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Abstract

We say that a square complex matrixdeminantif it has an algebraically simple ei-
genvalue whose modulus is strictly greater than the modulus of any other eigenvalue; such
an eigenvalue and any associated eigenvector are also said to be dominant. We explore in-
equalities that are sufficient to ensure that a normal matrix is dominant and has a dominant
eigenvector with no zero entries. For a real symmetric matrix, these inequalities force the
entries of a dominant real eigenvector to have a prescribed sign pattern. In the cases of equality
in our inequalities, we find that exceptional extremal matrices must have a very special form.
© 2002 Elsevier Science Inc. All rights reserved.
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0. Introduction

A celebrated theorem of O. Perron says that a square matrix with positive entries
has a positive eigenvalue that is algebraically simple and equal to the spectral radius,
which is strictly greater than the modulus of any other eigenvalue. Moreover, this
positive eigenvalue has an associated eigenvector with positive entries.

We say that a square complex matrixd@minantf it has an algebraically simple
eigenvalue whose modulus is strictly greater than the modulus of any other eigen-
value; such an eigenvalue and any associated eigenvector are also said to be domi-
nant.
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It is easy to produce a rich variety of examples of complex or real normal ma-
trices with a positive dominant eigenvalue and an associated positive eigenvector.
Let u be any given positive unit vector, and 16t be anyr-by-n unitary matrix
whose last column is. LetAs, ..., A,—1 be any complex numbers such that| <
«o+ < |Ap—1| < 1, and letd = diag(r1, ..., Ay—1,1). ThenA = UAU* is a normal
matrix with the required properties. By choositg and A to be real, one may
obtain real symmetric (but not necessarily positive) matrices with the required
property.

We explore inequalities that are sufficient to ensure that a normal matrix is domi-
nant and has a dominant eigenvector with no zero entries. In the special case of areal
symmetric matrix, these inequalities force the entries of a dominant real eigenvector
to have a prescribed sign pattern. In the cases of equality in our inequalities, we find
that exceptional extremal matrices must have a very special form.

Inequalities of the type that we discuss have been investigated in [2], but the
methods employed there do not seem to extend to normal matrices that are not real
and symmetric. Moreover, there appear to be gaps in the proof of the main theorem
in [2], and it is not clear how they could be correctly filled.

1. Two basic lemmas

For a given positive integer> 2, consider a set of complex numbéks, ..., A
indexed so thati,| > --- > |A1] and normalized so thahi|? + - - - + [A, ]2 =
and a given convex combination= a1i1 + - - - + ayA,. If |y| = 1, then

nh
1,

1=y = lavha + -+ onra? < (of + - +0f) (1028 + - 4 Pl?)
=af+-tai<oartto =1

which implies thate, = |A,| = 1 and all other,; = 0. Thus, if|y| is close to 1,
then|A,| must be strictly larger than all the othgy;|'s. On the other hand, i,

is bounded away from 1, then solig|. The following two lemmas quantify these
simple observations.

Lemmal. Letn > 2 and let complex numbers, ..., A, and nonnegative real
numbersys, ..., a, be given. Suppose thet |2 + - - - + [A, |2 = a1+ -+, =1.
1. Suppose that,,| > --- > |r1].
@ If lathts + - - + anhn| > 1/4/2, then|n,| > 1/8/2 > [A,_1].
(0 If Joars + - +aphnl = 1/\/2 and [A,| = [An—1l, then [x,| = [Ap—1| =
l/\/é andii=---=x,_2=0.
2. Suppose thatq, ..., A, arerealandi, > --- > Aq.
@ If aghy+ -+ aphy > 1/3/2, then i, > 1/v/2> |»;| for all i =1,...,
n—1
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(b) Suppose thatwiii + - +anhy, = 1/4/2 and A, = |Ax| for somek €
{1,...,n—1}. Thenk € {1, n}. If n = 2, theniy = £1/+/2. If n > 3, then
eitherk =n — 1anda,_1 = 1/v/2ork = 1andi; = —1/+/2. In all cases
A = Oforall i ¢ {k, n}.

