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1. Introduction 

An Go-group, or soluble group with finite abelian section rank, is a soluble group 
in which elementary abelian p-sections* are finite for all primes p. Equivalently we 
could define these as the groups which possess a normal series of finite length whose 
factors are either torsion-free abelian groups of finite rank or direct products of 
abelian p-groups with Min (the minimal condition on subgroups) for different primes 
P- 

Our attention will be directed primarily at two subclasses of Go. The first is the 
class @ of all Go-groups which have a series of finite length with abehan factors 
whose torsion-subgroups satisfy Min; secondly there is the narrower class of sth5le 
minimax groups. Recall that a minimax group is group which has a series of finite 
length whose factors satisfy either Min or Max (the maximal condition on subgroups). 

We shall piove theorems about the structure of cohomology groups of soluble 
minimax groups and $-groups in the case where the coefficient module, qua 
abelian group, is an @o-group. The following is a consequence of one of these theo- 
rems, and the original motivation for this paper. 

Theorem 1 .I. A finitely generated &,-group is a minimax group. 

This settles an outstanding problem which was raised a number of years ago 
([6]) and has been answered in special cases (see 17, p. 1761). 

This research was carried out while the author was a guest at the Forschungs- 
institut fur Mathematik der Eidgenossischen Technischen Hochschule, Zurich. The 
author is most grateful to Professor B. Eckmann and the Forschungsinstitut for their 
hospitality. 

* A sec?ion of a group is a quotient group of a subgroup. 
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2. The cohomology theorems 

Let G be a finite extension of a soluble minimax group; then G has a series of 
finite length whose factors are finite or cyclic or quasicyclic. A simple application 
of the Schreier Refinement Theorem shows the set of primesp for which the series 
has a quasicyclic factor of type poo to be an invariant of G; this set we call the 
spectrum of G and write as 

Clearly this is just the set of all p for which G has a p”-section. For example. G is 
polycyclic-by-finite if and only if sp(G) is empty. 

Our first main result deals with modules which are periodic Go-groups qua 
abelian groups, i.e., they are direct sums of abelian p-groups satisfying Min for 
different primes p. 

Theorem 2.1. Let G be a finite extension of’s soluble minimax group and let A be 
a G-module. Assume that qua abelian group A is a periodic GO-group without 
,poo-subgroups for any p in sp(G). Then lP(G, A) is a periodic GO-group for n 2 0. 

In our application to prove Theorem 1.1 we need only the case n = 2. The sig 
nificance of the periodicity of #(G, A) was pointed out in [8, Lemma lo]. Let G 
be any group and A any G-module; suppose that the extension A++ E -H G deter- 
mines an element of finite order m in H2(G, A) and that 8 denotes multiplication in 
A ‘by m. Then there is a subgroup X of E such that 

]E : XA 1 G )Coker 191, IXnA)<IKerO). 

If A is an Go-group qua additive group, Ker 0 and Coker 0 are finite, whence so are 
\E: XA I and IX n A I. Under these circumstances E is said to nearly split over A. 

Combining these remarks with Theorem 2.1, we can state the following. 

Corollary 2.2. Let G and A be as in Theorem 2.1. Then ever;] extension of A by G 

is nearly split,. 

Here we have used only the periodicity of H2(G, A4). In fact H2(G, A) also belongs 
to 60, which tells us that extensions of A by G that are associated with elements of 
@(G, A) with bounded orders belong to finitely many equivalence classes. 

One cannot expect the cohomology groups of Theorem 2.1 to be finite. For ex- 
ample, if G is a finitely generated torsion-free’nilpotent group and A is any trivial 
G-module, 

H’(G, A) = A 
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where r is the Hirsch number* of G (Gruenberg [3, p. 1521). However it turns out 
that under somewhat more general circumstances the cohomology groups are even- 
tually all finite, a fact which rests upon results of Gruenberg on the cohomological 
dimension of soluble groups and on detailed information about the structure of 

e1 -groups. 

We shall prove the following. 

Theorem 2.3. Let G be a finite extension of an e 1 -group and let A be a G-module 
which is an Go-group qua abelian group. Assume that if G has a subgroup of type 
poo, then A has no such subgroups and A is divisible by) p modulo its torsion sub- 
group. Denote by r the Hirsch number of G. Then Hn(G, A) is finite for all n > r f 1, 

and even for n > r if G is an extension oj’a group with Min b-v one with Max. 

