
Theoretical
Computer Science

ELSEVIER Theoretical Computer Science 215 (1999) 337-344

Note

Fusion trees can be implemented with AC0 instructions only

Arne Andersson +*, Peter Bro Miltersen b,l, Mikkel Thorup’

a Department qf’ Computer Science, Lund University, P. 0. Box 117, S-221 00 Lund, Sweden

b BRICS2, University of Aarhus, Denmark

’ University of Copenhagen, Denmark

Received September 1996; revised October 1997
Communicated by M.S. Paterson

Abstract

Addressing a problem of Fredman and Willard, we implement fusion trees in deterministic
linear space using AC0 instructions only. More precisely, we show that a subset of (0,. ,2” -
1 } of size n can be maintained using linear space under insertion, deletion, predecessor, and
successor queries, with O(log n/log log n) amortized time per operation on a RAM with word
size w, where the only computational instructions allowed on the RAM are functions in AC”.

The AC0 instructions used are not all available on today’s computers. @ 1999-Elsevier Science
B.V. All rights reserved

1. Introduction

Fredman and Willard [5], based on earlier ideas of Ajtai et al. [l], introduced

the fusion tree. A fusion tree is a data structure maintaining a subset S of U =

{0,1,...,2”-‘} d un er insertions, deletions, predecessor and successor queries (i.e. for

any element x of U, we can find the predecessor and successor of x in S). The model

of computation for the fusion tree is a random access machine whose registers contain

w-bit words (i.e. members of U), and with an instruction set which includes unit-cost

addition, subtraction, multiplication, comparison, and bit-wise Boolean AND. The fusion

tree maintains a set of size n using O(n) space and amortized time O(1og n/log log n)

per operation. An immediate corollary to the existence of the fusion tree is that n w-bit

’ Supported by the ESPRIT Long Term Research Programme of the EU under project number 20244
(ALCOM-IT).

’ Basic Research in Computer Science, Centre of the Danish National Research Foundation,

*Corresponding author. E-mail: arne@dna.lth.se

0304-3975/99/$ ~ see front matter @ 1999-Elsevier Science B.V. All rights reserved

PII: SO304-3975(98)00172-S

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82294626?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

338 A. Andersson et al. I Throreticul Computer Scienw 215 (1999) 337-344

keys can be sorted in time O(n log n/log log n) and space O(n) on a RAM with word

size w.

Fredman and Willard point out that multiplication is not an AC0 instruction, that is,

there are no circuits for multiplication of constant depth and of size (number of gates)

polynomial in the word length. Here, the gates are negations, and A- and V-gates with

unbounded fan-in. They pose as an open question if the fusion tree can be implemented

using AC0 instructions only. One motivation for this question is that AC0 is the class

of functions which can be computed in constant time in a certain, reasonable, model

of hardware. In this model, it is therefore the class of functions for which we can

reasonably assume unit cost evaluation.

In this paper, we solve this problem by showing that, given a small set of non-

standard AC0 instructions in addition to the more standard ones available in program-

ming languages such as C (e.g. addition, comparison, bitwise Boolean operations, and

shifts), the fusion tree can be implemented, with the same asymptotic space and time

bounds as in [5].

Our presentation can also be seen as an alternative explanation of the basic mecha-

nisms in fusion trees. We believe that our use of special-purpose instructions in place

of the ingenious use of multiplication in [5] may make our presentation easier to under-

stand for the casual reader. Thus, we argue that not only the use of non-AC’ operations,

but also much of the technical complexity of fusion trees, are artifacts of the particular

choice of instructions in current hard-ware.

It should be noted that the transformation to AC’ operations presented in this paper,

can be applied similarly to the atomic heaps and q-heaps in Fredman and Willard’s

later paper [6].

2. Model of computation and notation

We use a RAM with word size w and we consider n w-bit keys that can be treated

as binary strings or (unsigned) integers. Note that since n is the size of a subset of

(0,. ‘. , 2” - I}, we have that w 3 log ~1. We shall also assume that Jt; is a power of

tW0.

A w-bit word will sometimes be viewed as a concatenation of fi Jields. Each field

is of length Jt;- 1; to the left of each field is the test bit of the field. By a bit pointer
we mean a (log w)-bit key; such a key can be used to specify a bit-position within

a word. Without loss of generality, we assume that log w < fi - 1 and hence a bit

pointer fits in a field. As an example, if w = 64 a word contains 8 fields of length 7,

one test bit is stored with each field.

