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Abstract

In this paper, we study Cayley graphs on P@L,) mod the unipotent subgroup, the split
and nonsplit tori, respectively. Using the Kirillov models of the representations of, Gl of
degree greater than one, we obtain explicit eigenvalues of these graphs and the corresponding
eigenfunctions. Character sum estimates are then used to conclude that two types of the graphs
are Ramanujan, while the third is almost Ramanujan. The graphs arising from the nonsplit torus
were previously studied by Terras et al. We give a different approach here.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

A finite k-regular graph is called Ramanujan if its eigenvalues other thancalled
nontrivial eigenvalues, have absolute values at m&t 2 1. Such graphs are good ex-
panders and have broad applications in computer science. The first systematic explicit
construction of an infinite family ok-regular Ramanujan graphs is given indepen-
dently by Margulis[15] and Lubotzky et al. [14] fork = p + 1 with p a prime;
their graphs are based on quaternion groups @eand the nontrivial eigenvalues of
these graphs can be interpreted as the eigenvalues of the Hecke operators on classical
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cusp forms of weight 2 so that the eigenvalue bound follows from the deep property
that the Ramanujan conjecture holds for these cusp forms, established by Erghler
and Shimura [18]. The Ramanujan conjecture for cusp forms of @ler a function

field is proved by Drinfeld [6], hence the same method gives rise to infinite families
of (¢ + 1-regular Ramanujan graphs, whegeis a prime power. This is done by
Morgenstern in [16].

On the other hand, there are explicit constructions(@pf+ 1)-regular Ramanujan
graphs forqg a prime power whose nontrivial eigenvalues are expressed as character
sums, which are shown to be bounded by72 as a consequence of the Riemann
hypothesis for curves over finite fields. Such examples include Terras graphs [2] based
on cosets of PGi([F,) and norm graphs in [9] based on a finite fieldof elements.

Later it is shown in [11] that these two kinds of graphs are in fact quotient graphs
of Morgenstern graphs. This connection leads to very interesting relations between
character sums and cusp forms for Stver function fields, studied in detail in [3,4].

In particular, one obtains cusp forms whose Fourier coefficients are given by eigenvalues
of the Terras/norm graphs in a systematic manner.

In this paper, we revisit Terras graphs and investigate two other types of graphs
based on cosets o = PGLy(F,) using a uniform method explained below. Up to
conjugation,G contains three types of abelian subgroups: the unipotent subgroup

o3 )een)

which is a group of ordeq, the split torus

- 2)ves)

which is cyclic of orderg — 1, and the nonsplit toruk, which is an embedded image
of [F;Z/[F; in G as a cyclic subgroup of order+ 1. It is well-known thatG = UAK.
Denote byH one of these three subgroups. For a double cbisatl which is its own
inverse (i.e., symmetric) and which is the disjoint union| &f right H-cosets, consider
the Cayley graphX g,y = CaywG/H,HsH/H), called anH-graph. It is undirected
and |H|-regular. (WhenH = K, this is a Terras graph.) We shall prove

Main Theorem. (@) (cf.[20, p. 357])The nontrivial eigenvalues df g, x have absolute
values at mosR,/q. Hence the K-graphs ar¢g + 1)-regular Ramanujan graphs

(b) The nontrivial eigenvalues o,y are 1 and £,/g. Thus the U-graphs are
g-regular Ramanujan graphs

(c) The nontrivial eigenvalues oK 4,4 have absolute values at maa{/qg. Thus the
A-graphs being (¢ — 1)-regular, are almost Ramanujan

Like representations gf-adic groups, the irreducible representationgz0bf degree
greater than one also have a Kirillov model, in which the actiondJodnd A are
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standard, and the representations are distinguished by the action of the Weyl element

w = 91 (1) . This is studied in[13]. Our approach is to use a Kirillov model to

explicitly find functions in the space of each irreducible representatio®s afhich

are right H-invariant. This space has dimension at most 2. We then determine the
eigenvalues and eigenfunctions of the adjacency operator of the dfapl. For

Terras graphs, the eigenvalues are obtained in [1,2] by computing the traces of the
irreducible representations, expressed as character sum$ gvand then estimated. In

our approach we obtain the same expression for eigenvalues arising from nondiscrete
series representations, but an eigenvalue arising from a discrete series representation is
expressed differently, namely, as the average #f1 character sums ovéf,2, one for
eachK-coset. Each character sum is associated with some idéle class character of the
rational function fieldlF,(7) using the results obtained in Chapter 6 of [10] and [12],
and then shown to have absolute value at mqg§ 21s a consequence of the Riemann
hypothesis for curves.

It is worth pointing out that thdJ-graph Xy, has two connected components,
one of which can be identified with the Cayley graph G§lo(F,)/U, UwU/U). A
suitable quotient of this graph may be interpreted as a graph on the cusps of a certain
principal congruence subgroup of the Drinfeld modular group@L[T1). This kind
of graph is first obtained by Gunnells [8] for principal congruence subgrdiyps of
SLy(Z). A generalization of this graph fromp to prime powerq with ¢ = 1 (mod 4)
is given in [5]. Both approaches rely on analyzing the graph structure, while ours is
purely representation-theoretic.

The paper is organized as follows. The representation theory, including the Kirillov
models, is reviewed in Section 2. Sections 3-5 are devoted tK-thd-, andA-graphs,
respectively. In each case, using Kirillov models, we determine the eigenvalues and
compute the corresponding eigenfunctions; then character sum estimates are employed
to bound the eigenvalues.

For convenience, the characteristiclof is assumed to be odd throughout the paper.
Similar results are expected to hold for even characteristic.

2. Representations of PGk([F,)

For brevity, writeF for the finite field withq elements andt for its quadratic exten-
sion. The unipotent subgroug acts on the spac&(G) of complex-valued functions
via left translations so that the space decomposes as

L(G) =D Ly(G).
yel

where Ly, (G) = {f : G — C: f((5 1)g) =¥ x)f(g) for all g € G}.

The irreducible representations Gfare identified with the irreducible representations
of GL2(F) with trivial central character. Such representations are studied in the literature
in detail (cf.[17]); those with degree greater than one are classified into three categories:
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principal series, Steinberg, and discrete series representations. Fix a nontrivial additive
characteny of F. Each irreducible representatianof G of degree greater than 1 has a
Kirillov model Ky (7) and a Whittaker modeW,,(n). According tor being a discrete

series, Steinberg, or principal series representation, the 3pace) is spanned by?X
(the multiplicative characters df), P U{Dg}, or B U{Do}U{Dw}, respectively, where
Do (resp. D) denotes the Dirac function at O (resgp). The action ofU on B is
given in terms ofys, and the action ofJA on £ is the same for all representations.
The representation is characterized by the action af = (f’l é) In [13], to eachn

of degree greater tnal a family of Gauss sums(x, y, V), wherey € [AFX, is attached,

with which the action ofr(w) is described. The details are as follows.
A discrete series representatian= n4 arises from a charactet of E* such that

Ais trivial on F* and A # poN for all u e . Here N denotes the norm map from
E to . The last condition o is equivalent toA9+1 = 1, A% # 1. Consequently, the
inverse ofA is A = A?. We associater with

e ) = —T(UAgoNYoT) =~ > A@uNDY(Trz), zelb .

zelE™

Here Tr is the trace map frorh to . Observe that(rn,, x, ) = &(ny, 1, ).