An essential tool in proving Theorems 2.1 and 2.3 is the spectral sequence of 
Lyndon-Hochschild-Serre; its consequence the exact sequence of Hochschild 
Serre--Hattori is also useful (for these see, for example, [ 5,pp. 35 1,355 1). Theorems 
2.1 and 2.3 are proved in 5 54 and 5. 

In Theorems 2.1 and 2.3 restrictions are placed upon the pm-sections or sub- 
groups of group and module. Without these restrictions both theorems fail badly. as 
examples in 56 show. In the same section appear examples which show Theorem 
2.1 to be false for %)I -groups and Theorem 2.3 for &r-groups. 

3. Deduction of Theorem 1 .I from Theorem 2.1 

Let E be a finitely generated Go-group. Then E has a normal series of finite 
length 2 whose factors are abelian and either periodic or torsion-free: we can assume 
that I > 1 and proceed by induction on 1. Let A be the least non-trivial term of the 
series. Then G = E/A is a minimax group and A is abelian. If A is torsion-free, E is 

certainly an El -group and by previous work it is a minimax group [ 7, Theorem 
(10.38)]. Thus we are left with the case where A is periodic. 

Let n = sp(G), a finite set of primes. The n-component of A satisfies Min and can 
therefore be factored out. A is a G-module via conjugation and the conditions of 
Theorem 2.1 are satisfied. By Corollary 2.2 there is a subgroup X of E such that 
IE : XA 1 and IX (7 A 1 are finite. XA is finitely generated, say by xlal, . . . . x,ar. Set 
Fequal to the smallest X-admissible subgroup of A containing {al, . . . . a,} and 
X n A; then F is finite. Also XA = XF, so that A = (XF) f~ A = F. Hence E is a 
minimax group. 

* A group has finite Hirsch number (or torsion-free rank) r if it has a series of finite length 
whose factors are infinite cyclic or periodic and r is the number of infinite cyclic factors. For 
locally polycyclic groups this is equivalent - although not immediately so -- to the definition 
given in [ 3, p. 149). 
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4. Necessary lemmas 

We shall now prove three lemmas which will be used in the proofs of Theorems 
2.1 and 3. If one wants to prove Theorem 1.1 as economically as possible however, 
only Lemma 4.1 is needed, and that in a very special case. 

Lemma 4.1. Let G be a group which is the union of a well-ordered ascending chain 
of subgroups {G,: Q < /3) and let A be a G-module such that for some positive in- 
teger n and all cy one has H ‘l-l(G Iy ’ 

A) = 0 = Hn(G,, A). Then Hn(G, A) = 0. 

Proof. Let f be an n-cocycle of G with coefficients in A and write f@) for the re- 
striction off to G,. Since P(G,, A) = 0, there is an (n - 1)cochain gar of G, such 
that f@) = 69,. Now 6(g(& - g,) = 0 and, since HnW1 (G,, A) = 0, it follows that 
gp& - ga = 6h, for some (n - 2)cochain h, of G,. Extend h, to G,, in any way 
and define &+I =g,+l - Sh,. This is a new (n - 1).cochain of G*+l which extends 
gar and satisfies 6g,+I = f @+l). In this way we may extend go to an (n - 1)&chain 
ofG such that f = 6g. 

Corollary 4.2. Let G be a countable locally finite group and let A be-a G-module. 
Assume that as an abelian group A is uniquely divisible by all primes dividing orders 
of elemen ts of G. Then Hn (G, A) = 0 for all n > 1. If A is a trivial G-module, then 
H1 (G, A) = 0 as well. 

To prove the corollary form a chain of finite subgroups G1 < G2 < . . . with union 
G; then Hn(Gi, A) = 0 for n > 0 by a classical theorem. Of course, if A is a trivial 
module, H1(G, A) = I-Iom (G, A) = 0. 

Note, however, that if A is non-trivial, Hl(G, A) may well be non-zero, a fact 
which is reflected in the non-conjugacy of the Sylow 2-subgroups in the restricted 
direct product of a countable infinity of copies of the sym:netric group of degree 3 
(see also the structure of Hl(Q, A) in 96, Example (B)). 

Lemma 4.3. Let G be a finite group of order m and let A be a G-module. Assume 
that the endomorphism 8 : a * ma of A has finite kernel and cokernel. Then P(G, A) 
is finite for all n > 0: moreover primes dividing the orders of these groups must di- 
vide IKer6l*(Coker61. 

