal to 1, and by C,, the cone containing --x. (Qualitative cones in .GP are 
discussed in [4],) In general, we denote by C,cj the various closed qualitative 
cones in 92’” containing in their interior at least one vector having exactly k 
changes of sign in its sequence of components. Thus, for example, we might 
denote by C,, the cone containing x = (- 1, l,..., 1) (each component except 
the first equal to l), by C,, the cone containing s = (-1, -1, 1, I,..., I), etc. 
Each of these closed qualitative cones is a closed hyperoctant in W”, and each 
closed hyperoctant is found somewhere in the sequence Ckj . Clearly, 
h<?Z-I. 

Now we formulate 

THEOREM 1. Let u be the matrix of a vibration tree. Then: 

(i) g has a unique positive eigenvalue A such that for every other eigen- 
value h of 157, X > X > 0. 

(ii) There exists a qualitative cone C,, such that an eigenvector y of 0 
belonging to x belongs to the interior of C,, . 

o ot 
c .(iiiJ N h 

er eigenvector of i7 not linearly dependent upon y belongs to 

m 

Proof. We have already observed that the eigenvalues of u are positive; 
hence, the right-hand half of the inequality in (i) is true. The remainder of 
Theorem 1 results from the following construction. We shall first construct 
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a vector x = (x1 ,..., xn) with all components different from zero and having 
the property that the scalar product of the jth row vector & = (ujl ,..., ujn) 
of n with x has the same sign as xj , i.e., 

( 1 ‘&pk xj > 0, 1 <j < n. (3.2) 

To this end, set xi = 1 and suppose uri, ,..., uli, , I < ii < ia < ... < & < n 
are the nonzero elements in the first row of 0 which are not on the principal 
diagonal of 8. We set x$+~ = 1 if uii, > 0 and xlc+r = - 1 if ui!, < 0. Next, 
let Uzi, ,.-, U5. ,2 < i1 -=C i, ... < i, < rz be the nonzero elements m the second 
row of U which are above the principal diagonal of 0. We set x~+~+~ = 1 if 
uzi, > 0 and x~+~+~ = - 1 if uei, < 0. This process is continued until all of 
the nonzero elements above the principal diagonal of a are used up. Since 
G(u) is a tree, there are exactly n - 1 of these nonzero elements, and the 
vector x will be completely and uniquely determined by this construction. 
It remains to establish (3.2). By construction, ujkxkxj >, 0 for k > j, and it 
is obvious that uijxja > 0. Finally, for k <j, ujkxlcxj = ukjxLxj > 0, again 
by construction 

Now the vector x which we have constructed belongs to a unique qualitative 
cone C,, , and the inequality (3.2) implies that i7 maps C,, into itself. More- 
over, 17 is irreducible so that no coordinate subspace of 9% is left invariant 
by 8, and, hence, i? is irreducible relative to the cone CD,. The entire 
theorem now follows from the generalized Perron-Frobenius theorem of 
Birchoff and Vandergraft and its corollaries (see [6]). 

We remark that a different and perhaps simpler proof of most of Theorem 1 
was given in [2]. But the present formulation of the theorem is more precise, 
and the construction of the vector x is of particular interest in mechanics 
since the eigenvector y belonging to x will have the same sign pattern as X. 
We further remark that the cone C,, is determined uniquely up to compli- 
ments by u. Two cones are complimentary if the elements of one are the 
negatives of the elements of the other. 

By following through the construction of the theorem, we obtain the 
following sign patterns for an eigenvector belonging to the largest eigenvalue 
of a when u is a Jacobi matrix, the matrix of a Sturm system, and when 0 
is a bordered diagonal matrix. 

1. Suppose i? is a Jacobi matrix with each element uii+i < 0, 
1 <i<n- 1. Then, 

wy = (+, -, +, -, +,..., (-1)“+1), 

where sgny is the vector defined in [4]. In this case, u is the matrix of a 
Sturm system. 
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2. Suppose c is a Jacobi matrix with each element uii+r > 0, 
1 <i.<n- I. Then, 

sgny = (t, + ,..., +)- 

3. Suppose C; is a bordered diagonal matrix with uIi < 0, 2 < i < n. 
Then, 

sgny = (+, -, - ,..., -). 

