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1. Introduction

An € -group, or soluble group with finite abelian section rank, is a soluble group
in which elementary abelian p-sections* are finite for all primes p. Equivalently we
could define these as the groups which possess a normal series of finite length whose
factors are either torsion-free abelian groups of finite rank or direct products of
abelian p-groups with Min (the minimal condition on subgroups) for different primes
p.

Our attention will be directed primarily at two subclasses of €. The first is the
class €, of all €j-groups which have a series of finite length with abelian factors
whose torsion-subgroups satisfy Min; secondly there is the narrower class of soluble
minimax groups. Recall that a minimax group is group which has a series of finite
length whose factors satisfy either Min or Max (the maximal condition on subgroups).

We shall prove theorems about the structure of cohomology groups of soluble
minimax groups and &, -groups in the case where the coefficient module, qua
abelian group, is an €-group. The following is a consequence of one of these theo-
rems, and the original motivation for this paper.

Theorem 1.1. A finitely generated € -group is a minimax group.

This settles an outstanding problem which was raised a number of years ago
([6]) and has been answered in special cases (see [7, p. 176]).

This research was carried out while the author was a guest at the Forschungs-
institut fiir Mathematik der Eidgendssischen Technischen Hochschule, Ziirich. The
author is most grateful to Professor B. Eckmann and the Forschungsinstitut for their
hospitality.

* A section of a group is a quotient group of a subgroup.
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2. The cohomology theorems

Let G be a finite extension of a solubie minimax group; then G has a series of
finite length whose factors are finite or cyclic or quas1cycnc simple appncauon
of the Schreier Refinement meorem shows the set of p for which the seri

has a quasicyclic Iacwr of type p~ to be an invariant o

Theorem 2.1. Let G be a finite extension of a soluble minimax group and let A be
a G-module. Assume that qua abelian group A is a periodic ©y-group without
p”-subgroups for any p in sp(G). Then H™(G, A) is a periodic € y-group for n =0

In our application to prove Theorem 1.1 we need only the case n = 2. The sig-
nificance of the periodicity of H2(G, A) was pointed out in [8, Lemma 10]. Let G
be any group and A any G-module; suppose that the extension 4> E » G deter-
mines an element of finite order m in H2(G, A) and that 8 denotes multiplication in
A by m. Then there is a subgroup X of £ such that

IE: XA| < |Coker 01, IXNA|<|Ker9|.

fAisan 60~group qua additive group, Ker 6 and Coker 0 are finite, whence so are

E: XA I and IJ( f IAI Under these circumstances F is said to nearly Splll over A.
u)mmnmg these remarks with Theorem 2. 1, we can state the IOHOWlﬂg.

el e D T ot 0 eend A Ln e See Thannaaneae DV 1 Tnee aeene nrsdnsentnze ~E A Lo £
NUIULdLyY L.L. el ane A ocad it 1neorernt o.1. 1nen cver 7 CALEIon vy A vy u
so 13nmules onlis
W reurd ofLeL.
Here we have used anlv the narigdicity of 2(; Y In fact H2((GG ) alc halanac
Aawviw W A VYV Wowu \IIIIJ LiN l.l\ﬂll\l“l\vll] i iz M 94a% Jo 223 sBVL 2 \\.l ,.‘l, ailowv UUIUIIEO
to ©g, which tells us that extensions of 4 by G that are associated with elements of
H2(G, A) with bounded orders belong to finitely many equivalence classes.

One cannot expect the cohomology groups of Theorem 2.1 to be finite. For ex-

ample, if G is a finitely generated torsion-free nilpotent group and 4 is any trivial
G-module,
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where 7 is the Hirsch number* of G (Gruenberg {3, p. 152]). However it turns out
that under somewhat more general circumsiances the cohomology groups are even-
tually all fmlte, a fact which rests upon results of Gruenberg on the cohomological
dimension of soluble groups and on detailed information about the structure of

©; -groups.

o° £ A JUC 8 RFTIRUULRS

3. Let n C -group and let A be a G-module
which is an Gy-group qua ahelzan ume t I_g, if G has a subgroup of type
p”, then A has no such subgroups and A is vzs:ble by p modulo its torsion sub-
group. Denote by r the Hirsch number of G. Then H"(G, A) is finite foralln >r+1,
and even for n > r if G is an extension of a group with Min by one with Max.

An essential tool in proving Theorems 2.1 and 2.3 is the spectral sequence of
Lyndon—Hochschild—Serre; its consequence the exact sequence of Hochschild-
Serre--Hattori is also useful (for these see, for example, [5,pp. 351, 355]). Theorems
2.1 and 2.3 are proved in §§4 and 5.