Proof. Let Mdenote the sum of the p-components of A for p dividing m, and write 
A I= A/M. Then 8 induces a monomorphism in A 1 and A 1 A A I+ A l/A 16 is exact. 
Applying the cohomology sequence we get for n > 0 

. . . -+ Hn(G, Al) -% Hn(G, Al) + Hn(G, Al/A,O) + . . . 

Obviously 8* is multiplication by m; hence 8* = 0 since [Gl = m. Thus 
P(G,A I)“Hn(G, A,/A#), and the latter is finite since }A1: Al61 & 1Coker 01. 
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Let D be the maximal divisible subgroup of M. Then, since Ker 8 is finite. M 
satisfies Min and M/D is finite with order dividing a power of 1 Ker 01. Hence - 

Hn(G, M/D) is finite. Finally, 6 induces an epimorphism in D and application of 
the cohomology sequence to K-D ’ *D (where K = Ker (O/D)) yields 
Hn(G, K) + H’*(G, D), whence Hn(G, A) is finite, and the proof is completed by 
a count of primes. (In the case Ker 0 = 0 = Coker 0 the conclusion is that 
Hn(G, A) = 0 for n > 0, a well known fact.) 

Lemma 4.4. Let G be a finite extension of an ~o-group and let A be a finite G-mod- 
ule. Then Hn(G, A) is finite for all n 2 0. 

Proof. Form in G a series of finite length whose factors are of the following types: 
(i) finite, (ii) periodic 60 with elements of orders coprime to 1 A I, (iii) torsion-free 
abelian of rank 1, (iv) pm for p dividing 1 A 1. Let N be the largest proper term of 
this series. Then N 4 G and by induction on the length of the series Hq(N, A) is 
finite. Let 

EPpq = HP(G/N, Hq(N, A)) 

where p + 4 = n. By the spectral sequence of Lyndon Hochschild Serre there is a 
series in Hn(G, A) of length n + 2 whose factors are isomorphic with sections of 
the EPJJ for p + 4 = n. It is therefore sufficient to prove each EpJJ finite. Hence 
we can assume that the series has length 1 and that G is of one of the types (i) - (iv). 
If G is finite the result is clear; thus we are left with types (ii)- (iv). If C is the cen- 
traliser of A in G, then G/C is finite and the spectral sequence argument just given 
shows that it is enough to prove H’*(C, A) finite. Hence we can assume that A is a 
trivial G-module. 

If G is of type (ii), then Hn(G, A) = 0 for n > 0 by Corollary 4.2. If G is of type 
(iii), HI (G, A) = Horn (G, A), which is finite since G/Gm is finite for every m > 0. 
An extension of A by G is necessarily abelian, since G has rank 1, and also splits 
over A since the latter is finite: hence H*(G, A) = 0. For rz > 2 we have Hn(G, A) =O 
because G has cohomological dimension <2. 

Finally, suppose that G is of type pm. Writing QP for the additive group ofp-adic 
rationals mpn, (m, n E ii!), we have an exact sequence 

Thus A becomes a trivial Qp-module. Since Hn(Z, A) = 0 for rz > 1 and 
H1(Z, d j g A, the Hochschild-Serre-Hattori exact sequence yields 

for n > 0. Now Hn(Qp, A) = 0 for tz > 1 by the last paragraph, so one obtains 

H~-~(G,A)sH~+~(G,A) ifn> 1, 
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which shows that H zn+l(G, A) N H!(G, A) = Hom(G, A) = 0. For n = 1 the exact 
sequence yields A + H2(G, A) -+ 0. Hence U2(G, A) is finite, and 
Hzn(G, A) N ffz(G, A), (n > 0), gives the result. (This method can be used to com- 
pute the cohomology of quasicyclic groups with arbitrary coefficient modules.) 

5. Proofs of the main results 

Proof of Theorem 2.1. Let 7~ denote the spectrum of G. By hypothesis the 7r-com- 
ponent P of A is finite and Lemma 4.4 shows that Hn(G, P) is finite for all lb 2 0. 
Henceforth we assume that P = 0 and A has no elements of order p for any p in rr. 

Form a series in G with finite length whose factors are finite, cyclic or quasi- 
cyclic, and denote by N the largest proper term. Then G/N is finite, cyclic or quasi- 
cyclic. By induction on the length of the series and the Lyndon-Hochschild-Serre 
spectral sequence we can assume that N = 1: notice here that Hq(N, A), like A, can 
have no elements of order p in n; the reason is that a I+ pa, being an N-automorphism 
of A, induces an automorphism in Hq(N, A). 

