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Abstract

We start with a bijective proof ofSchur’s theorem due to Alladi and Gordon and describe how a
particular iteration of it leads to some very general theorems on colored partitions. These theorems
imply a number of important results, including Schur’s theorem, Bressoud’s generalization of a
theorem of Göllnitz, two of Andrews’ generalizations of Schur’s theorem, and the Andrews–Olsson
identities.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

In 1926 Schur [16] proved that the number of partitions of m into distinct parts not
divisible by 3 is equal to the number of partitions ofm where parts differ by at least 3
and multiples of 3 differ by at least 6. Over the years there have been a number of proofs
of this theorem (e.g. [2,4,6,9,11,14]), including a few delightfully simple combinatorial
arguments [2,11,14]. In [2], Alladi and Gordon showed how to deduce Schur’s theorem
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from an interpretation of the infinite product

∞∏
k=1

(1 + y1qk)(1 + y2qk) (1.1)

as a generating function for partitions whose parts come in three colors:

Theorem 1.1 (Alladi–Gordon). The number of pairs of partitions(µ1, µ2), whereµr is a
partition into xr distinct parts and the sum of all of the parts is m, is equal to the number
of partitions of m into distinct parts occurring in three colors (labelled1, 2, and3) such
that (i) thepart 1 does not occur in color3, (ii) consecutive parts differ by at least2 if the
larger has color3 or if the larger has color1 and the smaller has color2, (iii ) x j is the
number of parts with color j plus the number of parts with color3.

Among their proofs of this theorem is an attractive bijective argument which adapts
some ideas of Bressoud [13]. In this paper we describe a particular iteration of this
bijection, which leads an interpretation of the infinite product

∞∏
k=1

(1 + y1qk)(1 + y2qk) · · · (1 + ynqk) (1.2)

as a generating function for certain partitions where the parts come in 2n − 1 colors. To
state the theorems, we require some notation. Fort-colored partitions, we denote thet
colors by the natural numbers(1, . . . , t), with the parts ordered first according to size and
then according to color. We writeω(c) for the number of powers of 2 occurring in the
binary representation ofc, andv(c) (resp.z(c)) for the smallest (resp. largest) power of 2
occurring inthis representation. The functionδ(c, d) is equal to 1 ifz(c) < v(d) and is 0
otherwise. Finally, we useci to denote the color of a partλi .

Theorem 1.2. Let A(x1, x2, . . . , xn; m) denote the number of n-tuples(µ1, µ2, . . . , µn),
whereµr is a partition into xr distinct parts, and the sum of all of the parts is m. Let
B(x1, x2, . . . , xn; m) denote the number of partitions λ1 + · · · + λs of m into distinct
parts occurring in2n − 1 colors, where(i) λs ≥ ω(cs), (ii) xr of the colors ci have
2r−1 in their binary representations, and(iii ) λi − λi+1 ≥ ω(ci ) + δ(ci , ci+1). Then
A(x1, x2, . . . , xn; m) = B(x1, x2, . . . , xn; m).

For example, using the notation(λ1, . . . , λs) to represent the sumλ1 + · · · + λs and the
symbolε to denote the empty partition, the 4-tuples of partitions counted byA(2, 0, 1, 1; 9)

are

((6, 1), ε, 1, 1), ((5, 2), ε, 1, 1), ((4, 3), ε, 1, 1),

((5, 1), ε, 2, 1), ((5, 1), ε, 1, 2), ((4, 2), ε, 2, 1),

((4, 2), ε, 1, 2), ((4, 1), ε, 3, 1), ((4, 1), ε, 2, 2), ((4, 1), ε, 1, 3)

((3, 2), ε, 3, 1), ((3, 2), ε, 2, 2), ((3, 2), ε, 1, 3)((3, 1), ε, 4, 1),

((3, 1), ε, 3, 2), ((3, 1), ε, 2, 3), ((3, 1), ε, 1, 4), ((2, 1), ε, 5, 1),

((2, 1), ε, 4, 2), ((2, 1), ε, 3, 3), ((2, 1), ε, 2, 4), ((2, 1), ε, 1, 5)
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and the partitions counted byB(2, 0, 1, 1; 9) are

(813, 11), (713, 21), (79, 25), (75, 29), (613, 31), (69, 35), (65, 39),

(61, 313), (51, 413), (69, 24, 11), (612, 21, 11), (65, 28, 11),

(59, 34, 11), (54, 39, 11), (58, 35, 11), (59, 31, 14), (51, 39, 14),

(55, 31, 18), (512, 31, 11), (51, 312, 11), (48, 31, 25), (44, 31, 29).

Actually, a closerlook at the proof ofTheorem 1.2will reveal that it can be extended by
letting µ1 be either a partition into distinct parts congruent toR moduloM or a partition
into parts that differ by at leastM. These cases correspond to the products

∞∏
k=1

(1 + y1q(k−1)M+R)(1 + y2qk) · · · (1 + ynqk) (1.3)

and
∞∑

k=0

yk
1qM(k(k−1)/2)+k

(1 − q)(1 − q2) · · · (1 − qk)

∞∏
k=1

(1 + y2qk) · · · (1 + ynqk). (1.4)

Let ωe(c) denote the number of even powers of 2 in the binary representation ofc.

Theorem 1.3. Let AR,M (x1, x2, . . . , xn; m) denote the number of n-tuples(µ1, µ2, . . . ,

µn), where eachµr is a partition into xr distinct parts, µ1 is a partition into
distinct parts congruent to R modulo M, and the sum of all of the parts is m. Let
BR,M (x1, . . . , xn; m) denote the number of partitions λ1 + · · · + λs of m counted by
B(x1, . . . , xn; m) suchthat (i) if λS denotes the smallest part with odd color, thenλS ≡
R+∑s

�=Sωe(c�) (mod M) and(ii) if λi ≥ λ j are any two parts with odd color, thenλi ≡
λ j + ∑ j −1

�=i ωe(λ�) (mod M). Then AR,M (x1, x2, . . . , xn; m) = BR,M (x1, x2, . . . , xn; m).