Charactersu of £ give rise to principal series representatians if u? # 1, and
Steinberg representations, if 12 = 1. These are all nondiscrete series representations

of G of degree greater than 1. Far = m, arising from a charactep of £, we
associate

e, ) = T W), 7 e b,

whereI'(E, ) = >~ . cpx E(0)Y(x). Observe that(my, y, ) = (T -1, 1 ).
Using &(m, %, ), we can describe the representatioron its Kirillov model Ky, (1)
by giving the action of the generators

1 1
h,-Z(g 2>(V€[FX)a ”s:<0 s]_)(sE[FX), w:(—g 0)

of G as follows:

w(h,)o = o(r)e, LS [AFX,
n(h)Do = p(r)Do, m(h) Do = 1~ 1(r) Doo (when applicablg
tue =@ - Y prtoreptpp ack,
ﬁe@x

7(us) Do = Do, n(us)Doo = Doo (when applicablg
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n(w)o = g Ye(m, o, Yot + e(a), o€ [AFX,
n(w)Dg = —g Ye(m, p L Y)(u=t + Do) if 7 is a Steinberg representation
= —q e(m, w, ) (w4 Dy) if mis a principal series
T(w)Doo = —q Ye(m, kL, ) (u+ Do)  if m is a principal series

where

e(r) =0 if ©is a discrete series
= —q Ye(nm, o, ¥)(¢% — Déyu1Do if mis a Steinberg representation
= —q te(m, oY) (g = D)
X(Ogu,1D0 + (5“#71’1Doo) if 7 is a principal series

Hered, 1 is the Kronecker symbol, which is equal to 1yit= 1, the trivial character, and

0 otherwise. It was shown ifiL3] that the relations on these generators are preserved,
resulting from the identities satisfied by the Gauss sums with the main one called
the Barnes’ identity. The representations are characterized by the attafhetdrs. In
particular,m4 and = ;-1 are equivalent, and so arg, and 1.

In conclusion, there aré;—1 (nonequivalent) discrete series representatiopseach
of degreeq — 1, there are two Steinberg representatiapsfrom u with 1?2 =1, each
of degreeq; and there aré%?’ principal series representationg with u? # 1, each of
degreeg + 1. Together with the two degree one representations givemoet, 2 = 1,
this gives the complete list of the irreducible representation&.oEach irreducible
representation occurs i(G) with multiplicity equal to its degree.

The Whittaker modelWV,, () consists of functions oG obtained from the Kirillov
model Iy (n) in the following way: forv € Ky (n), define W, € W,,(n) via

Wy(g) = (n(e)v)(D), ge€G.

The representation of G on Wy, (n) is by right translations. Because of the action of
U on Ky (n), all functions are contained id,,(G).

We proceed to discuss how each spaggG) decomposes. Fix a nontrivial additive
characten) of F. We can describe all characters bfas “, a € [F, wherey®(x) =
¥ (ax) for xin F. Observe that for each functiofie Ly (G), the new functionf,(g) :=

(5 g)g) lies in £,«(G) and f > f, is an isomorphism between the t@modules
Ly(G) and Lya(G). As noted above, the Whittaker modal,, (w) of each irreducibler
of degree greater than 1 is containeddp(G) for y nontrivial, by counting dimension
we find

Ly(G)= P Wya(m) fora##0.
n,degn>1

We then conclude from checking the multiplicities thaio(G) contains no discrete
series representations; each principal series representation occurs there twice, and each
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Steinberg representation and each degree 1 representation occur once. We record
this in

Proposition 1. (1) For nontrivial y's, the spacesC,(G) are isomorphic and each
irreducible representation of G of degree greater thlaoccurs inLy(G) exactly once

(2) For Yy = x//° trivial, in El//o(G) each principal series representation occurs with
multiplicity two, each Steinberg representation occurs with multiplicity ,oas does
each 1-dimensional representation

Remark. For each charactex of F*, denote by
Ind p = {f:G—MD:f((g )i)g) = u(a) f(g) for all geG}.

The groupG acts on Ind: by right translations. It is well-known that whew? # 1,

this representation is the principal series representatignand it is isomorphic to
Indu~1. When u? = 1, this representation has two irreducible constituentsdet and
the Steinberg representatiary. Obviously,

L,0(G) = P Indp.
ue@x

Let H be a subgroup ofs. Then the space of functions da right invariant byH
has a similar decomposition

LG/H)=EP £y(G/H) = @ my(mLy(r. G/H).
v y oo

wheren runs through irreducible representations@fmy, (n) is the multiplicity of =
in Ly (G) as described in the proposition above, aly(r, G/H) consists of the right
H-invariant functions in the space af in £y (G).

Let s be an element irfG. Write HsH = x1H U---UxH as a disjoint union ok
right H cosets. Define an operat@i;;; on £(G/H) by sendingf € L(G/H) to

k
(Trsu [ H) =Y fOexi H).

i=1

Clearly Tysu preserves each spadg,(n, G/H). WhenHsH = Hs 1H, we define
an undirected Cayley grapK g,y = CayG/H,HsH/H), called anH-graph, whose
adjacency matrix may be identified with the operalgr; ;. We shall takeH = K, U
and A, respectively, and study the eigenfunctions and the eigenvalu@y gf.
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3. The K-graphs

In this section we taked = K. Since G = UAK, for each additive charactef of
F, the spaceL; (G/K) is (¢ — 1)-dimensional. As remarked before, when= (//0 is
the trivial character,

L,0(G) = P Indp.
ue@x

One sees immediately from the definition of Imdhat the rightK-invariant space of
Ind i is 1-dimensional, generated by

fﬂ((é i>k>=u(y) forall ye F*, x e Fandk € K,

and the f,'s form a basis of£ o(G). This shows that for a principal series represen-
tation 7, the space of righK-invariant vectors in any of its model is 1-dimensional
for any . When u is the quadratic character, the 1-dimensional representatiodiet
does not contain nontrivial righK-invariant vectors since not all elements knhave
square determinant. Thereforg belongs to the Steinberg representatign and we
arrive at the same conclusion thay, (r,, G/K) is 1-dimensional. Whem is the trivial
character, the functiorf, lies in the space of the 1-dimensional representatiordet,
and hencely (n,, G/K) is O-dimensional for the Steinberg representatign for u
trivial. We record this in

Proposition 2. Let ¢ be a character ofF*. For any additive characten) of F, the
spaceLy (ny, G/K) is 1-dimensional ifu # 1, and O-dimensional ifu = 1.

Our next goal is to show that, foy nontrivial, £, (%4, G/K) is 1-dimensional
for each discrete series representation. Since Ly (G/K) is (¢ — 1)-dimensional

and it contains a‘%l-dimensional subspac@wél Ly(my, G/K), it suffices to show
dimLy(nq, G/K)>1 as there aref/g—l discrete series representations.