If G is finite, so is Hn(G, A) for n > 0 by Lemma 4.3. If G is cyclic, well-known 
formulae show Hn(G, A) to be rsomorphic with a section of A and hence a periodic 
eu-group. Finally, suppose G is of type pm. Now the automorphism group of an 
abelian group with Min - and hence that of A - is residually finite. Therefore A is 
in fact a trivial G-module and Hn(G. A) = 0 for n > 0 by Corollary 4.2. 

Proof of Theorem 2.3. By the structure of G1 -groups 17, Theorems 10.33 and 
9.39.31 there exist normal subgroups R and N of G such that 

(i) R is a divisible abelian group with Min, 
(ii) R <N, 
(iii) N/R is an extension of a torsion-free nilpotent group of a finite rank by a 

free abelian group of finite rank, 
(iv) G/N is finite, of order- m say. 

Step 1. Hn(R, A) is finite for all n > 0. 
Let n be the set of primes dividing orders of elements of R; then 71 is finite and 

by hypothesis the n-component A0 of A is finite. Lemma 4.4 now shows that 
Hn(R, Ao) is finite for all rz. Hence we may assume in this part of the proof that 
Au = 0. Denote by T the torsion-subgroup of A; then Hn(R, T) = 0 for all n > 0 by 
Corollary 4.2, since R must act trivially on T. Consider next A I= A/T: by hypo- 
thesis A 1 is (uniquely) divisible by primes in IT. Since a poo -group can have no 
non-trivial representations of finite degree over the rational field*, Al is a trivial 
R-module. Corollary 4.2 now implies that Hn(R, Al) = 0 for all n > 0. Hence 
Hn(R,A)=Oifn>O. 

* More generally, periodic subgroups of GL(n, Q) are finite, a result due essentially to Schur: 
see for example [ 7, Vol. 2, p. 851. 
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step 2. Hn(N, A) is finite if n > Y + 1 (and if n > r in case G is Min-by-Max). 
Letn=p+q>r+l (orr)andconsider 

EPsq = Hi (NfR, Hq(R, A)). 

It is sufficient to prove that EPpq is finite. Now if 4 > 0, Step 1 shows that Hq(R, A) 
is finite, so that EPpq is finite by Lemma 4.4. If 4 = 3, then n = p > r + 1 (or r) and 
Epv* = 0 because N/R has cohomological dimension < Y f 1 (or <r if N/R has Max); 
this follows from results of Gruenberg [3, $8, Theorem 5 and Proposition 9].* 
Rep 3. Case A periodic. 

By the structure of 11 there is a finite submodule B such that A/B is divisible by 
m. From Lemma 4.4 we know that Hn(G, B) is finite, so we can assume that B = 0 
and A = mA. Then multiplication in A by m is an epimorphism which we call 6. 
Applying the cohomology sequence for N to K = Ker 0++ A ’ * A we obtain 

. . . + Hn(N, K) + Hn(N, A) ‘* + Hn(., A) + Hn+l(N, K) -+ -a- 

Here Hn(N, K) and Hn+l(N, K) are finite (n > 0) since K is. Consequently 8 *, 
which is just multiplication by m, has finite kernel and cokernel. Lemma 4.3 now 
shows that 

EPsq = HP(GfN, Hq(N, A)) 

is finite provided p > 0. 
Let n = JJ + 4 > r + 1 (or r). We have only to prove that EP*q is finite and only 

the case p = 0 is questionable; but then n = 9 > r + 1 (or r) and H4(N, A) is finite 
by Step 2; hence E*pq is finite. 
Step 4. Case A torsion-free. 

here 0: a * ma is monomorphic and A, ’ + A *Coker 0 is exact. The cohomol- 
ogy sequence for N shows that 0” has finite kernel and cokernel. One then argues 
that EP*9 is finite for 12 = p + q > r + 1 (or r) as in Step 3. 

The theorem now follows from Steps 3 and 4. 

Remark. Theorem 2.3 is still true if A/T has infinite rank but one must now write 
r + 1 for r in the conclusion. The reason is that in Step 1 Al need not be a trivial 
module and consequently Hl(R, Al) may not vanish. 

6. Counterexamples 

In this final section we shall describe examples which block various plausible 
generalisations of Theorems 2.1 and 2.3. 

(A) Theorem 2. I and Corollary 2.2 are false without the restriction on p”-subgroups. 