Theorem 1.4. Let AM (x1, x2, . . . , xn; m) denote the number of n-tuples(µ1, µ2, . . . , µn),
where eachµr is a partition into xr distinct parts andµ1 is a partition into parts differ-
ing by at leastM, and the sum of all of the parts is m. Let BM (x1, x2, . . . , xn; m) denote
the number of partitionsλ1 + · · · + λs of m counted by B(x1, . . . , xn; m) such that if
λi ≥ λ j are any two parts with odd color, thenλi − λ j ≥ M + ∑ j −1

�=i ωe(λ�). Then
AM (x1, x2, . . . , xn; m) = BM (x1, x2, . . . , xn; m).

Theorems 1.2–1.4are closely related to a number of important results in the theory of
partitions. For example, by appropriately defining a conjugation on the partitions counted
by B(x1, x2, . . . , xn; m) we will arrive atTheorem 1.5below, which is a generalization of
the Andrews–Olsson identities [10] and which was proven by Bessenrodt [12, Theorem
2.4, C′ = ∅] and stated by Alladi [1, Theorem 15]. Here we shall use uncolored parts as
well as colored parts, assuming that an uncolored part of a given size occurs before all
other parts of that size.

Theorem 1.5. Let C(x1, x2, . . . , xn; m) denote thenumber of partitionsλ1 + · · · + λs of
m into distinct parts occurring either inn colors or uncolored, where(i) the smallest part
is colored,(ii) xr of the parts have color r , and(iii ) λi − λi+1 ≤ 1, with strict inequality
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if ci+1 < ci or λi is uncolored. Then A(x1, x2, . . . , xn; m) = B(x1, x2, . . . , xn; m) =
C(x1, x2, . . . , xn; m).

Theorem 1.5and some of the many other partition theorems contained inTheorems 1.2–
1.4 are discussed in more detail inSection 5. In the following section we review the
Alladi–Gordon bijective proof ofTheorem 1.1and explain our proof ofTheorem 1.2in
the casen = 3. In Section 3we undertake the proof ofTheorem 1.2in full generality and
in Section 4we prove the extensions,Theorems 1.3and1.4.

2. Two basic cases

Although the basic idea behind the proofs ofTheorems 1.2–1.4 is a simple one, the
amount of notation required may obscure this fact. Therefore, we shall present the cases
n = 2 and 3 in detail. First,we review the Alladi–Gordon bijective proof ofTheorem 1.1,
which is the caseA(x1, x2; m) = B(x1, x2; m) of Theorem 1.2. We begin with a partition
λ into x1 distinct parts colored by 1 and a partitionτ into x2 distinct parts colored by 2.

• Step 1. For each partk of τ that is less than or equal to thenumber of parts ofλ, we
add 1 to the firstk parts ofλ and 2 to the color ofλk. We then have the difference conditions

λi − λi+1 ≥ ω(ci ),

for ci , ci+1 �= 2. Notice that all parts with color 3 are bigger than 1.
• Step 2. Now write the unused parts ofτ in decreasing order to the left of the parts

from λ. Remove a staircase, i.e., subtract 0 from the smallest part, 1from the next smallest,
and so on. We therefore get the difference conditions

λi − λi+1 ≥ ω(ci ) − 1

for ci , ci+1 �= 2.
• Step 3. Each partτ j of color 2 remaining in τ is inserted inλ after the smallest part

that is bigger thanτ j . We now have the difference conditions

λi − λi+1 ≥



ω(ci ) − 1, ci , ci+1 = 1, 3,

0, ci = 2,

1, ci = 1, 3, ci+1 = 2.

• Step 4. In each case above, the minimum difference is exactlyω(ci )+δ(ci , ci+1)−1.
We add back the staircase removed in Step 2 and we have

λi − λi+1 ≥ ω(ci ) + δ(ci , ci+1).

This is condition (ii) ofTheorem 1.1. Conditions (i) and (iii) are straightforward.

For example, starting withλ = (81, 31, 21, 11) andτ = (102, 52, 32, 22), we perform
the steps of the bijection:

(τ, λ) ⇐⇒ ((102, 52), (101, 53, 33, 11)) (Step 1)

⇐⇒ ((52, 12), (71, 33, 23, 11)) (Step 2)

⇐⇒ (ε, (71, 52, 33, 23, 12, 11)) (Step 3)

⇐⇒ (121, 92, 63, 43, 22, 11) (Step 4).
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Now, since the result of the above process is another partition into distinct parts, it is
natural to attempt to apply the bijection again, starting with the partitionλ into distinct
parts having threecolors satisfyingλi − λi+1 ≥ ω(ci ) + δ(ci , ci+1) andλi ≥ ω(ci ) and a
new partition,τ , into distinct parts occurring inthe color 4. Let us see what happens when
we try to repeat the steps above.

• Step 1. For each partk of τ that is less than or equal to the number of parts ofλ,
we add 1 to the firstk parts ofλ and 4 to the color ofλk. We then have the difference
conditions

λi − λi+1 ≥ ω(ci ) + δ∗(ci , ci+1),

and λi ≥ ω(ci ) for ci , ci+1 �= 4. Here δ∗(ci , ci+1) = δ(ci , ci+1) if ci < 4 and
δ(ci − 4, ci+1) otherwise.

• Step 2. Now write the unused parts ofτ to the left of the parts fromλ. Remove a
staircase, i.e. subtract 0 from the smallest part, 1 from the next smallest, and so on. We get

λi − λi+1 ≥ ω(ci ) + δ∗(ci , ci+1) − 1,

for ci , ci+1 �= 4.
• Step 3. Now we take the largest partτ1 of τ and insert it intoλ after the smallest part

that is bigger thanτ1. It is easy to check that after such an insertion, we have

λi − λi+1 ≥



ω(ci ) − δ∗(ci , ci+1) − 1, ci , ci+1 �= 4
0 = ω(ci ) − δ(ci , ci+1) − 1, ci = 4
1 = ω(ci ) − δ(ci , ci+1) − u(ci ) − 1, ci �= 4, ci+1 = 4.

(2.5)

Hereu( j ) = 1 if i = 3 or 7, andu( j ) = 0 otherwise.
Unlike the situation forn = 2, we do not always have the condition

λi − λi+1 ≥ ω(ci ) + δ(ci , ci+1) − 1. (2.6)

There are four cases where (2.5) and (2.6) donot match up: (i) ifci = 7 andci+1 = 4, the
minimal difference betweenλi andλi+1 is 1 = ω(ci ) + δ(ci , ci+1) − 2; (ii) when ci = 5
andci+1 = 6, this difference is 2= ω(ci ) + δ(ci , ci+1); (iii) for ci = 3 andci+1 = 4, it is
1 = ω(ci )+ δ(ci , ci+1)−2; and (iv) forci = 5 andci+1 = 2, it is 2 = ω(ci )+ δ(ci , ci+1).