Fix once and for all a nonsquaré in F so thatkE = F(+/3). We imbedE* in GL3(F)
as{(f; “;) :a, b € [F not both zer(}. Consequently, the elementsknare represented
by

(55)=( (0@ ") »2) (0 5)

. 10
with b€ F, and <O 1).

Fix a nontrivial additive charactef of F and a character of E* with 471 =1 and
A% £ 1. Let = n4 be the associated discrete series representation with the attached
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e-factor e(n, y, ). According to the description i§2 of the action ofr on its Kirillov
model C,, (n), we obtain, ford € F* andb e F*,

" ((li 2)) 0=(q-D7%7100) ) Bo®*—0~HI OB, P, b, )
ﬁe@x

x Y QRBITGE )y,

yef™

() e () I

Thenvg := Y per 72 9)0 + 0 is invariant byn(K). Put

Ve = vg =y > (g—=D72qH0b) Y BB — ) HIOB, e(w, B )

0ef™ 0 pef™ ﬂe@x
< Y GRBGIGE WY + Y 0(=0)e(m, 0.y)g 0+ > 0.
yeb™ 0 0

Using

D 0T OBy =) 0b) Y OB Y (x) = (g — DEBW D),
0

OelF* xelF*

we rewrite v, , as
ey = Y (=Dt Y BBE = OB)e(m Bp) Y GHGITGB )y
beF* pef™ yef™

+ ) 0(=0)e(m, 0.y)g 0+ > 0.
0 0

Recall thate(r, , ) = —I'(Ayo N,y oTr) = ="« A(x)7(N2)Y(Trz). Summing
over f§ further simplifies the expression of; ;, as

ey =—q 1Y Y Y T@INDYTr 2)p(b* — (N 2)bB* — 5) i (b)y

el belF zeE*

+Zy.
Y
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Let W/, Wy = Wy, thatis, forg € G, W, y(g) = (n(g)vy, l/,)(1) Then W l// lies in
the Whittaker modelV),(m) and it is rightK-invariant. Hencew A v is determined by
its values on the split toru8, which we now compute. Foy € [*,

vis((59)) = (+((6 7)) o)

—q71 Y Y > T@INY(Tr2)y(? - 0)

g bel zeF

yelF

< (N2)bB? = 8) b)) + Y 7()
Y

—(g=Dg 'Y D AR@WY(Trz)

belF ZEEX,
N z=y(b%2—5)

x((N 2)b(b* — &) " Hy®d) + (g — Doy 1.

Hered, 1 is equal to 1 ify = 1 and O otherwise. Replacing the varialalby z(b + 6),
we rewrite the above as

WM<<y O)) (¢ -Dg Y > A +Vo)

belF eEX
Nz:y

x(Tr(z(b + VOB + D) + (g — Dy.1.

Note thatb(y +1) = Tr(> (b+ V9)). We combine the two terms involving to get

Wiy ((é 2)) =—(q-Dg ') Y Acb+Vo)

bel zeEX,
szy

Xy <Tr <<z + #) b+ JE))) +(q—1)dy1.

SetWyy = (¢ — D7IW), yoand Wy =3, 0 Wy, which is a rightK-invariant
function onG belonging to@l/,#l//o Ly (n, G/K). We compute

(5 3)) =T X X Ace+ Vo)

aclF* belF zeEX,
szy

" <Tr <<z ; —) b+ f>)) (g~ Dy 1
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=—q 'Y Y Y Aab+o)

a b z,Nz=y

X (Tr ((z + y—”;l) a(b + JS))) +(q—Ddy1

since A is trivial on F*. Observe that aa runs through all elements iR* andb runs
through all elements i, a(b + +/9) runs through all elements ifi\F. Therefore

>y Aza(b + Vo)W (Tr((z+—) (b+f)>>

aclF* belF

- w%; AGw)y (Tr ((Z + i;) w)) - g;x Aza)y <a Tr (z + %1» .

Since A is trivial on F*, the last sum is equal tog — 1) A(z) if Tr(z + %) =
Tr(z) + y + 1 =0, and to—A(z) otherwise. This gives

WA(<Z ‘i)): Y X aco (T (= 1))

zelk, weEX
Nz=y

+ Y A@+qt Y AR+ (@ - Doy

zeE,Nz=y, zeE,
Tr(z)+y+1=0 Nz=y
_ - +1
(e ) B (1)
zeE,Nz=y, wel
y+l#0

(((+237)))

7t Y Y Aew+ Y AR

zeE,Nz=y, wek zeE,Nz=y,
1 =
+y—5 £0 Tr(z)+y+1=0

—¢7t ) A@+ (g - Doy

zek,
Nz=y
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Further, sinceA is a nontrivial character on the kernel of norm i, we have
2Ny A@ =0and} g« A(zw) = 0. Therefore

1
W4 ((g 2)) =—q (A yoTr A(1+%>

zeE,Nz=y,

+1
e+ #0

- ) AR+ (@ - Doy
zeE,Nz=y,
Tr(z)+y+1=0

We discuss the second sum .cg .=y, 4(z). Since the polynomiat?+ (y+1)x+y
Tr(z)+y+1=0
factors asgx+y)(x+1), there are no elemengsin E\F with Nz =y and Trz = —y—1.

If z € F, then the conditions yield = z2 and 2 = —y — 1 = —z? — 1, implying the
only nonvoid sum occurs when= —1 and =1, in which case the sum is equal to

1. As for the first sum, in order that+ 22= = 0 for somez with Nz = y, we must
have z = —%1 € F*. Theny = N(z) = y—+l implies y = 1. In this casez = —1.
Hence

- 1
WA(((l) 2))=—qlr<A,onr> ) A(1+Z>+1+(q_1)

zel,z#-1,
Nz=1

=—q T YoTy > Ad+2)+q, (3.1)

zelk,z#-1,
Nz=1

and fory # 1,

(s )= 2 ) (7 9)

zel,
Nz=y

Proposition 3. Y n.—1 A(1+2) = —A(S) = +1
z#-1

Proof. Write N for the subgroup of elements iB* with norm 1 to[F. It is cyclic of
orderg +1. The mapg : E* — N given byz — % is surjective with kerneF™. Any
character ofE* trivial on F* factors throughN. Thus there is a charactgrof N such
that A(z) = y(¢(2)) = x(Z). Consider the restriction op to the subsetS = {1+ z:

z€ N,z #-1}. We clalm that¢ is injective onS. Indeed, ifz, w € N\ {—1} are such
that ¢(1+ z) = ¢(1+ w), then there exist& € F* such that & z = k(1 + w). Then
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z=kw+k — 1 implies

1= zz% = KPww? + (k — D? + k(k — D(w + w)
= K2+ (k — D2+ k(k — D(w + w?).
If z # w, thenk # 1, and the above impliess + w? = —2, that is,w = —1, a

contradiction. Thusp(S) contains all elements iN except—1, for 1+ z = —(1+ z9)
would imply z = —1. Therefore