In Theorems 2.1 and 2.3 restrictions are placed upon the p™ -sections or sub-
groups of group and module. Without these restrictions both theorems fail badly, as
examples in §6 show. In the same section appear examples which show Theorem
2.1 to be false for S;-groups and Theorem 2.3 for €;-groups.

3. Deduction of Theorem 1.1 from Theorem 2.1

Let E be a finitely generated €(-group. Then E has a normal series of finite
length / whose factors are abelian and either periodic or torsion-free: we can assume
that /> 1 and proceed by induction on /. Let 4 be the least non-trivial term of the
series. Then G = E/A is a minimax group and A is abelian. If A4 is torsion-free, E is
certainly an €;-group and by previous work it is a minimax group [7, Theorem
(10.38)]. Thus we are left with the case where A4 is periodic.

Let 7 = sp(G), a finite set of primes. The m-component of A satistics Min and can
therefore be factored out. 4 is a G-module via conjugation and the conditions of
Theorem 2.1 are satisfied. By Corollary 2.2 there is a subgroup X of £ such that
|E: XA|and | X N A] are finite. X4 is finitely generated, say by x,ay. ..., x,4,. Set
F equal to the smallest X-admissible subgroup of 4 containing {ay, ...,a,} and
X N A then F is finite. Also X4 = XF, so that A =(XF)N A =F.Hence Eisa
minimax group.

* A group has finite Hirsch number (or torsion-free rank) r if it has a series of finite length
whose factors are infinite cyclic or periodic and r is the number of infinite cyclic factors. For
locally polycyclic groups this is equivalent — although not immediately so — to the definition
given in [3, p. 149).
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4. Necessary iemmas

We shall now prove three lemmas which will be used in the proofs of Theorems
2.1 and 3. If one wants to prove Theorem 1.1 as economically as possible however,
inl

meamaan A ia ;mandad A very

anler T 1 and that 3
Ofly LEiNimMa 4.1 18 ne¢ucdq, ana uiat iin a ve case.

Y Spe€cia: Ca
Lemma 4.1. Let G be a group which is the union of a well-ordered ascending chain

of subgroups {G,: a <3} and let A be a G-module such that for some positive in-
teger n and all a one has H"~1(G,, A) = 0= H™G,, A). Then H*(G, A) = 0.

Procf. Let f be an n-cocycle of G with coefficients in 4 and write f(® for the re-
striction of f to G,. Since H"(G,, A) = 0, there is an (n — 1)-cochain g, of G, such
that (@ = §g,,. Now B(g(g)ﬂ— g,) = 0 and, since H"~1(G,, A) = 0, it follows that
g8, — g, = 8h, for some (n — 2)-cochain h,, of G,. Extend A, to G4 in any way
and define £,41 =£q+1 — Oh,. This is a new (n — 1)-cochain of G, which extends
g, and satisfies 8,4 = f(@*1). In this way we may extend g; to an (n — 1)-cochain
of G such that f=6g.

Corollary 4.2. Let G be a countable locally finite group and let A be.a G-module.
Assume that as an abelian group A is uniquely divisible by all primes dividing orders
of elements of G. Then H"(G, A) = 0 for all n > 1. If A is a trivial G-module, then
HY(G, A) = 0 as well.

To prove the corollary form a chain of finite subgroups G; < G, < ... with union
G; then H"(G;, A) =0 for n > 0 by a classical theorem. Of course, if 4 is a trivial
module, H(G, 4) = Hom (G, 4) = 0.

Note, however, that if 4 is non-trivial, H1(G, 4) may well be non-zero, a fact
which is reflected in the non-conjugacy of the Sylow 2-subgroups in the restricted
direct product of a countable infinity of copies of the sym netric group of degree 3
(see also the structure of H1(Q, A) in §6, Example (B)).

Lemma 4.3. Let G be a finite group of order m and let A be a G-module. Assume

that the endomorphism 0 : a = ma of A has finite kernel and cokernel. Then H"(G, A)
is finite for all n > 0: moreover primes dividing the orders of these groups must di-
vide |Ker @]+ |Coker 8|.

Proof. Let M denote the sum of the p-components of A fo% p dividing m, and write
A= A/M. Then 6 induces a monomorphism in 4 and 4, A4 +4/4,0 is exact.
Applying the cohomology sequence we get forn >0

> H(G, A)) =L HN(G, A)) > H'(G, A1 A,0)~ ...