In the second and fourth cases, the guaranteed minimum difference betweenλi and
λi+1 is too large. In the first and third cases, it is too small. For the latter cases, we shall
remedy the problem by redistributing the powers of 2 occurring in the colorsci andci+1.
Specifically, ifci = 7, ci+1 = 4, andλi − λi+1 = 1, thenlet ci = 5 andci+1 = 6. If
ci = 3, ci+1 = 4, andλi − λi+1 = 1, thenlet ci = 5 andci+1 = 2. Notice that the new
colors correspond exactly to those in cases (ii) and (iv) above, with the difference between
λi andλi+1 exactly one less than the minimum difference in (2.5) corresponding to these
two cases. This is a double bonus. First, it makes the change of colors described above
bijective, and second, it makes the minimum difference what we want for the theorem.

We repeat Step 3 with the largest part remaining inτ and continue until all the parts of
color 4 are inserted inλ. We then have (2.6) for all i .

• Step 4. Finally, we can add back the staircase and we have

λi − λi+1 ≥ ω(ci ) + δ(ci , ci+1).
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This is condition (iii) ofTheorem 1.2. Conditions (i) and (ii) are again straightforward.
For example, we startwith λ = (121, 92, 63, 43, 22, 11) andτ = (174, 114, 84, 64, 34,

14), following the steps of the bijection:

(τ, λ) ⇐⇒ ((174, 114, 84), (155, 112, 87, 53, 32, 25)) (Step 1)

⇐⇒ ((94, 44, 24), (105, 72, 57, 33, 22, 25)) (Step 2)

⇐⇒ ((44, 24), (105, 94, 72, 57, 33, 22, 25)) (Step 3)

⇐⇒ ((24), (105, 94, 72, 57, 44︸ ︷︷ ︸, 33, 22, 25))

⇐⇒ ((24), (105, 94, 72, 55, 46, 33, 22, 25))

⇐⇒ (ε, (105, 94, 72, 55, 46, 33, 24︸ ︷︷ ︸, 22, 25))

⇐⇒ (ε, (105, 94, 72, 55, 46, 35, 22, 22, 25))

⇐⇒ (185, 164, 132, 105, 86, 65, 42, 32, 25) (Step 4).

Here the underbraces indicate where a reassignment of colors needs to take place.
The proof ofTheorem 1.2is an iteration of the above process, described for a generaln

in the following section.

3. Proof of Theorem 1.2

The proof is by induction. Forn = 1 the theorem is a tautology. Now suppose that it
is true for a given natural numbern − 1 and that we can map any partition counted by
A(x1, x2, . . . , xn−1; m) to a partition counted byB(x1, x2, . . . , xn−1; m). Take a partition
counted byA(x1, x2, . . . , xn; m) and break it into two partitions: the first is a partition
counted byA(x1, x2, . . . , xn−1; m′) and the second is a partition ofm − m′ into xn

distinct parts. We apply the map to the first partition to get a partitionλ counted by
B(x1, x2, . . . , xn−1; m′). We call the second partitionτ and color its parts with the color
2n−1.

• Step 1. First, we changeλ in the following way: for each partk of τ that is less than
or equal to the number of parts ofλ, add 1 to each of the firstk parts ofλ and then add
2n−1 to thecolor of thekth part. Here we record that we have

λi − λi+1 ≥
{
ω(ci ) + δ(ci , ci+1), if ci < 2n−1,

ω(ci ) + δ(ci − 2n−1, ci+1), if ci > 2n−1.

and thatλi ≥ ω(ci ) for ci �= 2n−1. To be concise, we shall write δ∗(ci , ci+1) to mean
δ(ci , ci+1) whenci < 2n−1 andδ(ci − 2n−1, ci+1) whenci > 2n−1.

• Step 2. Now write the unused parts fromτ in descending order to the left of the parts
from λ. Remove a staircase, i.e., subtract 0 from the smallest part, 1from the next smallest,
and so on. Here we record that we have

λi − λi+1 ≥ ω(ci ) + δ∗(ci , ci+1) − 1 (3.1)

for ci �= 2n−1.
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• Step 3. Starting from the largest partk with color 2n−1, we insertk into the partition
λ as the partλi so thatλi − λi+1 ≥ 0 with i minimal. Sinceω(ci ) = ω(2n−1) = 1 and
δ(2n−1, ci+1) = 0, this condition is the same asλi − λi+1 ≥ ω(ci ) + δ(ci , ci+1) − 1. The
minimality of i guarantees thatλi−1 − λi ≥ 1. Hence it is possible that

λi−1 − λi < ω(ci−1) + δ(ci−1, ci ) − 1, (3.2)

and in this case we shall execute a redistribution of colors betweenλi and λi−1.
Specifically, ifλi−1 − λi = j , where j ≥ 1 andω(ci−1) > 1 + j − δ(ci−1, ci ), we form
two new parts̃λi−1 andλ̃i with colorsc̃i−1 andc̃i by taking the firstj smallest powers of
two from the colorci−1, adding them to the color 2n−1 to get the colorc̃i−1, and letting c̃i

be what isleft of ci−1.
Some comments on this change of colors are in order. First, note thatc̃i �= 2n−1,

z(c̃i ) = z(ci−1), v(c̃i−1) = v(ci−1), andδ(c̃i−1 − 2n−1, c̃i ) = 1. Second,

λ̃i−1 − λ̃i = j

= ω(c̃i−1) + δ(c̃i−1, c̃i ) − 1,

since the fact thatc̃i−1 > 2n−1 implies thatδ(c̃i−1, c̃i ) = 0. However, asδ(c̃i−1 −
2n−1, c̃i ) = 1, this differencej betweenλ̃i−1 and λ̃i is one less than the minimum
difference guaranteed by the second case of (3.1), which makes the change of colors
bijective—one can always identify when it has taken place. We are also guaranteed that
any further occurrences ofk in color 2n−1 may now be inserted without any problem, as
c̃i−1 > 2n−1.