Proof. For part 1(a), convexity and the triangle inequality ensure that
1
[Anl = a1 |d] 4+ Fap Ay 2 loghs + - Faphy| > —. (1)

V2

Since

L= Pl Dl > a4 P > Pl 5,
it follows that |A,_1| < 1/+/2. The same manipulations with the first hypothesis
of 1(b) show thaix,| > 1/+/2 > |A,_1/, and the second implies that both of these
inequalities are equalities. The normalizatian|? + - - - + |A,|% = 1 then implies
thatiy =---=A1,_2=0.

Similar considerations establish the assertions in parf2.

We denote the Euclidean norm of a compilexectorv = [v;] by ||v]| = v v*v.

If v has no zero entries andiifis an index such thav,| < |v;| foralli =1, ..., n,
we define
4 2 2\2
k@) =y ol + (1012 = e l?) )

and observe that(cv) = |c|? « (v) for any scalae.

Lemma2. Letn > 2, letu =[u;] andv = [v;] be given complex n-vectorsup-
pose thatu is a unit vector and that no entry af is zero. Let complex numbers
A1, ..., Ay and nonnegative real numbers, . . ., o, —1 be given suppose that., | >
o= al, P4 P =1 and ag + -+ a1 + v*ul? = o] If at
least one entry of is zerq then

‘alkl 4+ o1t + |v*u|2An < «k(v).
Proof. Let j andk be indices such that; = 0 and|vi| < |v;| foralli =1,...,n.
Then
2 n 2 n 2 n n
lv*u|®= Zﬁiui = Zﬁiui < Z|Ui|2 Z|Mi|2
i=1 i#] i#] i#]

n n
2 2 2 2
= E lvil“ | < <E vi ) = [[vll* — fvkl

ij ik
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and

2
‘Ollkl 4t dp—tha1 + VRN,

2
Sarlral+- - tap-1|re-1l + |U*u| |An]
< 1okl -1l + (11012 = [0el?) 12,1

< <\/|vk|4+ (Iol1? |vk|2)2) <\/|An_1|2 + |xn|2>

< (\/|vk|4+ (vl - |vk|2)2) =rv). O

For anyn-vectorv with no zero entries and > 2, a computation reveals that
4 2\ 2
k(v v v
> ()2=/<<—)= k. +(1-
vl vl vl

* 1 1 1\2
g P+<_P) 3

1
— ifn=2

NZ)
>
5 1
—>— ifn>2
\/; V2

with equality ats if and only if |v;| = ||v| //n foralli =1,..., n.

Uk
[[vll

2. Dominant normal matrices

Our first theorem gives a sufficient condition for a normal matrix to be dominant.
The Frobenius norm of a complex matexis denoted byl A|| = (trA*A)Y/?; if A is
normal, then tA* A is equal to the sum of the squares of the moduli of the eigenvalues
of A.

Theorem 3. Suppose that > 2, let A be a giverm-byn complex normal matrix

with eigenvalue$i1, ..., A, }, and letv be a given complex-vector.
1. If x| > --- > A1) and
A 2
]v*Av[ - 1Al vl ’ )
V2
then|x,| > |All /~/2 > |x,—1|, SOA is dominant.
2. If AisHermitian A, > --- > A1, and
A 2
P AD Al [[vll (5)

7
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thenx, > ||A|l /v/2 > |A;| foralli =1, ..., n — 1, soA has a positive dominant
eigenvalue.

Proof. The hypotheses ensure thiaaindv are both nonzero, so we may assume that
Al = |lv|l = 1. LetA = U A U* be a spectral decomposition af with a unitary
U=1[u1...u,]andA =diag(r1,...,A,). Then

VAU = [0 ugPha 4 - 0 1P+ [0 U P (6)

expressea*Av as a convex combination of the eigenvaluesAofFor the first
assertion, we know thét* Av| > 1/4/2, so Lemma 1(1) ensures thag| > 1/4/2 >
|An—lL

The second assertion follows in the same way from Lemma 1(2).

If A is dominant, then the eigenspace associated with its dominant eigenvalue
is one-dimensional, so every dominant eigenvector has no zero entries if and only
if some dominant eigenvector has no zero entries. We are interested in conditions
that prevent an eigenvector associated with a dominant (or any algebraically simple)
eigenvaluex from having any zero entries. A necessary and sufficient condition is,
of course, that every set af— 1 columns ofA — Al has ranks — 1, but we are
interested in inequalities similar to those in (4), which do not involve the value of the
eigenvalue.