Obviously 6* is multiplication by m; hence 8* = 0 since |G| = m. Thus
HY(G, A()~> H"(G, A{/A0), and the latter is finite since [4,: 40| < |Coker 8|.
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Let D be the maximal divisible subgroup of M. Then, since Ker @ is finite. M
satisfies Min and M/D is finite with order dividing a power of |Ker 8|. Hence
H"(G, M/D) is finite. Finally, 6 induces an epimorphism in D and application of
the cohomology sequence to K> D —& D (where K = Ker (0| p)) yields
H"(G, K) - H"(G, D), whence H"(G, A) is finite, and the proof is completed by
a count of primes. (In the case Ker@ = 0 = Coker 0 the conclusion is that
H"(G, A) =0 for n >0, a well known fact.)

Lemma 4.4. Let G be a finite extension of an ©y-group and let A be a finite G-mod-
ule. Then H"(G, A) is finite foralln = 0.

Proof. Form in G a series of finite length whose factors are of the following types:
(i) finite, (ii) periodic & with elements of orders coprime to | A1, (iii) torsion-free
abelian of rank 1, (iv) p™ for p dividing | 4 |. Let N be the largest proper term of
this series. Then N < G and by induction on the length of the series H4(N, A) is
finite. Let

EP4 = HP(G/N, H1(N, A))

where p + q = n. By the spectral sequence of Lyndon--Hochschild Serre there is a
series in H"(G, A) of length n + 2 whose factors are isomorphic with sections of
the EP4 for p + q = n. It is therefore sufficient to prove each EP-4 finite. Hence

we can assume that the series has length 1 and that G is of one of the types (i) - (iv).
If G is finite the result is clear; thus we are left with types (ii)- (iv). If C is the cen-
traliser of 4 in G, then G/C is finite and the spectral sequence argument just given
shows that it is enough to prove H"(C, A) finite. Hence we can assume that 4 is a
trivial G-module.

If G is of type (ii), then H"(G, A) = 0 for n > 0 by Corollary 4.2. If G is of type
(i), H1(G, A) = Hom (G, A), which is finite since G/G™ is finite for every m > 0.
An extension of 4 by G is necessarily abelian, since G has rank 1, and also splits
over A since the latter is finite: hence H2(G, A) = 0. For n > 2 we have H"(G, 4)=0
because G has cohomological dimension <2.

Finally, suppose that G is of type p™. Writing Q, for the additive group of p-adic
rationals mp", (m, n € Z), we have an exact sequence

Y A Qp—»G.

Thus A4 becomesa trivial Qp-module. Since H"(Z,A)=0forn>1and
HY(Z, A)~ , the Hochschlld Serre—Hattori exact sequence yields

.= H™G, A)~> H"(Qp, A) > H"=Y(G,A) > H"* (G, A)~> H"1(Q,, A)~ ...
for n> 0. Now H"(Qp,, A) =0 forn> 1 by the last paragraph, so one obtains
H"-1(G, A) ~ H'*1(G,4) ifn>1,
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which shows that H27{(G, 4) =~ HY(G, A) = Hom (G, A) = 0. For n = 1 the exact
sequence yields 4 ~ H2(G, A) - 0. Hence H2(G, A) is finite, and

H21(G, A) = H2(G, A), (n > 0), gives the result. (This method can be used to com-
pute the cohomology of quasicyclic groups with arbitrary coefficient modules.)

5. Proofs of the main results

Proof of Theorem 2.1. Let 7 denote the spectrum of G. By hypothesis the 7-com-
ponent P of A is finite and Lemma 4.4 shows that H"(G, P) is finite for all ». = 0.
Henceforth we assume that P = 0 and 4 has no elements of order p for any p in 7.

Form a series in G with finite length whose factors are finite, cyclic or quasi-
cyclic, and denote by N the largest proper term. Then G/N is finite, cyclic or quasi-
cyclic. By induction on the length of the series and the Lyndon—Hochschild—Serre
spectral sequence we can assume that V = 1: notice here that H9(V, A). like 4, can
have no elements of order p in 7; the reason is that a ~ pa, being an N-automorphism
of 4, induces an automorphism in H4(N, A).

If G is finite, so is H*(G, A) for n > 0 by Lemma 4.3. If G is cyclic, well-known
formulae show H"(G, A) to be isomorphic with a section of 4 and hence a periodic
€-group. Finally, suppose G is of type p™. Now the automorphism group of an
abelian group with Min — and hence that of A — is residually finite. Therefore 4 is
in fact a trivial G-module and H*(G. 4) = 0 for n > 0 by Corollary 4.2.