Next, since we were in the case of (3.2) after having inserted the partk asλi , we may
observe thatci−1 is not 2n−1. Moreoverci+1 = 2n−1 would contradict the fact that we start
with the largest partk. So we hadλi−1 − λi+1 ≥ ω(ci−1) + δ∗(ci−1, ci+1) − 1 according
to (3.1). Hence we may deduce that

λ̃i − λi+1 = λ̃i − λi−1 + λi−1 − λi+1

≥ ω(ci−1) − j + δ∗(ci−1, ci+1) − 1

= ω(c̃i ) + δ∗(c̃i , ci+1) − 1,

asz(c̃i ) = z(ci−1) andc̃i �= 2n−1.
Note also that there is no change in the required difference betweenλi−2 and λ̃i−1

becausẽλi−1 = λi−1 andv(c̃i−1) = v(ci−1) implies thatδ(ci−2, ci−1) = δ(ci−2, c̃i−1).
We continue this procedure until all the parts of color 2n−1 are inserted inλ.
• Step 4. Now all the required differences are

λi − λi+1 ≥ ω(ci ) + δ(ci , ci+1) − 1, (3.3)

and we can add back the staircase 0, 1, 2, . . . so that these difference conditions become
those of condition (iii) in the theorem. Conditions (i) and (ii) are straightforward. This
establishes thatA(x1, . . . , xn; m) = B(x1, . . . , xn; m). �

Remark. It will prove useful to take advantage of the symmetry in the partitions counted
by A(x1, . . . , xn; m) and B(x1, . . . , xn; m) to slightly extendTheorem 1.2. Given a
permutationσ ∈ Sn, take a partitionλ counted byB(x1, . . . , xn; m) and create a new
partition λ̃ by setting λ̃i = λi and changingci to σ(ci ). Hereσ(ci ) is defined in the
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obvious way, by permuting the powers of 2 occurring in the binary representation ofci .
Now ω(ci ) hasnotchanged so the new difference condition onλ̃ is

λ̃i − λ̃i+1 ≥ ω(c̃i ) + δ(σ−1(c̃i ), σ
−1(c̃i+1)). (3.4)

The mapping λ → λ̃ is easily reversible so we haveB(x1, . . . , xn; m) =
Bσ (xσ(1), . . . , xσ(n); m), whereBσ (x1, . . . , xn; m) denotes the number of partitionsλ of
m into parts that come in 2n −1 colors and satisfy conditions (i) and (ii) ofTheorem 1.2as
well as (3.4). From the definition ofA(x1, . . . , xn; m), it is obvious that for any permutation
τ = (τ (1), . . . , τ (n)) in Sn,

A(x1, . . . , xn; m) = A(xτ (1), . . . , xτ (n); m).

Hence we have:

Corollary 3.1. Bσ (xτ (1), . . . , xτ (n); m) = A(x1, . . . , xn; m).

To conclude this section we provide yet another example of the proof that
A(x1, . . . , xn; m) = B(x1, . . . , xn; m), this time in the casen = 4. We start with a
partition λ = (163, 147, 115, 81, 62, 57, 11) counted byB(6, 4, 3; 61) and a partition
τ = (228, 198, 188, 118, 78, 48, 28, 18) of 84 into 8 distinct parts of color 8. Then we
follow the steps of the bijection:

(τ, λ) ⇐⇒ ((228, 198, 188, 118), (2011, 1715, 135, 109, 72, 67, 29)) (Step 1)

⇐⇒ ((128, 108, 108, 48), (1411, 1215, 95, 79, 52, 57, 29)) (Step 2)

⇐⇒ ((108, 108, 48), (1411, 128, 1215, 95, 79, 52, 57, 29)) (Step 3)

⇐⇒ ((108, 48), (1411, 128, 1215, 108︸ ︷︷ ︸, 95, 79, 52, 57, 29))

⇐⇒ ((108, 48), (1411, 128, 1211, 1012, 95, 79, 52, 57, 29))

⇐⇒ ((48), (1411, 128, 1211, 108, 1012, 95, 79, 52, 57, 29))

⇐⇒ (ε, (1411, 128, 1211, 108, 1012, 95, 79, 52, 57, 48︸ ︷︷ ︸, 29))

⇐⇒ (ε, (1411, 128, 1211, 108, 1012, 95, 79, 52, 59, 46, 29))

⇐⇒ (2411, 218, 2011, 178, 1612, 145, 119, 82, 79, 56, 29) (Step 4).

Notice that the result is a partition counted byB(6, 4, 3, 8; 145), as expected.

4. Proofs of Theorems 1.3 and 1.4

The proofs of these theorems follow exactly the same steps as the proof ofTheorem 1.2,
but here we will pay special attention to thebehavior of the parts with odd color. We
begin withTheorem 1.3. Whenn = 1, we just have a partitionµ1 into parts having color
1 that are congruent tor modulo M, and the conditions (i) and (ii) of the theorem are
trivial. Now suppose that the theorem is true forn − 1, let λ be a partition counted by
Br,M (x1, . . . , xn−1; m′), and letτ bea partition of m − m′ into distinct parts, all with the
color 2n−1. As we apply the bijection, the partλS will increase by 1 eachtime its color or
the color of a smaller part increases by 2n−1 in Step 1. It will also ultimately increase by
1 in Step 4 if a part of color 2n−1 is inserted as a partλS+k in Step 3. But in these cases
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∑s
�=Sωe(c�) also increases by 1. If a redistribution of colors should take place between

λS andλS+1, thenλ̃S remains the smallest part with odd color, and
∑s

�=Sωe(c�) does not
change. Hence we have condition (i) ofTheorem 1.3.