The 2-by-2 case is special and easy to analyzeuheandu, be orthonormal
eigenvectors of a 2-by-2 normal matrix that is not a scalar multiple of the identity.
Then bothuy andu; are uniquely determined up to a unit scalar factonJhas a
zero entry, them; has a zero in the other entry and the matrix is diagonal. Thus,
dominant or not, an eigenvector of a 2-by-2 normal non-scalar matrix has no zero
entry if and only if the matrix is not diagonal.

Theorem 4. Suppose: > 2, let A be a giverm-by+ complex normal matrixand

let v = [v;] be a given complex-vector with no zero entries.

1. If [v*Av| > k(v) || A]l, thenA is dominant and no entry of a dominant eigenvec-
tor of A is zero.

2. If A is real and symmetricif v is real, and if vTAv > «(v) |A||, thenA has a
positive dominant eigenvalue and an associated real dominant eigenvector whose
entries are nonzero and have the same signs as the corresponding entries of

Proof. The hypothesis for the first assertion and the bounds (3) ensure that

AN [[v]|?
\/é ’

so it follows from Theorem 3 that is dominant.

[v*Av| > k(v) | Al >

)
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Let A = UAU* be a spectral decomposition 4f with a unitaryU = [u1 - - - u,]
andA = diag(A1, ..., Ay), iIn which 4, is the dominant eigenvalue; the last column
of U is then a dominant unit eigenvector. Since

v Ao = [0 ua [ As 4 [0 w1 A+ [0 P

> k() |A]l, 8

Lemma 2 ensures tha}, has no zero entry.

Now suppose that is real and symmetric and thatis real. Consider the real
symmetric analytic familyA(r) = rA + (1 —t)vv' for 0< ¢ < 1 and use (3) and
the triangle inequality to verify that

vTA(t)v =1tv Av + 1- t)vTvav =1tv Av + 1-10 ||va|| ||v||2
> 1) Al + (L= D) 00T
> k) [tA+ Q=D =k 1ADI, Q)

sov' A()v > k(v) |A(t)|| for eachr € [0, 1]. Theorem 3 ensures that ealfir)

has a positive dominant eigenvalue and part 1 of the present theorem says that a
dominant eigenvector has no zero entries. Standard results ensure that there is a unit
vector functionx () that is continuous of0, 1] and is such that(z) is a dominant
eigenvector ofA(r) for eachr € [0, 1] [1, Theorem 18.2.1]. Since, a dominant
eigenvector ofA(0), is a positive or negative multiple af0), by considering-x(z)

instead ofx(z) we may assume that each entryxgD) has the same sign as the
corresponding entry of. Since no entry ok (1) becomes zero asevolves from 0

to 1, each entry of the dominant eigenvect@l) must have the same sign as the
corresponding entry af. [

For then-vectorv = ¢ whose entries are all equal to +d(¢) = v/(n — 1)° + 1.
The condition

e'Ae > /(n— D2+ 1]A|

is then sufficient to ensure that a reaby-n symmetric matrixA has a positive
dominant eigenvalue and an associated eigenvector with positive entries. This is the
essential assertion in Theorem 4.1 in [2].

3. Thecases of equality

Suppose thatt is normal,A # 0, v # 0, and inequality (4) is an equality; for
convenience assume thatandv are normalized so thdtd| = |jv] = 1.
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If A is not dominant then Lemma 1(1b) ensures that = |A,_1| = 1/4/2 and
A =0ifi ¢ {n—1,n}, sorankA = 2. Moreover, all of the following inequalities
in (1) are equalities:

1 1 1
|)\n|zﬁ > |U*Mn—l|2 ﬁ + |U*un|2 ﬁ = |U*un—l|2 |An—1] + |U*un|2 |An]
>’|v*u,,_1|2/\n_1+ 0%t 2| = 1/«/5. (10)

The first inference we make from (10) is that‘u,_1|> + [v*u,|> =1, sov €
spar{u,—1, u, }; the second is thav*u,_1)% A,—1 and [v*u,|? A, both lie on the
same ray from the origin. There are two possibilities: eitheruC'aa),,_ﬂ2 and|v*u,|?
are both positive, which forces,_1 = A, and ensures that spém,_1, u,} is an
eigenspace ofi; or (b) one of{v*u,_1]° or |[v*u,|? is equal to zero and the other
is equal to one, which means that eithveg span{u,_1} or v € span{u,}. In either
event (a) or (b)y is an eigenvector of..