Yo Ald+= ) 1@ == = -AW0) =1
N _—

z=1 zeN
z#—-1 z#—1

since A%(v/3) = A(0) =1. O
On the other hand,

T yoTr) = > ARY(Tr)

zeE*
=Y Y Aab+Vo)aTrb+ o)
belF* aclF*
+ Y A@Voy@TiVo)+ Y Ala(aTr)
aeclF* aeclF*
==Y Ab+V0) —AD) + (g — DANG) = g AW9).
belF™

Therefore I'(A, Yy o Tr) Y. nz=1 AL + 2) = gA)(—A()) = —q. Plugging into
#-1
(3.1), we obtain )

Proposition 4. W4 ((é 2)) =q+1

ConsequentlyW, # 0, and henceW,, # 0 for somey. We have shown that the

dimension of Ly (r4, G/K) is at least one for some and hence for @ll# xpo. We
record this in

Proposition 5. For each discrete series representation charactey of G and each
nontrivial additive characten) of F, the space’ (4, G/K) is 1-dimensional

Let KsK be a K-double coset ofG. The operatorTksk preserves each spad,
(r, G/K) and the eigenvalue depends only on the representation, not its model. As com-
puted in[1], the K-double coset&sK with cardinality greater thap+1 are symmetric,
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and they are parameterized by [ with ¢ # £1 so thatkskK = [, ,,(j 5{‘)1( where
(v, x) runs all solutions of y+¢)?—dx? = ¢>—1 over[F. Heres may be any coset rep-
resentative(g olx), for instance. Denote this double coset Ky for short. We proceed
to compute the eigenvalues @k, using the rightK -invariant eigenfunctions obtained
above.

For e F* with p# 1, we haveT, f, = An,.cfu- Hence

Impe = Iy fi (((1, 2)) 2. ((3 i ))

vel,
(y+¢)2—x%=c?—1

= > 1),

vel,
(y+¢)2—0x2=c?—1

which is known to have absolute value bounded Qyg2 See Theorem 10 in Chapter
9 of [10] for a proof using idéle class characters. As remarked before, the eigenvalue
/z,.c depends only on the representation and the double dose¥e have shown

Proposition 6. Let u be a nontrivial character of*. The eigenvalue/s, . on

Ly(ny, G/K) is Y (v,x) u(y), which has absolute value at mo3t/q for
(y+c)2—0x2=c?—1

all additive characten) of F. For u = 1, the trivial character the constant functions

on G are the eigenfunctions dfx, with eigenvalueg + 1, coming from the trivial

representation of G

Next we fix a discrete series representationand discuss the eigenvalue B, on
the 1-dimensional spacéy (r,, G/K) for y # wo. Since W, € Ly(nyg, G/K), we
haveTkx W, y = An,.cWa,y and hencelx Wy = Az, W4, WhereW, = Zl//#wo Wiy
has the Fourier expansion

W ((é i)(é 2))2 Y Way ((é 2)) ).

Y#y°

Recall thatW 4 ((é 2)) = g+1# 0. We will use this value to compute the eigenvalue

of Tk, for ¢ # £1. By definition,

(Tk. W) (((1) 2)) Z Wy

(y,x)
(y+c)2—dx2=c?~1

= Z Wy

(.x)
(y4¢)2—dx2=c2-1

e Y

(5 oo
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= > Yo gt Y Aw(Trw)

(y.x) YEY° beF weE
(y4¢)2—dx2=c?-1 N w=y(b%—J)

xp(b(y + D) (x) + Oy, 14(0x).

For fixed (y, x), we compute

Y=Y DT AW wYb(y + D (ox)

yAy° bel we[EXZ ]
N w=y(b“—9J)
=qt ), ) Awm=-Y Y} Aw)
belF welE> beF weE* Nw=y(b%-9)
N w=y(h%—5) Trw=—(y+1)b—dx

-2 2. Aw

belF weE* N w=y(b%-5)
Trw=—(y+1)b—dx

SINCe Y N yy—yp2—g) A(w) = 0 for all b € F. Further,

D 0yap(0x) = —0y1 4 ¢6y.1000 = —0y1
v#AY°

as(y, x) = (1, 0) does not satisfy the equatian +c)2—dx2 = c2—1 because # —1.
Therefore we may write

mo((3)= T s

(y,x)
(y+c)2—ox?=c?—1

where

Sy == > A(w) — dy 1. (3.2)

belF weE* N w=y(b%—5)
Trw=—(y+1)b—0dx

To proceed, we prove

Theorem 7. Givenc € F, ¢ # +1, let y, x € F satisfy (y + ¢)2 — 6x2 = ¢2 — 1. Then
|S(y,x)| <2ﬂ
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The following two results, adapted from Theorem 4 in Chapter @.Of and Theorem
5 of [11], respectively, will be used repeatedly in the proof.

Theorem 8. Let v be the quadratic character of*. Let f(T) be a quadratic poly-
nomial overF with two distinct roots. Denote by, ..., v, r <2, the places offF(T)
containing the roots of f. Then there exists an idele class character, , of F(7)
such that

(1) The conductor ofy is v1 + - -+ + vy;
(2) At each placev of degreel with uniformizern, = T — v wheren is unramified
we haven, (m,) = v(f(v)), and 14, (T«) = 1.

Theorem 9. Let £(T) be a nonconstant polynomial ovér with distinct roots. Let
w1, ..., w, be the places of (T') containing the roots of h. Then there exists an idele
class characterw = w4, of F(T) such that

(1) The conductor oty is w1 + - -+ + wy;
(2) At each placev of degreel with uniformizern, = T — v wherew is unramified
we havew,(n,) = A(h(v)).

The charactern in Theorem9 is unramified abo since A is trivial on F*. But the
value of wy (7o) depends ond and 4. In caseh(0) # O, it is equal to

Woo (Too) = ]_[ wy(T) = A(h(0))A(product of roots of;)~*
VF#00

A (the leading coefficient of). 3.3)

following the proof of Theorem 5 ifl11].

The following character sum estimate results from the Riemann hypothesis for curves,
as explained in Section 1, Chapter 6 of [10]. It will be used repeatedly to derive
character sum estimates.