For condition (ii), the difference between two partsλi and λ j with odd color will
increase by 1 every time in Step 1 that the color ofλk increases by 2n−1 for i ≤ k < j .
This difference will also ultimately increase by 1 in Step 4 for each time that a part with
color 2n−1 is inserted betweenλi andλ j in Step 3. But in these cases

∑ j −1
�=i ωe(λ�) will

also increase by 1. If any partλi with odd color is affected bya rearrangement of colors,
λ̃i remains odd. Ifλ j has odd color withj > i , then

∑ j −1
�=i ωe(λ�) is not affected by this

rearrangement, and ifj < i , neither is
∑i−1

�= j ωe(λ�). This guarantees condition (ii) and
completes the proof of this part of the theorem.�

We turn toTheorem 1.4. Whenn = 1,we just have a partitionµ1 into parts having color
1 that differ by at leastM, and the extra condition of the theorem is trivial. Now suppose
that the theorem is true forn − 1, let λ be a partition counted byBM(x1, . . . , xn−1; m′),
and letτ be a partition of m − m′ into distinct parts, all with the color 2n−1. As we apply
the steps of the bijection, the difference between any two parts with odd colorλi andλ j

increases by 1 for every time in Step 1 that the color ofλk increases by 2n−1 for i ≤ k < j .
This difference will also ultimately increase by 1 in Step 4 for each time that a part with
color 2n−1 is inserted betweenλi andλ j in Step 3. But these are precisely the cases where∑ j −1

�=i ωe(c�) increases by 1. If any partλi with odd color is affected by a rearrangement of
colors,λ̃i remains odd. Ifλ j has odd color withj < i , thenλ j − λ̃i is not affected by this

rearrangement, and neither is
∑i−1

�= j ωe(c�). If j > i , thenbothλ̃i − λ j and
∑ j −1

�=i ωe(c�)

are unchanged. This guarantees the extra condition and completes the proof of this part of
the theorem. �

5. Partition identities

We begin ourdiscussion of partition identities by provingTheorem 1.5.

Proof of Theorem 1.5. For each partλi of a partition counted byB(x1, x2, . . . , xn; m)

with color ci = 2 j1 + · · · + 2 jk with j1 < · · · < jk, we drawits Ferrers diagram, that
is we write a row ofλi boxes and we add subscripts on the lastk boxes. Specifically, the
last box has subscriptj1 + 1, the next to last hasj2 + 1, and so on. Conjugating this
diagram and interpreting a subscript as thecolor of a column gives apartition counted by
C(x1, x2, . . . , xn; m). �

Example. Let us taken = 3 andλ = (107, 65, 41, 12) in B(3, 2, 2; 21). The Ferrers
diagram with the subscripts is

� � � � � � � �3 �2 �1
� � � � �3 �1
� � � �1
�2
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Now we read the columns and get(42, 3, 3, 31, 23, 21, 1, 13, 12, 11) which is in
C(3, 2, 2; 21).

We note, as was done in [1, p. 25], that making the substitutionsq → qN and
yj → qaj −N in (1.2) and applying Theorem 1.5gives the Andrews–Olsson identities
referred to in the introduction:

Theorem 5.1 (Andrews–Olsson). Let N be a positive integer and let A= {a1, a2, . . . , an}
be a set of distinct positive integers arranged in increasing order with an < N. Let
P1(A; N; m) denote the number of partitions of m into distinct parts each congruent to
some ai (mod N). Let P2(A; N; m) denote thenumber of partitions of m into parts≡ 0
or some ai modulo N such that only parts divisible by N may repeat, the smallest part is
less than N, and the difference between parts is≤ N, with strict inequality if either part is
divisible by N. Then P1(A; N; m) = P2(A; N; m).

We alsonote, before continuing, that there are conjugate versions ofTheorems 1.3and
1.4 as well, the extra conditions on the differences between parts of odd color translating
under conjugation to conditions on the number of parts occurring between two parts of
color 1.

Next we discuss how a theorem of Bressoud [13], which generalizes some results of
Göllnitz [15], is contained inTheorem 1.3.

Theorem 5.2 (Bressoud). Given positive integers n, k, and r satisfying 1 ≤ r < 2k and
r �= k, let Gr,k(n) denote the number of partitions of n into distinct parts congruent to
r , k, or 2k modulo 2k, and let Hr,k(n) denote the number of partitions of n into parts
congruent to r or k modulo k with minimal difference k, minimal difference2k between
parts congruent to r modulo k, and, if r> k, with the smallest part greater than or equal
to k. Then Gr,k(n) = Hr,k(n).

Proof. This theorem is a special case ofTheorem 1.3when n, M = 2. We supply the
details for r < k; the other case is similar. To begin, letλ be a partition counted by
B1,2(x1, x2; m). The important observation is that the extra conditions (i) and (ii) in
Theorem 1.3ensure that we can “drop” the color 2 from the subscripts without losing
any information. The color 1 remains 1, the color 2 is dropped, and the color 3 becomes 1.
This operation corresponds to settinga2 = 1 in the product(−a1q; q2)∞(−a2q; q)∞.

For example, the partition(133, 101, 82, 71, 53, 32) becomes(131, 101, 8, 71, 51, 3). One
verifies that the difference conditions on parts ofλ becomeλi − λi+1 ≥ 2, if ci = 1, and
λi − λi+1 ≥ 1 if ci is uncolored. To finish, we replaceq by qk anda1 by qr−k in the
product(−a1q; q2)∞(−q; q)∞, which corresponds to replacing a partj1 by ( j − 1)k + r
and a partj by k j in λ. The difference conditions are now precisely those of Bressoud’s
theorem. �

In the late 1960’s Andrews [5,7] proved two superficially similar generalizations of
Schur’s theorem, which we need some notation to state. Consider again a setA =
{a1, a2, . . . , an} of n distinct positive integers, this time satisfying

∑k−1
i=1 ai < ak for all

1 ≤ k ≤ n. Fix anintegerN suchthatN ≥ ∑n
i=1 ai . Denote the set of 2n − 1 (necessarily

distinct) possible sums of distinct elements ofA by A′ and its elements byα1 < α2 <

· · · < α2n−1. For any natural numberN ≥ α2n−1 defineAN (resp.A′
N,−AN ,−A′

N) to
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be the set of all natural numbers congruent to someai (resp.αi ,−ai ,−αi ) moduloN. For
x ∈ A′ let ωA(x) denote the number of terms in the defining sum ofx and letvA(x) (resp.
zA(x)) be the smallest (resp. largest)ai appearing in this sum. Moreover, forx, y ∈ A′,
we defineδA(x, y) = 1 if zA(x) < vA(y) and 0 otherwise. Finally, letβN(�) be the least
positive residue of� moduloN.