4. Suppose i? is a bordered diagonal matrix with sgn zcli = (-l)‘“, 
2 < i < n. Then, 

sgny = (+, +, -, + ,..., (-1)“). 

As a consequence of Theorem 1, the sequence of inequalities (3.1) is 
sharpened so as to have the form 

0 < A1 < A, < “. < A,-, < A,. (3.1’) 

Our next results will, among other things, sharpen this sequence still further. 
For this purpose, we shall examine the matrix u-l. 

We first require the following result from [3]. 

LEMMA 1. Let i?;Qz+. Then every cycle of 07-l is positive, and every 
element of 0-l is dz$ferent from zero. 

We shall point out some interesting facts related to Lemma 1 below, but, 
for the moment, it furnishes a primary tool for the proof of 

THEOREM 2. Let U be the matrix of a vibration tree. Then: 

(i’) c-l has a unique positive eigenvalue fi such that for every other 
eigenvalue A of D-l, 1 > A > 0. 

(ii‘) There exists a qualitative cone Cj,a such that an eigenvector 5 of 
iF1 belonging to i belongs to the interior of Cfiea . 

(iii’) No other eigenvector of 0-l belongs to C’S,~ . 

Proof. By Lemma 1, 0-r is irreducible and a Morishima matrix.l Hence, 
there exists a permutation matrix P such that 

1 Matrices having all nonzero cycles positive have been extensively studied and 
are called Morishima matrices (see [4]). Professor Michio Morishima of the London 
School of Economics is a distinguished mathematical economist. His original work 
on such matrices appeared in 1952 [7]. 
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where B,, and B,, are square positive matrices, and --B,, and --B,, are (in 
general) rectangular positive matrices. It follows that B and, hence, also 
t7-l itself leaves invariant a qualitative cone Csa in &7? and is irreducible 
with respect to this cone. The remaining results of the theorem follow again 
from the generalized Perron-Frobenius theorem. 

Several observations may be made. In the first place, observe that the 
sequence (3.1) is now refined to 

0 < x, < h, < ..* < A,-, < A, ) (3.1”) 

since the largest eigenvalue of 0-l is the reciprocal of the smallest eigenvalue 
of i7. 

Observe also that we have not given any rule in the proof of Theorem 2 
for computing the sign pattern of the eigenvector yr corresponding to h, . 
We shall correct this omission shortly. 

Finally, observe that the matrix 0-l is of considerable interest in mechanics. 
It is called the flexibility matrix or influence matrix of the system. 

4. THE EIGENVECTOR BELONGING TO THE SMALLEST EIGENVALUE OF 
A VIBRATION TREE 

We shall make use of the cofactor formula first published in [3] (see also [4]) 
in order to find the sign pattern of the eigenvector belonging to the smallest 
eigenvalue of a. To save verbiage, let us denote this eigenvector by yr to 
conform with the notation of (3.1”). 

Let u,s be an element of u, 01 # /3, and consider the cofactor iYEa . According 
to the above-mentioned formula, U,, can be computed if we know the chains 
from b to c1 in u and appropriate principal minors of 8. Since G(fi) is a tree, 
there is exactly one nonzero chain in 0 from /3 to 01. Also because of positive 
definiteness, the principal minors of u are positive, and the sign of U,, 
depends only upon the nonzero chain a(/I + N). Such a chain enters the 
cofactor formula with sign (- l)r, where r is the length of the chain. Finally, 
0-l is a Morishima matrix, hence the sign patterns of any two rows are 
either identical or the negative of one another. Thus, yi has the sign pattern 
of, say, the first row of u-l. All of these facts enable us to state the following 
result. 