Proposition 10. Let y be an idéle class character 6f(T") such that its conductor has
degree m. Then

Y nm)|<m—2yq.
degv=1
1, unramified

We now begin the proof of Theoref We distinguish three cases.
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Casel: y = —1. Thendx? = 2 — 2¢ implies x # 0 sincec # 1. In this case

S—1x) =— Z Z A(w).

belF weE*,Nw=—(b%-9)
Trw=—0x

s2
Write w = — 9% +v+/3. Then Nw = o2 225 = 5—b2 amounts toy+v25— 95 = b2
being a square, or equwalently,+]112— % = 1+v2—15¢ = v24 1< not a square in

F. Denote byv the quadratic character df*, extended to a function of by letting
v(0) = 0. We rewriteS(_1,,) as

S—1x) = — Z A (—57)( + v\/3>

velF
v?+14¢is a nonsquare

AR (e )

velF

1 ox
= Al =22
+5 ) < >+ v\/5)
velF
U2+1;C:O

IS () (- d) B X (5 wh)

velF velF

1

N

A (—— + v«/—)
velF
v2+l—5(3:0

As v runs through all elements ifi, no two elements of the form-<¢ ‘Sx + v4/o differ
by a multiple inF*, hence—3 Y, .r A(—=% +vv/3) = 3 A(V5) and

Sc1x) = % Zv(vz—i—l;C)A(———}- f)+ AWD)

Let f(T) = T? + 3¢ and i(T) = —% + TV0. Let = s andw = wy, be
the idéle class characters bBT) as described in Theorems 8 and 9, respectively. The
conductor ofw is w1 with the uniformizern,,, = T2 — % which is disjoint from the
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conductor ofy. Hence the conductor ofw has degree 4. Moreovens, (o) = A(0)
by Eq. @.3). Therefore

Yo mmoym)| = Zv(f(v))/l(h(v))JrA(x/E)‘

degv=1 velF
1,y unramified

_ Zv(v2+izc)/1<——+v«/_>+/1(*/_)'

= [25C1n— Y. A<—5?x+v«/5) <@4-2q

velF
v2+%20
implies
[S—10|<Va+1<2(q,
as desired.

It remains to deal with the case# —1. We eliminate the variablie in the expression
of S(y.x). Write w = u 4+ v+/5 with u, v € F. The conditions Nv = y(h? — J) and
Trw = —(y + 1)b — éx can be combined as

2
N_w+5=b2=(Trw+5x>.
y y+1
In other words,
4 Ayus 5x2
y2u2+ yux2+yx2’
O+ o+ Oo+D

2 _ 2 Y 2

which in turn yields

2 2.2
y—1 2 4ydx 2 yo<x
<_y+1> uc — O 12 u—v90=-—yo+ —(y+1)2. (3.4)

Case2: y = 1. Thendx? = 2+ 2¢ # 0 sincec # —1. The above relation can be
simplified as

5%x2 1+c c—1
—0xu —vO0=—0+——=-0+9
xu—v* T2 to— 2
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which allows us to express in terms ofv:u = 1 (3¢ — v2). Then

sa,n:—ZA(;<1;C_U2)+U¢5)_1.

velF

Let

W(T) = %(1;C—T2)+TJS=—% (Tz—x\/gT—J';C)

2 2
1 x4/ x25 -1 1 x/d
- (T_T> R (T_ 2 ) -1

Let w = wy;, be the idéle class character B{7) attached to4 andh as described
in Theorem9. The conductor ofy is w1 + w2, wherew; and w2 are two degree two
places ofF(T) containing%S -1 and@ +1 as roots, respectively. So the conductor
of w has degree 4. By EQ. (3.3 (7s) = 1. Put together, we have

—San =Y AG@)+1= Y om),

velF degv=1

which satisfiesS(1 )| <2./q.
Case3: y # +1. We havey? + 2yc + 1 = 6x2. The relation 8.4) can be rewritten
as

-1 2 2 242
(Lrda 20Y e 202

PA g
y+1 y2-1 (y—12
so that
Syx) = — Z A(u + U\/S)
~1  2y5 <, 242
N(§_+l “ yyzv—xl"”)‘/g):by2 <;1§2

Replacingu by i—j u+ (5{‘51);2, we rewrite the above as
+1 2y0x
Sy = — Z A(y u—+ Y 2+v«/§>.
» 242 y—1 -1

N(u+v\/5)=5y (yTl)z
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Setz = u + v+/5. Then

NZ 1 2 2+2C
2u = 9 = — = -0 .
u=z+z Z+ . Z+z y (y—1)2

Using this, we may express the argument/bfas a rational function in:

y+1 2yox 2 2yox
u +uVo = u +
y=1" " (y—-172 -1 -2
y 1 2+2 _, 2ydx

y—lz+z(y—1)3 Y +(y—1 = 0@

By choosing an element € E\F with Nw = 0y 22, e rewrite S¢y ) as

y—1)2°
Sow== .  AQ@)=- ) AQwz).
N z=0y?2 (3ti§2 Nzi=1

Here

y 1 Nw _, 2ydx 1 ( w? 2y5x>

w —— w1+ — oy“ + = wzy + — +
e =y vat oy oo Ty v y—-1
=: R(z1).

Consider

R T-vo\ 1 wT—«/5+wq(T+\/5)+2y5x
T+vs] y-1 T+ 5 T -5 y—1

(yw(T — 82+ wi(T + V52 + ﬁxl(ﬂ — 5))

T - D(T?=9) -
_ D
O =D(T2-9)’

whereh(T) = (yw-+w? + 25724 2w/ - 2yw«/_)T+yw5+w‘15—2yfx E(T].

As T runs through elements if, +£ runs through all elements; in E with norm

1 exceptzy = 1. Observe that fof € F, A(R( )) = A((y_—lh)((TT)_ré)) = A(h(T))
since A is trivial on F*. Thus we have

Somy ==, AR@ED) ==Y A(h(v) — AR(D).

Nz;=1 velF
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Notice that in the course of deriving various expressionss©fy), the character1 is
always evaluated at nonzero elementskinn particular, this means thét(v) # O for
all v € F. In other words, the roots of are outsideF. Sincey # 1 andw ¢ [ by
choice, both the leading coefficient and the constant term(6j lie in E\F. Moreover,
their ratio also lies inE\[F. This implies that if2(7T) has a rootr of multiplicity 2,
thent lies in E\F. In this case, fow € F,

A(h(v)) = A <yw +w? + Zy—é’;) A%(v —1).
y—

As v runs through all elements ifi, no two elements of the forna — ¢ differ by a
multiple in F*. Since the order of1 is greater than 2, we have

=Y Ay =4 (yw ot 4 2 ) A2
y—1
velF

and consequentlyS, )| <2 < 2,/q.

Finally we discuss the case whefiehas two distinct roots. Either they are noncon-
jugate overlF, and hence contained in two distinct plaags v, of F(T) of degree 2,
or they are conjugate ovér and contained in a degree 4 plageof F(T). At any rate,
the idéle class charactes = w,, attached to4 and . as described in Theore®
has conductor of degree 4. Further,is unramified at all places of degree 1, and

2y5x> — ARQD).
y—1

Woo(Too) = A (yw +w +

Therefore

Sy == Ah®) = ARD) == Y wy(m).

velF degv=1

and Sy, <2,/q. This completes the proof of the theorem.
Since

10 . 10
()= T (39

(y.x)
(y4¢)2—6x2=c?—1

== /,LTEA,C(q + 1)

is a sum ofg + 1 termsS, ) and eachS, ) is of absolute value at most,Z;, we
conclude that the eigenvalug,, . of Tk, on the space, (n4, G/K) associated to the
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discrete series, satisfies|/i,, | <2,/q for each nontrivial additive charactér. This
proves

Proposition 11. Let A be a character oft™ trivial on F* and of order greater than
2. The eigenvaluel,, . of the operatorTk, on the 1-dimensional spac& (r;, G/K)

is equal to 37 3 - S(y.xy and satisfies /i, .| <2,/g for all nontrivial
(y4¢)2—6x2=c?~1
additive characteny.