Theorem 5.3 ([7,8] ). Let D(AN ; x1, . . . , xn; m) denote thenumber of partitions of m into
distinct partstaken from AN where there are xr parts equivalent to ar modulo N. Let
E(A′

N; x1, . . . , xn; m) denote thenumber of partitions of m into parts taken from A′N of
the formλ1 + · · · + λs suchthat (i) xr is the number ofλi suchthatβN(λi ) uses ar in its
defining sum, and(ii)

λi − λi+1 ≥ NωA(βN(λi+1)) + vA(βN(λi+1)) − βN(λi+1).

Then D(AN; x1, . . . , xn; m) = E(A′
N; x1, . . . , xn; m).

Theorem 5.4 ([5,8] ). Let F(−AN; x1, . . . , xn; m) denote the number of partitions of m
into distinct parts taken from−AN where there are xr parts equivalent to−ar modulo N.
Let G(−A′

N; x1, . . . , xn; m) denote the number of partitions of m into parts taken from
−A′

N of the formλ1 + · · · + λs suchthat (i) λi ≥ N(ωA(βN(−λi )) − 1), (ii) xr is the
number ofλi suchthatβN(−λi ) uses ar in its defining sum, and(iii )

λi − λi+1 ≥ NωA(βN(−λi )) + vA(βN(−λi )) − βN(−λi ).

Then F(−AN; x1, . . . , xn; m) = G(−A′
N; x1, . . . , xn; m).

In the rest of the paper we first state and then prove a number of partition theorems that
extend the results of Andrews. These will correspond to the substitutionsq → qN and
yj → qaj −N in (1.2)–(1.4), andq → qN andyj → q−aj in (1.2).

For the first two results, we take advantage of the symmetry in (3.4). We extend
any permutationσ ∈ Sn to the integers inA′ in the obvious way, by lettingσ(αi ) =∑k

j =1 aσ(i j ) if αi = ∑k
j =1 ai j .

Theorem 5.5. Let Eσ (A′
N; x1, . . . , xn; m) denote thenumber of partitions of m into parts

taken from A′N of the formλ1 + · · · + λs suchthat (i) xr is the number of λi suchthat
βN(λi ) uses ar in its defining sum, and(ii)

λi − λi+1 ≥ NωA(βN(λi+1)) + NδA(σ (βN(λi )), σ (βN(λi+1)))

+ βN(λi ) − βN(λi+1).

Then D(AN; x1, . . . , xn; m) = Eσ (A′
N; x1, . . . , xn; m).

Theorem 5.6. Let Gσ (−A′
N; x1, . . . , xn; m) denote the number of partitions of m into

parts taken from−A′
N of the formλ1 + · · · + λs suchthat (i) λi ≥ N(ωA(βN(−λi )) −

1), (ii) xr is the number ofλi suchthatβN(−λi ) uses ar in its defining sum, and(iii )

λi − λi+1 ≥ NωA(βN(−λi )) + NδA(σ (βN(−λi )), σ (βN(−λi+1)))

+ βN(−λi+1) − βN(−λi ).

Then F(−AN; x1, . . . , xn; m) = Gσ (−A′
N; x1, . . . , xn; m).
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Let us record some examples. Suppose thatn = 2, A = {1, 2} and N = 3. It is easy
to see that takingσ = (1, 2) in Theorem 5.5or σ = (2, 1) in Theorem 5.6gives back (a
refinement of) Schur’s theorem. On the other hand, takingσ = (2, 1) in Theorem 5.5or
σ = (1, 2) in Theorem 5.6gives

Corollary 5.7. The number of partitions of m into distinct parts≡ 1, 2 (mod 3) with xr

parts congruent to r modulo3 is equal to the number of partitionsλ of m such that(i) xr

is the number of parts congruent to r or3 modulo 3 and (ii) if λi ≡ j (mod 3) and
λi+1 ≡ k (mod 3) then

λi − λi+1 ≥




3, if k = 1 and j = 1, 3,

7, if k = 1 and j = 2,

2, if k = 2,

4, if k = 3.

This is equivalent to the caseS1 = S4 of [3, Theorem 8].
For a more complicated example, letn = 3, A = {1, 2, 4} and N = 7. Taking

σ = (3, 2, 1) in Theorem 5.5gives

Corollary 5.8. The number of partitions of m into distinct parts≡ 1, 2, 4 (mod 7) with
xr parts congruent to2r−1 modulo 7 is equal to the number of partitionsλ of m such
that(i) xr is the number ofλi suchthatλi (mod 7) uses2r−1 in its defining sum, and(ii) if
λi ≡ j (mod 7) andλi+1 ≡ k (mod 7),

λi − λi+1 ≥




7, if k = 1 and j = 1, 3, 5, 7,

13, if k = 1 and j = 2, 4, 6,

6, if k = 2 and j �= 4,

16, if k = 2 and j = 4,

12, if k = 3 and j �= 4,

22, if k = 3 and j = 4,

4, if k = 4,

10, if k = 5,

9, if k = 6,

15, if k = 7.

Although it may not yet be clear, we shall see thatTheorem 5.3is the caseσ = Id
of Theorems 5.5and5.4 is the caseσ = (n, n − 1, . . . , 1) of Theorem 5.6. While these
theorems take advantage of the symmetry inCorollary 3.1, this symmetry does not persist
in Theorems 1.3and1.4. Hence we drop the permutationσ in the last two results. For
� ∈ A′ let ωA,1(�) denote the number of terms not equal toa1 in the defining sum of�.

Theorem 5.9. Let DR,M (AN; x1, . . . , xn; m) denote the number ofpartitions counted by
D(AN; x1, . . . , xn; m) such that the parts that are a1 modulo N are((R − 1)N + a1)

modulo M N. Let ER,M (A′
N; x1, . . . , xn; m) denote the number ofpartitions of m counted

by E(A′
N; x1, . . . , xn; m) of the formλ1 + · · · + λs suchthat (i) if λS is the smallest part

suchthatβN(λS) uses a1 in its defining sum, then

λS ≡ N(R − ωA(βN(λS))) + βN(λS) + N
s∑

�=S

ωA,1(βN(λ�)) (mod M N),



508 S. Corteel, J. Lovejoy / European Journal of Combinatorics 27 (2006) 496–512

and(ii) if i < j andβN(λi ) andβN(λ j ) use a1 in their defining sums, then

λi − λ j ≡ N(−ωA(βN(λi )) + ωA(βN(λ j ))) + βN(λi ) − βN(λ j )

+ N
j −1∑
�=i

ωA,1(βN(λ�)) (mod M N).

