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a b s t r a c t

Xu et al. introduced the concept of vague soft sets, which is an extension to the soft set and
the vague set. In this paper, we apply the concept of vague soft sets to hemiring theory. The
notion of (∈,∈ ∨q)-vague (soft) left h-ideals of a hemiring is introduced and some related
properties are investigated.
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1. Introduction

Uncertain or imprecise data are inherent and pervasive in many important applications in the areas such as economics,
engineering, environment, social science, medical science and business management. Uncertain data in those applications
could be caused by data randomness, information incompleteness, limitations of measuring instruments, delayed data
updates, etc. Due to the importance of these applications and the rapidly increasing amount of uncertain data collected
and accumulated, research on effective and efficient techniques that are dedicated to modeling uncertain data and tackling
uncertainties has attracted much interest in recent years and has yet remained challenging at large. There have been a great
amount of research and applications in the literature concerning some special tools like probability theory, (intuitionistic)
fuzzy set theory [1], rough set theory [2], vague set theory [3] and interval mathematics [4,5]. However, all of these have
their advantages aswell as inherent limitations in dealingwith uncertainties. Onemajor problem shared by those theories is
their incompatibility with the parameterization tools. To overcome these difficulties, Molodtsov [6] introduced the concept
of soft sets as a newmathematical tool for dealing with uncertainties that is free from the difficulties that have troubled the
usual theoretical approaches. Molodtsov pointed out several directions for the applications of soft sets. This theory has been
proven useful in many different fields such as decision making [7–11], data analysis [12,13], forecasting [14] and so on.

Up to the present, research on soft sets has been very active and many important results have been achieved in the
theoretical aspect. Maji et al. [15] defined and studied several operations on soft sets. Ali et al. [16] further presented and
investigated somenewalgebraic operations for soft sets.Maji et al. [17] andMajumdar and Samanta [18] extended (classical)
soft sets to fuzzy soft sets, respectively. IrfanAli and Shabir [19] investigatedDeMorgan’s law in fuzzy soft sets.Maji et al. [20]
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extended (classical) soft sets to intuitionistic fuzzy soft sets. Xu et al. [21] introduced the notion of vague soft set which is
an extension to the soft set and vague set, and discussed the basic properties of vague soft sets. Aktaş and Çağman [22]
compared soft sets to the related concepts of fuzzy sets and rough sets. They also defined the notion of soft groups, and
derived some related properties. Feng et al. [23] investigated soft semirings by using the soft set theory. Feng et al. [24,25]
investigated the connections among fuzzy sets, rough sets and soft sets. They introduced the concepts of soft rough sets
and soft rough fuzzy sets and studied some related properties. Jun [26] introduced and investigated the notion of soft BCK/
BCI-algebras. Jun and Park [27] and Jun et al. [28] discussed the applications of soft sets in ideal theory of BCK/BCI-algebras
and in d-algebras, respectively. Aygünoğlu and Aygün [29] introduced and studied (normal) fuzzy soft groups. Zhan and
Jun [30] studied soft BL-algebras based on fuzzy sets.

The purpose of this paper is to deal with the algebraic structure of hemirings by applying vague (soft) set theory. The
concept of (∈,∈ ∨q)-vague (soft) left h-ideals of a hemiring is introduced, their characterization and algebraic properties
are investigated. The notion of ϕ-compatible (∈,∈ ∨q)-vague (soft) left h-ideals of a hemiring, and the homomorphism
properties of (∈,∈ ∨q)-vague (soft) left h-ideals are discussed.

The rest of this paper is organized as follows. Section 2 summarizes some basic concepts which will be used throughout
the paper. Sections 3 and 4 introduce the concept of (∈,∈ ∨q)-vague (soft) left h-ideals of a hemiring and investigate some
related properties. Section 5 introduces the notion of ϕ-compatible (∈,∈ ∨q)-vague (soft) left h-ideals of a hemiring and
discuss the homomorphism properties of (∈,∈ ∨q)-vague (soft) left h-ideals. Some conclusions are given in the last section.