THEOREM 3. Let g be the matrix of a vibration tree, let A, be the smallest 
eigenvalue of g, and let y1 be a corresponding eigenvector. Then the first compo- 
nent of y1 is positive, and the jth component for 1 < j < n has sign (- 1)~ 
sign C( j + l), where Q( j + 1) is the (unique) nonzero chain in u from j to 1 
and p is the length of fi( j -+ 1). 
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Let us illustrate Theorem 3 with an example. Suppose D has the graph 
shown in Fig. 4 with the signs of the appropriate elements not on the principal 
diagonal as indicated. (For example, the + sign on the edge joining vertices 1 
and 3 indicates that ura and us1 are positive, etc.). Then yr satisfies 

sgny, = (1, -1, -1, --I, 1, 1, -1). 

On the other hand, the sign pattern of yT , the eigenvector belonging to the 
largest eigenvalue A, of u, is given by sgny, = (I, 1, -1, -1, 1, --I, 1). 
Thus we have p _- 4, $ = 3 for the present example. 

1 

v 

2 
+ 

- 3 

4 
-I- 

A 

s 
f 

6 7 

FIGURE 4. 

5. MORE ON THE EXAMPLES 

The two examples of Section 2 represent, in a sense which will become 
clear presently, the two extreme possibilities for the spectrum of a vibration 
tree. We can, indeed, use them to show that the results obtained in Sections 3 
and 4 cannot be imporved upon in general. 

The monograph of Gantmacher and Krein [8] gives a thorough account 
of the theory of Sturm systems. We summarize the principal results below 
in Theorem 4 using the language of qualitative cones. 

THEOREM 4. Let a be the matrix of a Sturm system. Then the eigenvalues 
of B satisfy 

O<A,<A,<...<A,, (5.1) 

and there exists a sequence of qualitative cones COj, , C 13? 1.. 

an eigenvector ys of D belonging to A, belongs to the inteuor 
., Cn-l,j, such that 
of the cone CD-, i ’ P* 

We remark that the sequence of cones CD-l,jD , I < p < n, is determined 
uniquely up to complimentary cones by 0. 
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Now it is obvious that the sequence of inequalities (5.1) is much stronger 
than (3.1’9, but the example of the bordered diagonal vibration tree shows 
that (3.1”) is the strongest sequence of inequalities obtainable in the general 
case. 

Consider, indeed, the matrix u given in (2.3). Setting D(h) = determinant 
(57 - AZ), we have 

n-1 n-1 n-1 

D(A) = (a - h) n (ri - h) - C bj2 fT (ri - A). (5.2) 
i=l j=l i=l 

ii-i 

Suppose there are m distinct values among the yi which we may take to be 
is1 7 P2 T...> t% in increasing order and these occur with multiplicities 
% ) fi2 ,e.*, %z , respectively. We have, or course, 

n, + n2 + ... + n, = n - 1. 

(We could have m = n - 1 so that there are no repetitions among the yi .) 
From the righthand side of (5.2) we can factor out n:, (pi - h)“l-l, hence 
pi is an eigenvalue of u of multiplicity n, - 1. Now divide D(X) by 
HI:, (pi - X)nf, to yield 

where 

and ci2 is the sum of the ni values of bja associated with pi , hence cis > 0. 
Clearly, the eigenvalues of u not found among the /Ii are going to satisfy 

d(h) = a. (5.3) 

Let us plot d(X) against A. Obviously, d(h) is asymptotic to each of the vertical 
lines X = pi , 1 < i < m. Moreover, we have 

hence d is an increasing function of X wherever it is defined. Observe that 
d(0) > 0, d+ -co as A+ --co as A + + co. Hence, the graph is as shown 
in Fig. 5. We see that the m + 1 roots of d(h) = OL, denoted by pI ,..., p,+r , 
satisfy the relations 

CL1 < 81 1 Pi-l < Pi < Pi > 2<i,<m, t% < Pm+1 . (5.4) 

409/45/3-15 
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FIGURE 5. 

It follows that the n eiegenvalues of U are divided into two groups as follows 

I. There are n - (m + 1) eigenvalues consisting of n+ - 1 values 
equal to pi, 1 ,< i < m. 

II. There are m + 1 eigenvalues pi , 1 <j < m + 1, which are simple 
and satisfy (5.4). 

The first group can be empty (the case m = n - l), but there are always 
at least two elements in the second group. In the case m = 1 where all yi 
are equal to pi , there are two elements in group II, and the sequence (3.1”) 
has the form 

0 < A, < AZ = A, = ... = A,_, < A,, 

justifying our claim that the sequence (3.1”) cannot be sharpened in general. 
Theorem 4 also contains a very strong statement about the eigenvectors of a 

Sturm system. For comparison, let us examine the eigenvectors of the 
bordered diagonal vibration tree. 