Then DR,M (AN; x1, . . . , xn; m) = ER,M (A′
N; x1, . . . , xn; m)

For R = 1, M = 2, N = 3, andA = {1, 2}, this translates to:

Corollary 5.10. Let D1,2(A3; x1, x2; m) denote the number ofpartitions of m counted
by D(A3; x1, x2; m) where theparts that are1 modulo 3 are 1 modulo 6, and let
E1,2(A′

3; x1, x2; m) denote the number of partitions of m counted by E(A′
3; x1, x2; m) of

the formλ1 + · · · + λs such that if λS is the smallest part that is≡ 1, 3 (mod 3) then(i) if
λS ≡ 1 (mod 3) thenλS ≡ 1+ 3

∑s
�=SωA,1(β3(λ�)) (mod 6), (ii) if λS ≡ 3 (mod 3) then

λS ≡ 3
∑s

�=SωA,1(β3(λ�)) (mod 6), and(iii ) if i < j andλi , λ j ≡ 1, 3 (mod 3), then

λi − λ j ≡ β3(λi ) − β3(λ j )

2
+ 3

j −1∑
�=i

ωA,1(β3(λ�)) (mod 6).

Then D1,2(A3; x1, x2; m) = E1,2(A′
3; x1, x2; m).

Example. For m = 18, we haveD(A3; 1, 1; 18) = 6, the relevant partitions being
(17, 1), (14, 4), (11, 7), (10, 8), (13, 5) and (16, 2). But only three of them satisfy the
conditions of the previous corollary, i.e., that the parts that are 1 modulo 3 are 1 modulo
6. These partitions are(17, 1), (11, 7) and(13, 5). Therefore D1,2(A3; 1, 1; 18) = 3. Now
E(A′

3; 1, 1; 18) = 6, the relevant partitions being(18), (17, 1), (16, 2), (14, 4), (13, 5)

and(11, 7). But three of them violate the condition onλS, namely (18) violates(ii) , and
(14, 4) and(13, 5) violate(i) . So,E1,2(A′

3, 1, 1; 18) = 3 = D1,2(A3; 1, 1; 18).

Theorem 5.11. Let DM (AN; x1, . . . , xn; m) denote the number of partitions counted
by D(AN; x1, . . . , xn; m) such that the parts equivalent to a1 modulo N differ at least
by M N. Let EM (A′

N; x1, . . . , xn; m) denote the number ofpartitions of m counted by
E(A′

N; x1, . . . , xn; m) of the formλ1 + · · ·+λs such that if i < j andβN(λi ) andβN(λ j )

use a1 in their defining sums, then

λi − λ j ≥ M N + N(−ωA(βN(λi )) + ωA(βN(λ j )))

+ βN(λi ) − βN(λ j ) + N
j −1∑
�=i

ωA,1(βN(λ�)).

Then DM (AN; x1, . . . , xn; m) = EM (A′
N; x1, . . . , xn; m).

Let M = 2, N = 3, andA = {1, 2}:
Corollary 5.12. Let D2(A3; x1, x2; m) denote the number ofpartitions of m counted by
D(A3; x1, x2; m) such that the parts equivalent to1 modulo3 differ by at least 6 and let
E2(A′

3; x1, x2; m) denote the number of partitions of m counted by E(A′
3; x1, x2; m) such
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that if i < j andλi , λ j ≡ 1, 3 (mod 3) thenλi − λ j ≥ 5 + 3
∑ j −1

�=i ωA,1(β3(λ�)). Then
D2(A3; x1, x2; m) = E2(A′

3; x1, x2; m).

Example. For m = 22, we haveD2(A3; 2, 1; 22) = 8, with the relevant partitions being
(16, 4, 2), (16, 5, 1), (13, 7, 2), (13, 5, 4) (13, 8, 1), (14, 7, 1), (10, 8, 4) and(11, 10, 1).
Also E2(A′

3, 2, 1; 22) = 8, with the relevant partitions being(18, 4), (19, 3), (15, 7),
(16, 6), (16, 5, 1), (14, 7, 1), (13, 7, 2) and(13, 8, 1).

We now turn to the proofs of all of these theorems.

Proof of Theorem 5.5. Fix a permutation σ ∈ Sn. In a partition counted by
A(x1, x2, . . . , xn; m), we replace a part of sizek from µ j by N(k − 1) + aj . Then each
λi in the corresponding partitionλ counted byBσ−1(x1, . . . , xn; m) is replaced bỹλi =
N(λi − ωA(αci )) + αci . This corresponds to replacingq by qN andyj by qaj −N in (1.2).
Suppose that before this replacement, we hadλi+1 = λi − ω(ci ) − δ(σ (ci ), σ (ci+1)) − d,
whered ≥ 0. Then after the replacement we have

λ̃i = N(λi − ωA(αci )) + αci

and

λ̃i+1 = N(λi − ωA(α(ci )) − δ(σ (ci ), σ (ci+1)) − d − ωA(αci+1)) + αci+1 .

Sinceδ(σ (ci ), σ (ci+1)) = δA(ασ(ci ), ασ(ci+1)), we get

λ̃i − λ̃i+1 = N(d + δA(ασ(ci ), ασ(ci+1)) + ωA(αci+1)) + αci − αci+1 .

Note thatβN(λ̃i ) = αci and thatσ(βN(λ̃i )) = ασ(ci ) for all i and the theorem follows. �

Proof of Theorem 5.6. In a partition counted byA(x1, x2, . . . , xn; m), we replace a part
of size k from µ j by Nk − aj . Each λi in the corresponding partitionλ counted by
Bσ−1(x1, . . . , xn; m) is replaced byλ̃ = Nλi − αci . This corresponds to replacingq
by qN and yj by q−aj in (1.2). Suppose that before this replacement, we hadλi+1 =
λi − ω(ci ) − δ(σ (ci ), σ (ci+1)) − d, whered ≥ 0. Then after the replacement we have

λ̃i = Nλi − αci

and

λ̃i+1 = N(λi − ωA(αci ) − δ(σ (ci ), σ (ci+1)) − d) − αci+1 .