We will use upper-case characters to denote words and lower-case characters to

denote fields. For any bit-string a, we use Ia] to denote its length, and for i = 1,. . . ,IKI,

a[i] is the ith bit in 2. In particular, a[l] is the leftmost, and ~[lal] is the rightmost

bit of CL Also, for 1 <i<j,<lcl, z[i..j] = a[i] ..sab]. Finally, int(cc) is the number

represented by CI, i.e. int(a) = C/.$’ 2’c([]a(- i]. Note that our indexing of words

A. Anderson et al. I Theoretical Computer Science 215 (1999) 337-344 339

is slightly non-standard; it is more common to index words from right to left, starting

with 0. However, in the main technical part of this paper it is most convenient to

think of words as strings, and these are usually indexed from left to right starting with

index 1.

Apart from the standard AC0 instructions (comparison, addition, bitwise Boolean

operations and shift), we use the following ones:

LeftmostOne(returns a bit pointer to the leftmost 1 in X. A simple depth 2 circuit

of quadratic size is indicated by:

i-l

Vi <w : int (LeftmostOne(= i W (1 A 7x[j] A x[i].
j=l

In fact, LeftmostDne(X) can be implemented using a constant number of instructions

available on present day chips and in programming languages such as C: we just need

to convert X to floating point representation and afterwards return the exponent.

Duplicate(x,d): Returns a word containing copies of the field x in the d rightmost

fields.

Select(X,K): The first fi - 1 fields in K are viewed as bit pointers; a field is

returned, containing the selected bits in X. Not all fields of K need to be used.

The test bit of a used field is 1. A depth 3 circuit of size 0(w3i2) is indicated by

Vi < h : Select(X, K)[i + I]

= K[(i - 1)(6 + 1) + 11 A qti = int(K[(i - l)(h + 1) + 2..i(b + l)]) AXIJ).
j=l

Furthermore, we assume that the constants b = fi - 1 and k = log fi are known,

b is the length of the field.

3. The AC0 fusion tree

Lemma 1. Let d be an integer, smaller than or equal to fi. Let Y be a word where

the d rightmost fields contain one b-bit key each. Furthermore, assume that the d

keys are sorted right-to-left, the d rightmost test bits are 0, and that all bits to the

left of the d used fields (and their test bits) are 1. Then, given a b-bit key x, we can

compute the rank of x among the keys in Y in constant time.

Proof. The crucial observation is due to Paul and Simon [7]; they observed that one

subtraction can be used to perform comparisons in parallel.

Let M be a word where the d rightmost test bits are 1 and all other bits are 0.

In order to compute the rank of x among the keys in Y, we place d copies of x in

the d rightmost fields of a word X. We let the test bits of those fields be 1. By the

assignment R +- (X - Y) AND M the ith test bit from the right in R will be 1 if and

340 A. Andersson et (11. I Theoretical Computer Science 215 (1999) 337-344

only if x2 yi. All other test bits (as well as all other bits) in R will be 0. Hence, from

the position of the leftmost 1 in R we can compute the rank of x.

We implement this in the function PackedRank below. First, we compute d, the

number of keys contained in Y. This is the same number as the number of set test

bits in NOT Y, which can be determined using the function LeftField below. Next,

we create the word X and the mask M. Finally, we make the subtraction and extract

the rank.

For clarity, we introduce two simple AC0 functions.

FillTestBits(d): returns a word where the d rightmost test bits are set and all other

bits are zeroes. Can be implemented with shift, bitwise logical operations, and

Duplicate.

LeftField(If the leftmost 1 in Y is a test bit, and if all test bits to the right of

this test bit are set, the number of set test bits is returned. This can be computed

as b + 1 - (Lef tmostOne(Y) - l)/(b + 1). We do not have a division operation,

but since b + 1 = 2k, we can implement the division by a right shift by k.

Algorithm A: PackedRank (Y,x)

A.l. d + LeftField(NOT Y).

A.2. A4 + FillTestBits(d).

A.3. X + Duplicate(x,d) OR A4.

A.4. R + (X - Y) AND M.

A.5. return LeftField(

PackedRank clearly runs in constant time. 0

Lemma 2. Given a word Y and a key x as in Lemma 1, with d strictly less than

,,4 we can generate a new word where x is properly inserted among the keys in Y

in constant time.

Proof. We need a function InsertField(Y,x, i) which inserts x as the (i + 1)‘st field

from the right in Y, pushing fields to the right of the (i + 1)‘st field one field to the

right, and sets x’s test bit to 0. This can easily be implemented with shift and bitwise

Boolean operations.

The function InsertKey below implements the lemma.

Algorithm B: InsertKey (Y,x)

B. 1. return InsertField(Y,x, PackedRank(Y,x)).

4. Fusion tree nodes

In this section we give our version of the main building block of fusion trees.