Combined with Propositio, we obtain another proof of the following result estab-
lished by Terras et al. in [1,2].

Theorem 12. Givenc € F with ¢ # +1, denote byK. the K-double coset (3 51)‘)1(

= Up.o (3 51")K where (y, x) satisfies(y + ¢)2 — 6x2 = ¢2 — 1. Then the Cayley
graphy X, = Cay(G/K, K,) is an undirected(g + 1)-regular Ramanujan graph

4. The U-graphs

In this section, we leH = U. We first analyze the spadél//o(G/ U). Note thatG =
AU U AU (91 é) U is a disjoint union of two double cosets. One sees immediately

that for eachu € [AFX, the rightU-invariant subspace of Inds 2-dimensional, generated

by
y O « 0 1
gullo 1 U|=uQ) foral yelF* andg,| AU 10 U)=0.

and

y X 0 1 %
h#<<0 1)(_1 0) U):,u(y) forall y e I, x e F, andh,(AU) =0.

Thus ﬁl//o(G/U) is 2(¢q — 1)-dimensional. Next we fix a nontrivial additive character

of F. For each irreducible representatianof G with degr > 1 and eachv € Ky (n),
the Whittaker function

Wy(@) =g ) (m(gu)v)(D)

selF

is right U-invariant. Hereu, = (é i) as in§2. Using the actions ofi(u,) on 0 €

Dg, and Do, described in§2, one gets

Wo(g) =0, Wpy(g) = (m(g)Do)(1) and Wp,_,(g) = (m(g) Doo) (D)
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for all g € G. Since dML(G/U) = (¢ + 1)(¢ — 1), by dimension counting one finds
that the rightU-invariant space is O-dimensional for discrete series representations; it
is 1-dimensional generated By p,} for the Steinberg representationg with u? = 1,

and it is 2-dimensional generated W p,, W} for principal series representations
m, with p? # 1. We record this in

Proposition 13. (1) The spacecwo(nﬂ, G/U) is 2-dimensional for allu € .

(2) For nontrivial y’s, the spacely (n, G/U) is O-dimensional ifz is a discrete
series representatignit is 1-dimensional ifz is a Steinberg representatiprand 2-
dimensional ifr is a principal series representation

The 2g — 1) U-double cosets ofG fall in two categories. The first consists of
U(g S)U,r e F*, which are not symmetric if* # +1 and which are contained
in the Borel subgroup= AU) of G, hence not interesting; the second consists of

U(% U, t e F*, which are symmetric and of interest to us. Wiite= U( %, §)U
for short. Then

U,:U<_cl 8>U

celF

is a disjoint union ofg U-cosets. The operatdfy, preserves each spagg, (n, G/U).
To study its eigenvalues and eigenfunctions, we start WRh Note that

(S0)v=(o 7)(5 o)

0 ¢ 10

<_1 O>U=< 0 l)U and

c t te=2 ¢l 0 1
(—1 o>U=< 0o 1 >(—1 0>U

for all ¢ € F*. Let ue . Then forl, € {gu, hy}, we have

o)l 7))
(%)

for all ¢ € F and
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and
-1

(% 3)9)-20((% (5 9))-u((5 9)2)

celF

tc=2 1 0 1
(o 1)(%0)Y)
celF*
1 2 0 1
= uHLW) + u) Y H(C)lu((_l O)U)-
cel*

Thus

Ty g = 1t Dy and Ty hy = qun)gu + w) Y 12(©)hy.

celF*

In other words, with respect to the bagig,, #,} of Ewo(nu, G/U), the operatorTy,
can be represented by the matrix

< 0 qu(r) )
p™h w6 Y e 1) )

Consequently, ifu® # 1, the eigenvalues offy, are +./q with eigenfunctions
+./qu(t) gy + hy; while if 12 = 1, the eigenvalues arg(r)qg and —u(r) with eigen-
functions g, + h, andgqg, — hy, respectively.

Next we deal with the casg # /°. Observe that

(50)=(e )5 0)(0 (6 7)

and I'(1, y) = —1. Recall that for a Steinberg representatior= 7, with 2 =1, the
spaceLy (n, G/U) is 1-dimensional generated HY p,}- The action ofTy, on Wp,
is given by, according to the Kirillov model of,,,

(Ty,Wpo)(8) = ) W, (g (_Cl : )) = 2[; (n (g (_Cl g)) Do> (1)

celF

= Y (M@ n(u)m(w)n(h,-1) Do)(1)

celF

= ) ((@)mu)n(w)u(n)Do)(1)  (sincep =)

celF
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= Y (m()n(ue) (=g~ e, ™ Yy u) (=t + Do))(1)

celF

= —q Ye(m 1t Y u)n(g)

x| Y@= fuOr @ BB+t + ) Do | (D)

celF* ﬁE[AFX celF

= —q te(m, 1 Y)u)n(e)
g = D7 Hg = DI Yt + 1 + g Dol(1)
= —e(m, 1L P O[r(§) Dol(L) = —&(m. k™ YO W py(8)
for all g € G, which implies that the eigenvalue is
—e(m ) () = =T )T ) = =TT )p) = —p().
Recall that for a principal series representation= m, with > # 1, the space

Ly (my, G/U) is 2-dimensional generated HWDO,WDOO}. Using the Kirillov model
of n, we get

(Ty,Wpo)(®) = Y W, (g (_Cl : )) = ; (n (g (fl g)) Do> (D)

celF

=Y (@) n(w)n(h, 1) Do)(D) = Y (n(g)m(ue) m(w) () Do) (1)

celF celF

=Y (m@nue) (=g~ e(m, ) ) (t + Do)(L)

celF

= —q Ye(m, p Y)ueHn(g)

x| D @=D7" Y Bu@T @ B+ + ) Do | (D)

celF* ,Be[AFX ceF
= —q e(m, w Y)ut Hn(g)
x((g =D Hg - DI @,y + 1t + gDsol(D)

= —&(m, p Yt HIn(g) Dool(L) = —e(m, i, Y) it HWp, (g)
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and
o= 0 55 )= (+(:( s 1)) o)
= Z (n(g)m(uc)m(w)m(h,—1) Do) (1)
celF
=Y (@(@n(u)m(w)n (™) Doo) (1)
celF
= Y @@)nue) (=g~ e(m 1)) (1 + Do))(D)
celF

= —g Y, 1L Y)p)n(g)

x| > @-D > putOrwp Tt y)p+u=>Y Do | @

AX

celF* pef celF

= —q Ye(n, 1L Yun (@)l — Vg — DI Q)+ i+ gDol(D)
= —e(m, 1L @) n(g) Dol(D) = —e(m, w2, Yy ()W py(2)

for all g € G. With respect to the basi§V p,, Wp_ }, the operatorTy, is represented
by the matrix

< 0 —e(m, = () )
—&(m, u, Y)u™h 0 '

As

e(m, o e, 1) = T2 )T T )T 20)) = qud(—1) = ¢,

the eigenvalues aret,/g with corresponding eigenfunctions:,/ge(m, u, ) Lu()
Wpy — Wp,.
We have shown

Theorem 14. For ¢ € F*, the Cayley graphXy, = CayG/U, U,/U) is a gregular
Ramanujan graph with the following eigenvalugsgt)q of multiplicity one —u(r) of
multiplicity q for 42 = 1, and +./q of multiplicity (¢ + 1)(¢ — 3)/2.