Conversely, if rankd =2 then A = A, _qup—1u); 4 + Aguuuy; and i, # 0+
An_1. Suppose is an eigenvector od, so thatdv = iv, |A| = [v*Av| = 1/4/2, and
A = An_1 OF A = A,. In either case, the normalizatioh,_1|2 + |A,|% = 1 ensures
that|A,_1| = |A,| = 1/+/2, SOA is not dominant.

Similar arguments can be made for the case of equality in (5), but we can say
a little more: since., > v*Av = 1/4/2, we know that the spectral radius afis
positive and equals, .

We summarize what we have just learned as follows:

Theorem 5. Suppose that > 2, let A be a given nonzere-by-n complex matrix

and letv be a given nonzero complexvector.

1. Suppose that is normal andv*Av| = ||A|| [[v]|2/+/2. If rankA > 2, thenA is
dominant. IfrankA = 2, thenA is dominant if and only if is not an eigenvector
of A.

2. Suppose tha# is Hermitian andv*Av = || A|| ||v||2/ﬁ. Then the spectral ra-
dius of A is positive and is an eigenvalue df If rankA > 2, then A is dom-
inant. If rankA = 2, then A is dominant if and only ifv is not an eigenvector
of A.

Of course, every rank one normal matrix is dominant and is a scalar multiple of
a Hermitian matrix.

Now consider the cases of equality in Theorem 4, whose notation we adopt. For
convenience, we again assume that| = [lv|| = 1 and thatjvi| = minii<, |vi
Assume thak > 3 and that equality holds in (8), sbis dominant:|x,| > |A,_1].

We assume that thgth entry ofu, is zero in order to discover the remarkably
special form thatA must then have. The inequalities that must all be equalities
are
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n 2 A n 2
D tu [ < a1l
i=1 i=1
o2 1 2 * 2 2X
< el A2l + — 0e]?) [An] Sy [An—1]® + [Aa]* <K (V).

Equality at ¥ implies that|A,—1/% + |\, =1, SOAy =+ = A,_2 =0 and
rankA < 2.
Equality in the Cauchy—Schwarz inequalityimplies that the vectors

A 1- |vk|2}
and
[Iknll} [ vk |2

are proportional. Since the vector on the left is a unit vector and the norm of the
vector on the right isc(v), this means tha,| = (1 — |vk|2) /() and |A,—1] =
|vg|? /k(v) > 0, so rankd = 2.
Equality at¢ and the bound$v*u,|? < 1 — |vkl? and [An_1] < |Anl imply that
v un|? = 1 — |ug|? and|v*u,_1|% = | |?, S0 |v*u,_1]2 + [v*u,|? = 1, both terms
are nonzeroy € span{u,_1, u,}, and we have equalities in the inequalities

k() = |U*Av| =

2 n 2 n n

2 = (n) 2 2 2

L=l = |v*ue "= D 0| <D il <) wilP=1—[ul?.
i#j i#j i#k

This means thali| = |v;| and thatv — vje; = yu, for some scalay; it follows
that only thejth entry ofu, is zero. Sinces, ande; are orthogonal unit vectors,

we have 1= [[v]|2 = |yu, + vje;|* = Iy 12+ |v;[?, or [y |2 = 1 — |n |2 This tells

us thatu, is a unit scalar multiple of1 — |vk|2)_1/2 (v —vje;). Sincev = yu, +
vjej, u,—1 ande; are orthogonal ta,, andv € spanfu,_1, u,}, we can conclude
thatu,,_1 is a unit scalar multiple of;, soe; is an eigenvector ol associated with
the eigenvalue.,,_1. SinceA is normal.e; is also a left eigenvector of associated
with the eigenvalue.,_;. This means that thgth column ofA is 1,,_1e;, and the
jthrowof A is kn_lejT»-

Equality in the triangle inequality a&& means thatv*u,,,1|2 An—1 and|v*u, |2 An
lie on the same ray from the origin. Sinp€u,_1| and|v*u,| are both nonzero, we
conclude that,,_1 and A, both lie on the same ray from the origin, i.e., for some
reald, Ay,—1=67 |n,_1] = €% [uk|? /i (v) andr, = €7 |1, | = €7 (1 — |wk[?) /i ().
This means tha# is essentially positive semidefinitee., €'’ A is Hermitian and
positive semidefinite.