A. Andersson et al. I Theoretical Computer Science 215 (1999) 337-344 341

Proposition 3. Given d sorted w-bit keys, d < fi, we can construct, in O(d) time, u
static data structure using O(d) space, so that predecessor and successor queries can
be supported in 0(1) worst case time.

We use such a data structure to represent each node of the fusion tree. Our construction

emulates the construction used by Fredman and Willard very closely. However, since

we want our presentation to be self-contained, we devote this section to give all the

details of the construction.

The main idea is to make use of significant bit positions. View the set of w-bit

sorted keys Yl,. . , Yd as stored in a binary trie. Each key is represented as a path

down the trie, a left edge denotes 0 and a right edge denotes 1. We get the significant

bit positions by selecting the levels in the trie where there is at least one binary (that

is, non-unary) node. These bit positions can be computed by taking the position of

the first differing bit between all pairs of adjacent keys in Y,, . . . , Yd. By extracting the

significant bits from each key we create a set of compressed keys yi, . . . , yd. Since the

trie has exactly d leaves, it contains exactly d - 1 binary nodes. Therefore, the number

of significant bit positions, and the length of a compressed key, is at most d - 1. Since

d-16,./G-l=b, we can pack these compressed keys in linear time by repeated

calls to InsertKey in Lemma 2.

We need the following AC0 functions, which can be implemented in a straightforward

way:

DiffPtr(X, Y): returns a bit pointer to the leftmost differing bit between X and Y.

(Can be implemented as LeftmostOne(X XOR Y).)

Fill(X, p): X is a word and p is a bit pointer. Returns a copy of X where all bits

to the right of position p have the same value as the bit in position p. If p = w + 1,

Fill@& p) = X. (Can be implemented by shifting, addition, and bitwise Boolean

operations.)

The procedure Construct takes as input a set of sorted keys Yi, . . . , Yd and computes

the set of significant bit positions; pointers to these positions are concatenated in sorted

order in the word K. Next, a set of compressed keys is created by selecting the bits

specified in K from Yi, . . . , rd. These compressed keys are packed in the word Y.

Algorithm C: Construct (Yi, . . . , Yd)
C.l. K 6 0.
C.2. For i + 1 to d - 1, K +- InsertKey(K,Dif fPtr(Yj, Y;+l)).

c.3. Y + 0.

C.4. For i + 1 to d, Y + InsertKey (Y, Select(Yi,K)).

When implemented as above, the same bit-pointer may be packed several times in

K. This makes no difference.

We can now compute the rank of a query key X in constant time. Let x =

Select(X,K) and let px denote the longest common prefix of X and any key in

YI >. . ., Yd. Let yi denote the compressed version of Y. Let q1 < q2 < . . < qd- I be

342 A. Andersson et al. I Theoretical Computer Science 215 (1999) 337-344

the significant bit positions and let qd = w + 1. Then x[j] = X[qi] and y,[j] = yi[qj].

Note that if y;,[l..j] = yi,[l..j], then Y;,[l..qj+r - l] = Y;z[l..gj+l - I].

Lemma 4. If x hus rank i in yl, . . . , yd, then either Y, or Yi+l start by px.

Proof. Let i’ be such that Yir has the prefix px. Let j be the maximal index such that

qj < Ipx 1. Then yif [l..j] = x[l..j]. However, since i is the rank of x, we either have

x = y, or y, < x < yl+i. This means that for i” equal to either i or i + 1, we have

y;tt[l..j] = yit[l..j]. Hence Yi/f[l..qj+l - l] = Y;,[l..qj+i - I], but q5+i - 1 >]px], SO

Yjff must share the prefix px with Y,. 0

Lemma 5. Consider a key Z that starts by px and where all remaining bits in Z

have the same value as X’s ,jirst distinguishing bit, i.e. the bit of X following px.

Set z = Select(Z,K). Let z” be the result of setting the last bit of z to 0, and let

z’ be the result of setting it to 1. Then z E {zO,z’}, and then the runk of X among

YI,. . . , Yd is either that of z” or that of z’ among yl,. . . , ~(1.

Proof. Clearly, Z has the same rank as X among Y1,. . . , rd. Let i be the rank of z

among yl,..., yd. If yi # z, then i is the correct rank of X. The same holds if Y; =

Z = X. However, suppose that yi = z and x # Z. Suppose that the first distinguishing

bit X[]px] + l] ofX is 0. Then there is some j > 1~x1, j $ {q1,...,q&1}, such that

YilJ = 1. Hence Y > Z. Since yij = yi implies Y,, = Y, we conclude that the rank

of Z among Yr,. . , Y<f is the rank of z’ among yi,. . . , yd.