Therefore the graphXy, is bipartite fort nonsquare sinceu(r) = —1 for p of
order 2. Ift is a square, the graph has two connected components, one with square
determinants and one with nonsquares. In case 1, one component is isomorphic
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to the graph CaPSLy(F)/U, UwU/U), which, for the casegy = p a prime, is a
cover of the Ramanujan graph on cusps of the principal congruence subf(pumf
SLy(Z) studied by Gunnells if8]. Wheng = p¢ is a power of the prime, a similar
interpretation holds, as we explain below.

The cusps of the Drinfeld upper half plane attached to the rational function field
F,(T) and the (degree one) place at infinity is representel J{§")U{oo} = IPl([F,,(T)),
on which the groupg” = GLx(F,[T]) acts via fractional linear transformations. Endow
a graph structure, called, on I]J’l([Fp(T)) by defining two cuspsl, v to be adjacent if
there existsy € I' sending the cusp 0 to and the cuspo to v. Let P be an irreducible
polynomial of degreee over [F,, and letI'(P) be the principal congruence subgroup
of I' consisting of matrices congruent to the identity matrix modeldenote byX p
the quotient graph’(P)\X. This is a positive characteristic analog of the graptp)
in Gunnells’s paper [8].

We proceed to show the connection betweép and CayPSLy(F)/U, UwU/U).
First observe the following lemma, which can be deduced by the same argument as in
the proof of Lemma 1.42 in Shimura’s book [19].

Lemma 15. Lets = ¢ and¢’ = < be two cusps iP!(F, (7)), where ab, ¢, d € F,[T]
and gcd(a, b) = gcd(c,d) = 1. Thenr and ¢' are equivalent unded (P) if and only
if () =4(;) modpP for some/ € F.

Note thatl,[T] moduloP is a finite field with p¢ = ¢ elements, which we identify
with F. By the lemma above, the vertices Xip may be expressed as the column

a

vectors(b) modulo scalar multiplications bjF;, wherea, b € F, not both zero. The

cusp 0 is represented t()};) and cuspoo by (é) The image ofl” modulo P is

G' = {y € GLy(F): dety € F}

and the action of” on the cusps of (P) becomes (matrix) left multiplication by’.
Observe that the vertices &fp are also the first (or second) columns of the matrices
in G’ modulo . Since

G’:SLz([F)-{(g 2>:ae[F;}
1

acts transitively on the vertices df p and the stabilizer 0I<0> in G’ is the Borel

subgroup ofG’, the vertices ofXp are represented by PS(F)/B, whereB denotes
the Borel subgroup of PSI(F). Suppose that verticag v of Xp are adjacent, that is,

there is a matrixy € G’ such thaty (2) =u andy (é) = v. Thenv and u are the

first and second columns gf In particular, this shows that the neighbors (cé‘) are
the second columns of the elements in the unipotent subdtbop G’, which is also
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the unipotent subgroup of PS(F). Note that they are the first columns of the coset
representatives of the double cosbvU =, ¢ (‘l ‘01> U. As the edge structure on

X p is defined by transporting the edges out of the Vel(té% to other vertices using
left multiplications byG’, we have shown

Proposition 16. The graphXp on cusps ofl'(P) is a quotient ofCayPSLy(F)/U,
UwU/U), hence also a quotient @ay(G/U, UwU/U). Consequentlyit is a g-regular
Ramanujan graph

5. The A-graphs

In this section, the groupd is A. We start with the spaceﬁil//o(G/A). The group

G=UAUUA (_01 (l)) AUUA (_01 i) A is a disjoint union of three double cosets.

For u # 1, one can easily see that the rightnvariant space of Ingd is 1-dimensional,
generated by

0 1 §
f’”((é §_><__’]_ ]_)A):H()’) f0ra||ye[F . xeF and

fuUA) = f, (UA (_01 é) A) o,

If u =1, then the rightA-invariant space is 3-dimensional generated{ly, f>, f3}
where f1, f» and f3 are the characteristic functions o/ A, UA (2 i)A and

UA (_01 é) A, respectively. Clearlyﬁl//o(lodel; G/A) is 1-dimensional. Scﬁwo(nl,

G/A) is 2-dimensional. Next we fix a nontrivial additive characgerof F. For each
irreducible representation of G of degree greater than 1, the function

Wy(g) = (g — D" Y (n(gh)v)(D)

ref*

is right A-invariant for allv € Ky (). From the action ofr(h,) on 0 € [AFX, Do and
Do, described in§2, we find

[ (0@ if 0=1; _ ) (@) Do)(D) if m=ma;
We(g)—{o if 041, WDO(g)_{o if ©=m, with u# 1,

and Wp_(g) = 0 for all g € G. Since dimZ(G/A) = g(¢g — 1), we conclude by
dimension counting that for a principal series representatipnthe Steinberg repre-
sentationr, with u quadratic, and for a discrete series representatipnthe space of
right A-invariant vectors in its Whittaker model is 1-dimensional generated Wy},
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and the space of righ&-invariant vectors is 2-dimensional generated{®, Wp,} for
the Steinberg representation.
We have proven

Proposition 17. (1) The spacecl//o(nﬂ, G/A) is 1-dimensional ifu # 1 and 2-dimen
sional if © = 1; and the spaceCl//o(lo det, G/A) is 1-dimensional

(2) For nontrivial y’s, the spacely (r, G/A) is 2-dimensional ifr is the Steinberg
representationrty, and 1-dimensional otherwise

The groupC hasg + 4 A-double cosets. Except fot (é 2) A=A, A (f’l é) A=
(91 é) A, each of the remaining + 2 double cosetst (f)l 1) A, A (é 1) A and
A (i i:z) A, ¢ € F, is the disjoint union ofq A-cosets. WriteA, = A (i i:g) A
and Ay, = A (é i) A for short. Among these, we rule odts and A, since they are

contained in conjugates of the Borel subgroupGyfand A; and A(_o1 1)A since they
are not their own inverse. The remaining symmetric double casgts € F\{1, ¢} are
of interest to us. For such, we expressA. as the union ofA-cosets:

_ x x(0—o¢)
AC_U(1 1. )A.
xelf*

Our computations on the spaft—;:/,o(G/A) will use the following facts repeatedly:

) (65—0) x(0-1) N 01 01 6—0) 16 _9¢
(5 ) an () () a5 ) ) e (5
0 1

(_01 i)A for all x € F*,

-1
(ii) (01 i) (’i x(f—f))A - <<x—1>(xx<g—c>)—<1—c)> _ﬁ>
B o -

i)A for all x ¢

N
|
AN

0
1
—c

" —C
—1 0 1) /(1 é—c 1 3-1 0 1 s— l-c
oLl (91 (T)a= <501 5ll> Aand( % 7) ( o H) A
(1-c)(0—c) d—c
e 0 1
- < 551 011> (_1 0) A