It is convenient to suppose that the rows and columns of u are so arranged 
that 

Yj = Pi forO<j-nn,--..--ni~l~ni. 

We must consider the equation (D - AZ) y = 0, where y = (yi ,..., y,J and A 
is an eigenvalue of u. This system is 

n-1 

(a - x)Y1 + C bjYj+l E O, (5.5) 
+I 

by1 + h - 4Yi+1 = 0, 2<j<n-I. (5.6) 

Suppose first h = pi. Then zi equations of the form (5.6) reduce to bjyl = 0, 
hence y1 = 0. The remaining n - 1 - ni equations of the form (5.6) reduce 
to (rj - /3Jyj+i = 0, hence the corresponding components of the eigen- 
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vector are all zero. Finally, the n, components which need not be zero must 
satisfy (5.5) which becomes 

because yr = 0. There are ni nonzero terms on the lefthand side of (5.5), 
and we can clearly obtain lzi - 1 linearly independent solutions, hence n, - 1 
linearly independent eigenvectors. Moreover, it is easy to see that these 
eigenvectors can be so chosen as to have exactly two nonzero components. 

It remains to consider an eigenvector belonging to pk , 1 < K < m + 1. 
For such an eigenvector we have the n - 1 equations 

bj 
%+1 = x _ yi Ul, l<j<n-1, 

since h - yj # 0, 1 < j < n - 1. Evidently all of these eigenvectors have 
the property that each component is nonzero. 

Thus we can conclude that for the bordered diagonal vibration three, the 
presence of multiple eigenvalues implies the existence of eigenvectors with 
some zero components. 

6. SPECTRAL MULTIPLICITY 

The example of the bordered diagonal vibration tree represents more 
typically the behavior of vibration trees than does the classical example of the 
Sturm system. (Our discussion of this example is borrowed, in part, from 
that of Wilkinson [9], although this author does not examine the eigen- 
vectors.) Indeed, we shall see that every vibration tree which is not a Sturm 
system can have multiple eigenvalues. 

It seems to be commonly supposed, if one may judge by statements 
available in the literature, that multiple eigenvalues can be ignored in vibra- 
tion problems. This supposition amazes the present authors. Not only can 
multiple eigenvalues occur in nearly all vibration trees-which represent the 
simplest large scale systems-but nearly equal eigenvalues can occur even in 
Sturm systems. The use of the modern digital computer has taught us that 
nearby eigenvalues are extremely difficult to distinguish from actual multiple 
eigenvalues in the real world of computation. In any system in which multiple 
eigenvalues can occur, nearby eigenvalues can obviously also occur. 

In order to study the possible spectral multiplicities of vibration trees, we 
require some determinant formulas and some additional graph theoretic 
ideas. The first person to point out the close connection between the graph 
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G(A) and the spectral properties of A when G(A) is a tree was Parter [l]. 
Of course, the use of topological methods to derive determinant formulas for 
electrical networks goes back to Kirchhoff and J. C. Maxwell. 

First a few graph theoretic concepts. If G is a graph and p a vertex of G, 
we remind the reader that the degree of p is equal to the number of edges of G 
incident at p. An edge of a graph G is called a bridge (of G) if its removal 
causes G to become disconnected. If G is a tree with n vertices, it has exactly 
n - 1 edges, and every edge is a bridge. Following Parter, we shall let 
G(p, 4) denote the connected subtree of G containing p obtained by removing 
the edge (p, 4). If G is the graph of the matrix a, we denote by D(p, q) the 
determinant of the (principal) submatrix o(p, Q) corresponding to the subtree 
G(p, q). We let D(p, q, h) be the characteristic polynomial of this submatrix. 
We set D(h) = det(8 - hl). Finally, we denote by D’(p, 4, h) the determinant 
obtained from D(p, 9, h) by deleting the row and column containing uDB - h. 