If X[Ipx / + l] = 1, symmetrically we have that the rank of Z among Yi, . . . , Yd is

the rank of z” among ~1,. . . , yd. 0

We can use Lemma 4 to compute the length of px and hence the position of X’s

first distinguishing bit. Once this position is known, we can apply Lemma 5 to find

the proper rank of X.

We encode this in the function Rank below. The variable p is used to store the

position of X’s first distinguishing bit. This is the only place in this section where we,

for convenience, deviate slightly from Fredman and Willard’s original method: Instead

of filling the query keys with 1s (or OS) and making a second packed searching, they

use a lookup table of size O(d*) in a node of degree d.

Algorithm D: Rank(X)

D. 1. i + PackedRank(Y, Select(X, K)).

D.2. If i = 0, p + DiffPtr(X, Yi);

D.3. else p + max(DiffPtr(X, Yi),DiffPtr(X, Y+i))

D.4. Z + Fill(X, p).

D.5. z c Select(Z,K).

D.6. i + PackedRank(Y,z).

D.7. If K<Z < K+i, return i;

D.8. else z[b] +- -z[b]; return PackedRank(Y,z).

A. Andersson et al. I Theoretical Computer Science 215 (1999) 337-344 343

Now to find the predecessor of a value in the set, we find the rank of the value,

and the predecessor can now be found by a table lookup in the sorted table of the set.

This completes the proof of Proposition 3.

5. The fusion tree

Having dealt with fusion nodes, the proof of our main theorem is virtually the same

as that of Fredman and Willard. Note that we can allow the B-tree nodes to have

higher degree than in the original fusion tree: fi compared to ~‘1~.

Theorem 6. A set of word-sized integers can be maintained using linear space un-
der insertion, deletion, predecessor, and successor queries, with O(log nJlog log n)

amortized time per operation on an AC0 RAM.

Proof. The proof proceeds as in [5]:

Proposition 3 allows us to implement a B-tree [2] node of degree d < fi. Searching

in such a node takes constant time while splitting, merging, and adding/removing keys

take O(d) time. By keeping traditional, comparison-based, weight-balanced trees of size

O(d) at the bottom of the B-tree, we can ensure that at most every O(d)‘th update

causes any change in a B-tree node.

The number of B-tree levels is O(log n/log d) and the height of a weight-balanced

tree is O(log d). Since w 3 log n, we can choose d = O(fi) and the theorem

follows. 0

As a final remark, we note that applying a result of Dietz [3], we can also support

rank-operations within the O(log n/log log n) time bound. Dietz showed that a list of

atoms can be maintained under the operations insert, which inserts a new atom after a

specified position in the list, delete, which deletes an atom from the list, and position,
which, given an atom, returns its position in the list, in time O(log n/log log n) per

operation. Dietz’ list maintenance structure uses only a very basic, AC’, instruction set.

Using the predecessor query of a fusion tree maintaining a set, we can make Dietz’

structure maintain a sorted list of the elements of the set. Then, to find the rank in

the set of a new value, we just need to find the position in the list of its predecessor

in the set. Hence, rank-queries are supported in time O(log n/log log n) in addition

to the other operations. This matches a lower bound by Fredman and Saks [4] which

holds without any assumptions on the instruction set.

References

[I] M. Ajtai, M.L. Fredman, .I. Komlos, Hash functions for priority queues, Inform. Comput. 63 (1984)

217-225.
[2] R. Bayer, E.M. McCreight, Organization and maintenance of large ordered indexes, Acta Inform. l(3)

(1972) 173-189.

344 A. Andersson et ul. I Theorerical Computer Science 215 (1999) 337-344

[3] P.F. Dietz, Optimal algorithms for list indexing and subset rank, in: Proc. 1st Workshop on Algorithms

and Data Structures (WADS), Lecture Notes in Computer Science, vol. 382, Springer, Berlin 1989, pp.

3946.

[4] M.L. Fredman, M.E. Saks, The cell probe complexity of dynamic data structures, in: Proc. 21th ACM

Symp. on Theory of Computing (STOC), 1989, pp. 3455254.

[5] M.L. Fredman, D.E. Willard, Surpassing the information theoretic bound with fusion trees, J. Comput.

System Sci. 47 (1993) 424436.

[6] M.L. Fredman, D.E. Willard, Trans-dichotomous algorithms for minimum spanning trees and shortest

paths, J. Comput. System Sci. 48 (1994) 533-551.

[7] W. J. Paul, J. Simon, Decision trees and random access machines, in: Proc. Intemat. Symp. on Logic

and Algorithmic, Zurich, 1980, pp. 331-340.