For ju # 1, £,0(ny, G/A) is 1-dimensional generated By} with (% D=1,
So it is an eigenspace df, with the eigenvalue

(3 )2 (D6

1 c—1 1-c)0—¢c) O0—c <0 1)

“1 ||+ 5 5—1 5—1
0 1 0 1 -1.0
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x@—1) 1 o 1
+ > fu (x—l)(x(é—oc)—(l—c)) x1—1)<_1 1))

xelfF*

x;ﬁl,%

- L MaTha6-o-a-o)
xelF

x#L%3§

Therefore| 4| <2,/q by Theorem 3 in Chapter 6 ¢10]. If u =1, thenEl/,o(nl, G/A)®
wo(lodet G/A) is 3-dimensional, generated BY1, f2, f3}. Fori € {1, 2, 3}, we have

G-0
(Ta f)(UA) = Z ﬁ((x RN ))

- () (5 ),

xelF*

i (oa( 5 1))
25 )G )
(i ) (B ) ()

0 1
x(6—1) K 0 1
+ > fillc-DaxG-0-—d-c) x-1 (_1 1) :
ot 0 1
a;él,(ls%i
1 —
mn(en(2 )= £ (% D 4)
xelF*
s—1 1
= Z fi((x(é—c) _)_c)(_ol i))
xelF> 0 1

This shows that
Ta 1) = f2, Ta, f2) =@ —Dfi+(q—=3fo+(q—-Dfz and (Ta, f3) = f2.
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So with respect to the basif, f2, f3, the operatorT,, is represented by the matrix

0 ¢g—10
1 ¢-3 1]).
0 ¢g—10
Clearly, 0 is an eigenvalue ofs . Further, £ 0(10 det G/A) is a 1-dimensional

eigenspace with the eigenvalge- 1. Hence 04 — 1 and—2 (from trace computation)
are eigenvalues of s, with the eigenfunctionsf1 — f3, f1+ f2+ f3 and 1_qu1+]‘2+
1%1 f3, respectively.

Now we turn to a nontrivial additive charactgr Recall thatZ,, (z, G/A) is generated
by {W1} for n # mp and by {Wy1, Wp,} for = = n;. We shall compute the actions of
T4, on these two functions. Note that

x x(G-0o)\ _(x 0\[/1 1 0 1\/11l-¢) (1-0)1

1 1-¢ ) \o 1)\o 1)\-1 0 0 1
1-6"1T o0\/s6-1 0 o

x( 0 1)( 0 1) for all x € F*.

Using the Kirillov model ofz given in §2, we compute first

(T4 WD(9) = 3 Wi (g(’i x(f__f)» =Z[n <8(§ x(f__cc)»l} @

xelF*

= Y [n(@n(h) ) (W) m(u 1 1-g5)-1)T(hq_5-1)11(L)

= (q-D7%1) | pA-0A-5)"HI (B Ye(m. B )
ﬁe@x

x Y Ty [n(g) > y(x)y:| (1)
yel” .

+@=D7 Y BA—e)A=5)"HI (B ¥) [n(g) > n(hx)e(ﬂ)} 6]

pek

=@—-D ) BA-o@— &) HI B )%e(n, B ) n(g)11(D)
B

+@-D1Y_ pA-0)1-)"HI B ) [n(g) > n(hx)e(ﬁ)} .
B

X
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The sumy_, px n(hy)e(B) = —g (g —De(n, B. y)(g?—1)dp 1 Do if 7 is the Steinberg
representationt;, and O otherwise. In case is the Steinberg representation, we
also need to find the action @, on Wp,, which is, forg € G,

(Ta Wo)(®) = 3 Wy <g (i x(lé_—cc) )) -y [n(g()é x(lé_—cc))) DO] 1
xef* *
= Y [n(@)m(h ) ()T (W) (1 (1o 1-5)-) (1 _5)-1) Dol (1)
= > [m(@)m(h, 1) muD) T W) (U g0 1—5)-1) Dol (D)

= Y [(@)nlh,-)m(u)—g e(n1. 1Y) (1 + Do)l(D)

=—q ') w@nth,1) | (@-D Y TE L yB+Do| (1)
* ﬂe@x

—q 'n(g) {(q —DTEYTER WY BB+ Doj| 6
p X X

= ¢ n(e)11(D) — ¢ g — DIn(g) Dol (1)
= ¢ 'Wi(g) — g g — DWpy(g)

sincee(r, 1, ) = 1.
To compute the eigenvalues and the eigenfunctionsT of we begin with the
2-dimensional spac€,(n1, G/A) generated by{W1, Wp,}. The identities

st o) = FB? and Tgprn={7 B2 T

yield the expression

(Ta. W) (9) = —(q — D g7 g% — HWale) + ¢ H(g? — DWpy(g).

Hence with respect to the bas{$V1, Wp,}, the operatorT,, is represented by the
matrix

g+1 1

q q
q2—l qg—1

q q
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Thus 0 and—-2 are the eigenvalues dfy, with eigenfunctionsWy + (¢ + 1)Wp, and
(¢ — 1)W1 — Wp,, respectively.

Next we consider the case where# 1. Then Ly (n, G/A) is 1-dimensional, so it
is an eigenspace generated {31} with the eigenvalue

A= -1t Y] BA- @ =) THIBE T )% B
ﬁe@x

Whenr is a discrete series representation, we haves(n, f, ) = —Z__px A(z) (N z)
Y (Trz) so that

> B —-o@= ) I )3em. fp)

ﬁe@x

=— Y BA-0@A-0)"H Y W@ Y BOWO)

pef™ xeF> yeF*

x Y A@PBNY(Trz)

zeE*
N
=—@-D ) D vy ( a C;) Z) A@Y(Trz)
xelF* zelE*
_ (1-0oNz
=—(q — 1 ZEE:X A(Z)lp(TrZ) XgF:x lp ()C + m) .

Thus |4 < (¢ — D¢ (g — Dg(2,/9) = 2,/g Corollary 5 in Chapter 6 of10].
When 7 is a principal series representation or a Steinberg representagionith
1 # 1, we havee(n, B, y) = I'(u, Y)I' (2B, ) so that

> BA-o@ =) HIBE )%, )

[ie[AFX

=Y BA-0@=-0"H Y Y@ D BTG D uBaw)

Bef™ xelF> yelF* uef>

x Y B

zelF*
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1-
=@ - Z Y (x )zp(“( )u(uwu)u‘l(z)w(z)

. (1—-9)x
1-—
=@—1D Y ey Y u Y Z lﬂ( %)
uelF* zelf”

Thus |2 <(¢ — D¢ (¢ — 1 /q3./9(2/9) = 2,/q by the same corollary.

We have found all eigenvalues and eigenfunctions of the opefatoon the space
L(G/A). The eigenvalues are the spectrum of the Cayley grapi&ay, A./A); the
estimates indicate that it is almost a Ramanujan graph. We record this in

Theorem 18.For ¢ # 1,0, all nontrivial eigenvalues of the Cayley grapha,
= Cay(G/A, A./A) have absolute value at mo2t/g.
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