Proof of Theorem 2.3. By the structure of &, -groups |7, Theorems 10.33 and
9.39.3] there exist normal subgroups R and N of G such that

(i) R is a divisible abelian group with Min,

(ii))R<N,

(iii) V/R is an extension of a torsion-free nilpotent group of a finite rank by a
free abelian group of finite rank,

(iv) G/N is finite, of orde: m say.

Step 1. H'(R, A) is finite for all n > 0.

Let 7 be the set of primes dividing orders of elements of R; then  is finite and
by hypothesis the 7-component 4, of 4 is finite. Lemma 4.4 now shows that
H"(R, Ag) is finite for all n. Hence we may assume in this part of the proof that
A =0. Denote by T the torsion-subgroup of 4; then H"(R, T) =0 for all n > 0 by
Corollary 4.2, since R must act trivially on T. Consider next 4, =A4/T: by hypo-
thesis 4, is (uniquely) divisible by primes in 7. Since a p™ -group can have no
non-trivial representations of finite degree over the rational field*, 4, is a trivial
R-module. Corollary 4.2 now implies that H*(R, 4,) = 0 for all n > 0. Hence
H"(R, A)=0ifn>0.

* More generally, periodic subgroups of G L(n, Q) are finite, a result due essentially to Schur:
see for example [7, Vol. 2, p. 85].
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Step 2. H"(N, A) is finite if n >r + 1 (and if # > in case G is Min-by-Max).

Letn=p+q>r+1 (orr)and consider

EP4 = He(N/R, HIR, 4)).
it is sufficient to prove that EP.4 is finite. Now if ¢ > 0, Step 1 shows that H4(R, A)
is finite, so that £P9 is finite by Lemma 4.4. If ¢ =0, thenn=p >r + 1 (orr) and
EP:0 = 0 because N/R has cohomological dimension <r + 1 (or <r if N/R has Max);
this follows from results of Gruenberg [3, §8, Theorem S and Proposition 9].*
Step 3. Case A periodic.

By the structure of A there is a finite submodule B such that 4/B is divisible by
m. From Lemma 4.4 we know that H”(G, B) is finite, so we can assume that B=0
and A = mA. Then multiplication in A by m is an epimorphism which we caii §.
ing the cohomology sequence for N to K = Ker§ > A—2— 4 we obtain

.. > H'(N, K) > H*(N, A) —&— H"(N, A) > H"* (N, K) > ...

Here H™(N, K) and H"*1(N, K) are finite (n = 0) since K is. Consequently 6 *,
which is just multiplication by m, has finite kernel and cokernel. Lemma 4.3 now
shows that

is finite provided p > 0.
Letn=p+q>r+1 (orr). We have only to prove that £P-4 is finite and only
the case p = 0 is questionable; but then n=q >r +1 (or r) and H4(N, A) is finite
by Step 2; hence E04 is finite.
Step 4. Case A torsion-free. . ‘
Here §: a » ma is monomorpmc and A= 4 »Coker 0 is exact. The cohomoi-
ogy sequence for NV shows that §* has finite kernel and cokernei. One then argues

W D Bt £ o N LN i Qe
mat L% 1S 11nite ID[’I"[] TgZ775r T 1(\0I7)adiosep o

AL o dbemms mmcas EoMlmccin Lominn Qénime D mmcd A

111C LIICUICI ITUW 1UHUW)S 11U]11 OLOPDd O allu “.
Damasly Thanram D 2 ic atill tr1a if A /T hac infinite ranlk hnt ana mnuect now write
ANGHIAIN: LIIVUIVIL Lo 10 DU LI UV L A3/ 1 1140 HIILIIULY 1Al UKL VLIV 111uor 13V Yy 13t
r4+ 1 far rin the conclucion The reacon ic that in Sten 1 4. need not be a trivial
f % 1 LUL T ML MLV VUIIVIWOIVEL: R 1IV JVAOVIL 10 LIl 351 Jrvpy £ 42 | v UL Y S8 sa s
module and consequently H1(R, 4 1) may not vanish
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ounterexamples

In this final section we shall describe examples which block various plausible

a VW Saa 2382

(A) Theorem 2.1 and Corollary 2.2 are false without the restriction on p>-subgroups.

* For further results in this direction see Bieri [1].
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Let G be the direct product of two copies of the additive group of p-adic rationals
mp", (m, n € Z), and let G be one of the direct factors. Then G is a torsion-free
abelian minimax group with spectrum {p}. Let A be a group of type p* regarded as
a trivial G-module. Then H1(G, A) ~ Hom (G, 4) and H2(G,,A) =0 because
any extension of A by G, is abelian. Now apply the Hochschild—Serre—Hattori
exact sequence to Gp— G »G/G ~ G . Since H}(G,, A) = Hom (G, 4), one ob-
tains

Observe that Hom(G, A) is a rational vector space V' o
Our conclusion is, then, that

HY(G, A) =~ V=~ H%(G, A).