Our subsequent results are based upon two determinant formulas. 

I. The edge formula: 

w = WP, cl? 4 47, P, 4 - 4*D’(P, 994 qq, p, 4. (6.1) 

The edge formula holds for any edge (p, s} in G(G) [we set D’(p, q, A) = 1 if 

D(P, a4 = aDp - A]. It is the generalization to an arbitrary tree of a cor- 
responding formula for Sturm systems upon which Sturm based his investiga- 
tions. There is a second generalization which Parter called the neighbor 
formula. 

II. The neighbor formula: 

w = (%* - 4 fi D(P~ ,q, 4 - ; u;~,D’(P~ 9 q, 4 fi D(P, ,q, 3, (6.2) 
is1 j=l ?I%=1 

m#j 

where p, ,..., p, are the neighbors of q in G. The neighbor formula holds for 
any vertex q in G(u). (Observe the close similarity of fromula (6.2) to (5.2) 
which is the neighbor formula applied to the vertex 1 of degree 71 - 1 in that 
example.) The integer k is the degree of the vertex q. 

Observe that if q is an endpoint of G(u), i.e., a vertex of degree 1, both 
formulas reduce to 

W’) = @w - 4 D(P, qt A) - &D’(P, 4,X>. (6.3) 

Using formulas (6.1) and (6.2) an d an ingenious graph theoretic argument, 
Parter proved the following theorem which we paraphrase as it applies to 
vibration trees. 
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THEOREM 5. Let D be the matrix of a vibration tree. Then a has an e&n- 
value h of multiplicity greater than 1 isf G(B) contains a point q of degree > 3 
such that h is an eigenvalue of D(p, , q, A) for at least three neighbors pj , 
1 <j<3,ofq. 

Some remarks are in order. 
Among vibration trees, Sturm systems are characterized by the fact that G( 8) 

has no vertex of degree >2. All other vibration trees have at least one vertex 
of degree 23. Consequently, any vibration tree which is not a Sturm system 
will have a multiple eigenvalue if the physical parameters are properly chosen. 

Let us give a simple mechanical interpretation of the theorem. Suppose, to 
be specific, G(u) contains a point p of order 3 with neighbors p, , p, , p, . 
Consider the submatrix a((~~ , p). It is the matrix of a vibration tree obtained 
by imposing constraints upon the original system. The mechanical interpreta- 
tion of the theorem is now clear. A vibration tree has a multiple eigenvalue h 
iff there is a point at which at least three subsystems are joined together each 
of which has h as an eigenvalue. 

Next, we remark that the if portion of Theorem 5 is an immediate conse- 
quence of formula (6.2). Indeed, if the point q in the formula has 3 or more 
neighbors such that X, is a zero of D(p, q, h), then each term on the righthand 
side has at least a double zero at ha. Moreover, the following lemma is 
immediate. 

LEMMA 2. Let 0 be the matrix of a vibration tree. Then 0 has an eigenvalue 
A, of multiplicity k if G(u) contains a point q of degree 3 k + 1 such that for 
k + 1 neighbors p, ,..., p,,, of q, A,, is an eigenvalue of D(p, , q, A). 

We shall show that the condition of the lemma is not necessary. In fact, 
we have 

LEMMA 3. Given any positive integer p > 2, there exists a vibration tree 
having an eiegenvalue of multiplicity p with matrix D such that G(U) has no 
vertex of degree >3. 

Proof. The proof is by induction onp. Forp = 2, consider the tree of Fig. 6. 1 
A 2 

4 3 
FIG. 6. G(8) for p = 2. 
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The corresponding matrix is 

a bordered diagonal matrix with a double eigenvalue if a, = us = a4 . Thus, 
the lemma is true for p = 2. Suppose now it is true for the value p - 1, and 
let G,-, be the corresponding graph. Let 9 be a vertex of degree 1 of GDP1 
and construct G, as shown in Fig. 7. We apply formula (6.2) at the point 4. 
Denoting by D,-,(h) the determinant of the matrix of U corresponding to 

G,-13 we have for the matrix corresponding to the graph in Fig. 7. 