* For further results in this direction see Bieri [ 11. 
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Let G be the direct product of two copies of the additive group of p-adic rationals 
mp’l, (m, IZ f Z), hnd let G1 be one of the direct factors. Then G is a torsion-free 
abelian minimax group with spectrum {p}. Let A be a group of type p” *regarded as 
a trivial G-module. Then Hr (G1 , A) N Hom (G 1, A) and Hs(G,, A) = 0 because 
any extension of A by G1 is abelian. Now apply the Hochschild-Serre-Hattori 
exact sequence to G,w G *G/G1 z G1. Since #(Cl, A) g Horn (Cl, A), one ob- 
t ains 

H~(G,A)~Hom(G~,Hon~(G~,A))~Hom(G~~G~,A)--Hom(G~,A). 

Observe that Hom(G1, A) is a rational vector space I/ of dimension the conti luum. 
Our conclusion is, then, that 

Hi(G, A) cv V s H2(G, A). 

(Alternatively-this can be deduced from the Umversal Coefficient Theorem for 
cohomology.) 

It follows that there are continuously many inequivalent extensions of A by G 
none of which is nearly split. 

(B) Tkmwn 2. I is false if G is merely an el-grecrp. 

Strictly speaking this statement requires qualification since the spectrum of an 
@-group has not been defined. Our example, however, seems to exclude any 
reasonable formulation. 

Choose a sequence of distinct primes ~1, q 1, ~2, cl2 . . . . with the property pi E 1 
mod yi; that this is possible is a consequence of the infinity of primes in an arith- 
metic progression. Let G be the additive group generated by the rational numbers 
1141, llqp *‘St and let A be the direct sum of cyclic groups A 1, AZ, . . . . of orders 
p1, p2, . . . . Since pi s 1 mod qi, there is a non-zero homomorphism G -+ Aut Ai 
under which Z maps to the identity subgroup; these homomorphisms combine to 
yield G -+ Aut A and this turns A into a’G-module. Let Q be a direct sum of cyclic 
groups of orders (11,42, . . . . apply the Hochschild-Serre- Hattori exact sequence 
to Zw G -HQ, noting that A z=A,AG =OandHn(Q,A)=Oforn> 1 (by Lem- 
ma 4.1). The conclusion is that 

Hl(G, A) N H’(Q, A) = H2(G, A). 

Hl(Q, A) can be computed directly by constructing all derivations of Q to A and 
identif:Ving the inner ones. One finds that 

H*(Q, A) N (Cr Ai)/(Dr Ai), 
i i 

which is a rational vector space with the dimension of the continuum. 
Notice that G is a torsion-free abelian Gl-group: moreover G has no p”-sections 

for any p and corresponding to primes which are the orders of elements of A there 
are zero entries in the fype of G (in the sense of Fuch [2, p. 1471). 
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(C) Theorem 2.3 is false without the restriction on p”-subgroups. 

Let G be the direct product of ap”-group G, and an infinite cyclic group; let 
A be a p”-group regarded as a trivial G-module. Then 

Hl(G,A)--R,@A, Hn(G,A)=Rp, n> 1, 

where R, is the additive group of p-adic integers. 
TO obtain this, first compute the cohomology of G1 using the exact sequence 

2~ Qp +G, , just as in the proof of Lemma 4.4 (last part). The result is that 

H2n(GI, A) = 0, (n > 0), H*n+l(GI, A) = R,. 

We may now use a formula of Lyndon [4, Lemma 9.1 or Theorem 71 

to give the result in question. 
If we take A to be Z instead of p”, again regarded as a trivial module. then 

Hl(G, A) = Z, Hn(G,A)=Rp, n> 1. 

Hence both parts of the restriction on p”-subgroups are relevant. 

(II) Theorem 2.3 is false if G is merely an Go-group. 

Let G and A each be direct sums of cyclic groups of all possible prime orders 
and regard A as a trivial G-module. Then 

Hn(G,A)=$rZp, n>O, 

where Zp is cyclic of prime order p. 
This may be seen as follows: 
Let P be the additive group generated by all l/p for p a prime. Then there is an 

exact sequence Z>-, P +G. With A a trivial P-module one has Hn(P, A) = 0 for 
n > 2 while H*(P, A) cx Ext(P, A) is divisible since P is torsion-free, and 
H1(G, A) N Crp Zp is residually finite. Hence any homomorphism H*(P, A) +HW, A) 
must be zero. One putting this information into the Hochschild-Serre-Hattori 
exact sequence one finds that Hn+l(G, A) N Hn- 1 (G, A) for rz 2 2. Moreover 

H*(G , A) rv Ext(G, A) N Cr(Ext(Z,, A)) = $rZp. 
P 

The result now follows. 
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