(Alternatively this can be deduced from the Universal Coefficient Theorem for
cohomology.)

It follows that there are continuously many inequivalent extensions of 4 by G
none of which is nearly split.

(B) Theorem 2.1 is false if G is merely an S-group.

Strictly speaking this statement requires qualification since the spectrum of an
&, -group has not been defined. Our example, however, seems to exclude any
reasonable formulation.

Choose a sequence of distinct primes py, qy, P2, q3 ..., with the property p; = 1
mod g;; that this is possible is a consequence of the infinity of primes in an arith-
metic progression. Let G be the additive group generated by the rational numbers
1/qy, 1/q,, ..., and let A be the direct sum of cyuxc groupSAl, Az, ..., of orders

P1, P2, .- Since p; = | mod gq;, there is a non-zero h momorpmsm G -~ Aut 4;

[T P bainle 7 ocanneng b0 tlan 3dacmtiter artharnitm: ¢lhnoa laiee v nvsalainaen Armas hiomn ¢~
Unuc]y wiliLll £ IIIGPD U UIc 1uc lllly 3“[}5]\)“ s UICOC 1V lllUlllUlplublllb LuUIIUILIC tv
wriald 1 ca At 4 and thic tnurne 4 inta a o madnla T at /) ha a divant enimm af avnlin
YieiG U AlUtAa ana Ui wins A N0 & U-Moaue. L.ey ¢ oC a QIreCu suih O1 Cyaid
aorannne nf ardarc 2. 2. annlu tha HAasrherhild _Qarra__HattAri avant cannanca
E,luuyo Vi Vidiwvio q l’ ‘lz, . L) uyyl] LIV B 1IVVILONGLLLG Wwiliv 1AUALLVII vAadAdwlL \,\‘\i“\lll‘l\l
to Z>> G 0. noting that AZ=A4 AG =0 and HMO A =0forn> 1 (by Lem-
LG ¢/, notin g that 4 A, A vanc mAu, A)=uiorn 2> L (Y Ler
ma 4.1). The conclusion is that

HY(G, A) =~ HY(Q, A) = HX(G, A).
HY(Q, A) can be computed directly by constructing all derivations of Q to 4 and
identifying the inner ones. One finds that

HUD AN~ (Cr AN A
i, Ay =T Aajjuiagg,
i ]
which is a rational vector space with the dimension of the continuum
Not ice that G is a t.wsuon--ree abelian &, -group: moreover G has no p*-sections
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(C) Theorem 2.3 is false without the restriction on p™-subgroups.

Let G be the direct product of a p-group G, and an infirite cyclic group; let
A be a p=-group regarded as a trivial G-module. Then

HY G, A)~Rpe A4, H"(G,A)~R,, n>1,
where Ry, is the additive group of p-adic integers.
To obtain this, first compute the cohomology of G using the exact sequence
~ Qp ->G 1, just as in the proof of Lemma 4.4 (last part). The result is that
H2"(G|,A)=0, (n>0), H2* (G, A)~R,,.
We may now use a formula of Lyndon [4, Lemma 9.1 or Theorem 7}

H"(G, A) =~ H"(G,, ) ® H"1(G,, A)

to give the result in question.
If we take A to be Z instead of p*, again regarded as a trivial module, then

H'(G, A)~Z, H"(G,A)uRp, n>1.
Hence both parts of the restriction on p=-subgroups are relevant.
(D) Theorem 2.3 is false if G is merely an € y-group.

Let G and A each be direct sums of cyclic groups of all possible prime orders
and regard A as a trivial G-module. Then

H"(G. A)=CrZ,, n>0,

where Z, is cyclic of prime order p.

This may be seen as follows:

Let P be the additive group generated by all 1/p for p a prime. Then there is an
exact sequence Z>> P -»G. With A a trivial P-module one has H"(P, 4) = 0 for
n> 2 while H2(P, A) =~ Ext(P, A) is divisible since P is torsion-free, and
HY (G, A) ~ Cr, Z,, is residually finite. Hence any homomorphism H2(P, A4)->HYG, A)
must be zero. One putting this information into the Hochschild—Serre—Hattori
exact sequence one finds that H7*1(G, 4) ~ H"~1(G, A) for n > 2. Moreover

H2(G, A) ~ Ext(G, 4) =~ cpr(Ext(zp,A)) e (;r z,

The result now follows.
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