If P is a given permutation matrix such th&e; = eq, define the(n — 1)-vector
w by

Pv = |:1;ij| = v,Pel +yPu, = Uj€1+]/Pun~
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Then
T % * T __ T * T
PAP =P ()»n—ll/ln—lu,,_l + Anunun) P =P <)»n—1ejej + )»nunun> P
T
= Ap—1 (P€j) (Pej) + An (Pup) (Puy)*

B T, M [O o | €0 lul? i
_kn_lelel—kw[w] [Ow ]—|: ) ® K(v)ww .

Theorem 6. Suppose > 3, let A be a given nonzers-byn complex normal ma-

trix, let v = [v;] be a given nonzero complexvector with no zero entriedet k be

an index such tha| = minig;<, |vi|, and suppose thabv*Av| = «(v) ||A|l. Then

1. A is dominani

2. A dominant eigenvector of has at most one zero entrgnd

3. A dominant eigenvector of has a zero entry in position if and only if |vj’ =
lvi| and there is a real numbérand a permutation matri® such thatPe; = ey,

po=[v]. papt= €IAN w0 ]
w k(v) 0 ww

In this event

pT |:8i| =v—vjej

is a dominant eigenvector of, and except for the one zero entry in position
J. its entries have the same arguments as those dhe associated dominant
eigenvalue i€ [|A| (Ilv]12 — [v[?) /x (V).

Suppose that is nonzero and normal and tHat Av| = «(v) || A|l. Theorem 6(3)
ensures that a dominant eigenvectordfias no zero entries if any of the following
conditions holds:

(@) A has rank greater than two; or

(b) A does not have the prescribed pattern of zero entries; or

(c) Not all the diagonal entries of are nonzero and lie on the same ray from the
origin.

However, if an entry (and only one) of a dominant eigenvectot @& zero, and
if all the entries ofv are positive, then there is a dominant eigenvector with 1
positive entries and one zero entry.

Our final result concerns the signs of the entries of a dominant eigenvector in the
equality case of Theorem 4.

Theorem 7. Suppose: > 3, let A be a given nonzera-byn real symmetric ma-

trix, let v = [v;] be a realn-vector with no zero entriedet £ be an index such that

|vk] = Minigi<p [vi|, and suppose that' Av = k(v) | All. ThenA has a positive
dominant eigenvalue and an associated real eigenvector with at most one zero entry.
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1. A dominant eigenvector has a zero entry in positjoii and only if |vj| = |vg|
and there is a permutation matri® such thatPe; = e;,

_ v T_ IAlTvg  of
Pv_|:w:|, PaPT =221 T| (11)

In this event
710
P |:w] =v—vje;

is a real dominant eigenvector @f, and except for the one zero entry in positjon
its entries have the same signs as those dfhe associated dominant eigenvalue
is [ All (0117 = [ok]?) /e (v).
2. If there is no permutation matriR that achieves the representationgiri), then
A has a real dominant eigenvector whose entries are nonzero and have the same
signs as the corresponding entrieswof

Proof. The first assertion follows immediately from Theorem 6. For the second, we
proceed as in the proof of Theorem 4. Consider the analytic real symmetric fami-
ly A(t) =tA+ (1—r1)vv" for 0 <t < 1. Sincex(v) < |lv||, the computation (9)
shows thawTA(t)v > «x(v) ||A(r)|| for all ¢ € [0, 1). The argument in the proof of
Theorem 4 shows that there is a real vector family) such thatx(z) is contin-
uous on the whole intervdD, 1], x(¢) is a dominant eigenvector of(¢) for each

t € [0, 1], andx(0) is a positive scalar multiple of. Theorem 4 ensures that no
entry of x(¢) is zero for 0< ¢ < 1, and Theorem 6 tells us that no entryxafl) is

zero. We conclude that no entry oft) can become zero asmoves from 0 to 1, so
each entry ok (1) has the same sign as the corresponding entry of’]

One consequence of this final theorem is a result of Perron—Frobenius type: if
A is a nonzero real symmetric matrix of size at least three, and if there is a vector
v with positive entries such thaf' Av > «(v) || A|, then, regardless of the signs of
its entries,A has a positive dominant eigenvalue and an associated eigenvector with
nonnegative entries and at most one zero entry; does not have the very special
form (11), thenA has a dominant eigenvector with positive entries.
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