Sinceδ(σ (ci ), σ (ci+1)) = δA(ασ(ci ), ασ(ci+1)), we get

λ̃i − λ̃i+1 = N(d + δA(ασ(ci ), ασ(ci+1)) + ωA(αci )) + αci − αci+1.

Note thatβN(−λ̃i ) = αci and thatσ(βN(−λ̃i )) = ασ(ci ) for all i and the theorem
follows. �

For generaln, it maynot be clear thatTheorems 5.5and5.6are indeed generalizations
of Theorems 5.3and5.4. But it becomes clear with the following lemma.

Lemma 5.13. For x, y ∈ A′,

N + vA(y) > NδA(x, y) + x ≥ vA(y).
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Proof. We consider two cases. First, ifδA(x, y) = 0, thenzA(x) ≥ vA(y). The first
inequality is trivial asN > x. The second follows from the fact thatx ≥ zA(x) ≥ vA(y).
On the other hand, ifδ(x, y) = 1, thenzA(x) < vA(y). Thesecond inequality is trivial as
N > vA(y). The first follows from the fact thatvA(y) > x if vA(y) > zA(x). �

Now we can prove

Corollary 5.14. Theorem5.3 is Theorem5.5with σ = (1, 2, . . . , n).

Proof. As σ = (1, 2, . . . , n), we haveδA(σ (βN(λi )), σ (βN(λi+1))) = δA(βN(λi )),

βN(λi+1). Lemma 5.13gives

N + vA(βN(λi+1)) > NδA(βN(λi ), βN(λi+1)) + βN(λi ) ≥ vA(βN(λi+1)).

This shows that the minimal difference inTheorem 5.5is at least the one claimed in
Theorem 5.3but not greater. �

Corollary 5.15. Theorem5.4 is Theorem5.6with σ = (n, n − 1, . . . , 1).

Proof. As σ = (n, n − 1, . . . , 1), we have δA(σ (βN(−λi )), σ (βN(−λi+1))) =
δA(βN(−λi+1), βN(−λi )). Lemma 5.13gives

N + vA(βN(−λi )) > NδA(βN(−λi+1), βN(−λi )) + βN(−λi+1) ≥ vA(βN(−λi )).

This shows that the minimal difference inTheorem 5.6is at least the one claimed in
Theorem 5.4but not greater. �

Proof of Theorem 5.9. In a partition counted byAR,M (x1, x2, . . . , xn; m), we replace a
part of sizek from µ j by N(k − 1) + aj . In the corresponding partitionλ counted by
BR,M (x1, x2, . . . , xn; m), eachλi is replaced byλ̃i = N(λi − ωA(αci )) + αci . This
implies that λ̃ ∈ E(A′

N; x1, . . . , xn; m) as in Theorem 5.3. Note that αci = βN(λ̃i ),
ω(ci ) = ωA(βN(λ̃i )) andωe(ci ) = ωA,1(βN(λ̃i )). If λS was the smallest part with odd
color, thenλS ≡ R + ∑s

�=Sωe(c�) (mod M). This condition is translated to: if̃λS is the
smallest part such thatβN(λ̃S) usesa1 in its defining sum,

λ̃S ≡ RN − NωA(βN(λ̃S)) + βN(λ̃S) + N
s∑

�=S

ωA,1(βN(λ̃�)) (mod M N).

If λi andλ j were any two parts with odd color, thenλi − λ j ≡ ∑ j −1
�=i ωe(λ�) (mod M)

and this givesNλi − Nλ j ≡ N
∑ j −1

�=i ωe(λ�) (mod M N). Thenλi is changed tõλi =
N(λi − ω(ci )) + αci andλ j is changed tõλ j = N(λ j − ω(cj )) + αcj . We getthat if

βN(λ̃i ) andβN(λ̃ j ) usea1 in their defining sums, then

λ̃i − λ̃ j ≡ N(−ωA(βN(λ̃i )) + ωA(βN(λ̃ j ))) + βN(λ̃i )

− βN(λ̃ j ) + N
j −1∑
�=i

ωA,1(βN(λ̃�)) (mod M N). �

Proof of Theorem 5.11. The proof use the same ideas as the proof ofTheorem 5.9. In
a partition λ counted byAM (x1, x2, . . . , xn; m), we replace a part of sizek from µ j by
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N(k − 1) + aj . In the corresponding partition counted byBM (x1, x2, . . . , xn; m), eachλi

is replaced bỹλi = N(λi − ωA(αci )) + αci . This corresponds to replacingq by qN andyj

by qaj −N in (1.3). This implies thatλ̃ ∈ E(A′
N; x1, . . . , xn; m) as inTheorem 5.3. Note

thatαci = βN(λ̃i ), ω(ci ) = ωA(βN(λ̃i )) andωe(ci ) = ωA,1(βN(λ̃i )) for all i .
If λi and λ j were any two parts with odd color, thenλi − λ j ≥ M +∑ j −1
�=i ωe(λ�) (mod M) translates to: ifβN(λ̃i ) and βN(λ̃ j ) use a1 in their defining

sums, theñλi − λ̃ j ≥ M N + N(−ωA(βN(λ̃i )) + ωA(βN(λ̃ j ))) + βN(λ̃i ) − βN(λ̃ j ) +
N

∑ j −1
�=i ωA,1(λ̃�). �

6. Concluding remarks

There are undoubtedly many more applicationsof the iterative methods described in
this paper. To help motivate the iterative process, we have described how to reproduce
and generalize some famous results by executing a rearrangement of colors at each step.
However, the Alladi–Gordon bijection may also be “naively” iterated without performing
this rearrangement. It would be worthwhile to investigate the theorems on colored
partitions that arise in this way. Also, as observed in [3], one can write down companions
to Schur’s theorem by reordering the parts immediately before Step 4 of the proof of
Theorem 1.1presented inSection 2. Such reorderings could probably be applied in the
case ofTheorem 1.2as well. Finally, it will be noted that the products in (1.3) and (1.4)
are rather asymmetric. A more general problem of the nature considered here would be to
give an interpretation of the infinite product

∞∏
k=1

(1 + y1qM1k−R1)(1 + y2qM2k−R2) · · · (1 + ynqMnk−Rn ) (6.1)

in terms of partitions whose parts occur in 2n − 1 colors and satisfysome tractable
difference conditions.
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