G 
p-1 

4 

A-c r 

S t 

FIG. 7. G(o) for p from G,,-, , 

D(A) = (z& - A) 0,-l(X) qs, r, A) qt, Y, h) - 24Q&(h) qs, T, h) qt, y, A) 

- &QJ-l(4 D(f, y, A> - @-I(4 m, r, A)- 

Since 

qs, Y, A) = u ,s,s - A, D(t, Y, A) = Utt - A, 

this reduces to 

- &~,-1(4 (%t - A) - aLO) (%s - A>- 

Suppose h, is a zero of D,-r(A) of order p - 1; then it is a zero of D,-,(h) of 
order p - 2. It follows that if u,~, = utt = X, , h, will be a zero of order p of 
D(h). This completes the inductive step, and the lemma is proved. 

We remark that the vibration tree we have constructed in the proof will 
have p - 1 vertices of degree 3 in its graph. As an illustration, Fig. 8 shows 
the graph we have constructed for an eigenvalue of multiplicity 5. If the 
elements on the principal diagonal of 0 corresponding to all vertices of 
degree <2 are all equal to X, , then h, will be an eigenvalue of multiplicity 5. 
It is easy to construct specific mechanical examples which have this form. 
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6 

FIGURE 8. 

Obviously there are now many special results on spectral multiplicities 
which can be obtained with the help of the ideas we have introduced. We 
shall not pursue this question further in the present paper. Instead, we will 
conclude with a brief discussion of eigenvectors belonging to multiple 
eigenvalues. 

Let us focus our attention upon a vertex Q of degree 23 of G(u). The 
matrix n may be written in the form 

I 

qP1 7 s> 0 -.. C&Q . . . . . . . . . . . . . . . 

0 GCP2 7 4) .‘. %,* . . . . . . . . . . . . . . . . . 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

CT= _ 
*WI iiDzn ... - unq ... %&cl 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a’ DkBQ *-- mc 7 !7)- 

when q has degree k. Here i~l)~,* is a row vector having exactly one nonzero 
element, and ~a,,* is the corresponding column vector. Suppose, to be 
specific, that the pointsp,, ~a , pa are neighbors of q such that D(p, , q, A,) = 0, 

1 <.j < 3; hence A, is a double eigenvalue of 0. Let x = (xi , .., xrl), 
y = (Yl ,...> Y7J1 .z = (q >..., zTQ) be the eigenvectors of U(p, , q), O(p, , q), 

and u(f(p, , q), respectively, belonging to A, . We may assume that xi , y1 , zi 
are the components associated with the points pi , p, , and pa. (This is 
equivalent to supposing that i$, = (u,+ , O,..., 0), etc.) 

If xryrz, # 0, choose any a and b such that 
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and any c and d such that 

cupI~xl i- dUp3,zZ1 = 0. 

Then the vectors 

and 

a1 = (ax1 ,..., ax,, , by, )..., by,, ) 0, 0 ,..., 0) 

v2 = (ml ,..., CX,.~ , 0 ,..., 0, dz, ,..., d.z13 , 0 ,..., 0) 

are linearly independent eigenvectors of 0 belonging to A,, . 
If x1 = 0, then 

1 = (x1 ,..*, XT1 , 0, 0 )...) 0) 

is an eigenvector of a belonging to A, . 
If xi = 0 and yrzr f 0, choose a and b such that 

and 

7l2 = (0 ,..., 0, uy, )...) uy,, , bz, ,...) bzr2 , 0 ,...) 0) 

is a second eigenvector. 

Finally, if xi = 0 and, say yi = 0, then 

7lz z= (0 ,...) 0, y1 ,..., yr, ) 0 ,..., 0) 

is a second eigenvector. 
Clearly, the above considerations can be extended to the general case, 

and we see that linearly independent eigenvectors belonging to multiple 
eigenvalues of u can always be found easily from eigenvectors of proper 
submatrices of a. These eigenvectors will also always have some components 
equal to zero. 

The result of this section clearly justify our remark in Section 5 that the 
bordered diagonal vibration tree is more representative of vibration trees 
in general than the Sturm system is. 
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