2. Preliminaries

2.1. Hemirings

A semiring is an algebraic system (S,+, ·) consisting of a non-empty set S togetherwith two binary operations on S called
addition and multiplication (denoted in the usual manner) such that (S,+) and (S, ·) are semigroups and the following
distributive laws

a · (b + c) = a · b + b · c and (a + b) · c = a · c + b · c

are satisfied for all a, b, c ∈ S.
By zero of a semiring (S,+, ·) we mean an element 0 ∈ S such that 0 · x = x · 0 = 0 and 0 + x = x + 0 = x for all

x ∈ S. A semiring (S,+, ·) with zero is called a hemiring if (S,+) is commutative. For the sake of simplicity, we shall omit
the symbol ‘‘·’’, writing ab for a · b (a, b ∈ S).

A subset A in a hemiring S is called a left ideal of S if A is closed under addition and SA ⊆ A. A left ideal A of S is called a
left h-ideal if x, z ∈ S, a, b ∈ A, and x + a + z = b + z implies x ∈ A.

2.2. Vague sets

Let X be a non-empty set. A fuzzy subsetµ in X is defined as a mapping from X to [0, 1], where [0, 1] is the usual interval
of real numbers. We denote by F (X) the set of all fuzzy subsets in X . For any µ ∈ F (X), the complement of µ, denoted by
µC , is defined asµC (x) = 1−µ(x) for all x ∈ X . For any non-empty subset P in S, the characteristic function of S is denoted
by χP . A fuzzy subset µ in X of the form

µ(y) =


r(≠ 0) if y = x,
0 otherwise

is said to be a fuzzy point with support x and value r and is denoted by xr , where r ∈ (0, 1]. For a fuzzy point xr and a fuzzy
subset µ in X , we say that

(1) xr ∈ µ if µ(x) ≥ r .
(2) xr qµ if µ(x)+ r > 1.
(3) xr ∈ ∨qµ if xr ∈ µ or xr qµ.
(4) xr ∈ ∧qµ if xr ∈ µ and xr qµ.

A vague set A in X is characterized by a truth-membership function tA and a false-membership function fA,

tA : X → [0, 1], fA : X → [0, 1],

where for any x ∈ X , tA(x) is a lower bound on the grade of membership of x derived from the evidence for x, fA(x) is a lower
bound on the negation of x derived from the evidence against x, and tA(x)+ fA(x) ≤ 1. The grade of membership of x in the
vague set is bounded to a subinterval [tA(x), 1 − fA(x)] of [0, 1]. The vague value [tA(x), 1 − fA(x)] indicates that the exact
grade of membership µA(x) of xmay be unknown, but it is bounded by tA(x) ≤ µA(x) ≤ 1 − fA(x), where tA(x)+ fA(x) ≤ 1.
Denote A = {(x, [tA(x), 1 − fA(x)])|x ∈ X}. The set of all vague sets in X is denoted by V (X).

Lemma 2.1. Let A = {(x, [tA(x), 1− fA(x)])|x} and B = {(x, [tB(x), 1− fB(x)])|x} be vague sets in X and let r, t ∈ [0, 1]. Define

(1) �A = {(x, [tA(x), 1 − tcA(x)])|x ∈ X},
(2) ♦A = {(x, [f cA (x), 1 − fA(x)])|x ∈ X},
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(3) Pr,t(A) = {(x, [max{r, tA(x)}, 1 − min{t, fA(x)}])|x ∈ X} for r + t ≤ 1,
(4) Qr,t(A) = {(x, [min{r, tA(x)}, 1 − max{t, fA(x)}])|x ∈ X} for r + t ≤ 1.

Then �A,♦A, Pr,t(A) and Qr,t(A) are vagues sets in X.

Proof. The proof is straightforward by the definition of vague sets. �

Definition 2.2 ([3]). Let A and B be two vague sets in X . If [tA(x), 1 − fA(x)] = [tB(x), 1 − fB(x)] for all x ∈ X , then the vague
sets A and B are called equal, denoted as A = B.

Definition 2.3 ([3]). Let A and B be two vague sets in X . If tA(x) ≤ tB(x), 1 − fA(x) ≤ 1 − fB(x) for all x ∈ X , then the vague
set A is said to be included by B, denoted as A ⊆ B.

Definition 2.4 ([3]). The union of two vague sets A and B is a vague set C , written as C = A ∪ B, whose truth-membership
and false-membership functions are related to those of A and B defined by

tC (x) = max{tA(x), tB(x)}

and

1 − fC (x) = max{1 − fA(x), 1 − fB(x)} = 1 − min{fA(x), fB(x)}

for all x ∈ X , that is, tC = tA ∪ tB and fC = fA ∩ fB.

Definition 2.5 ([3]). The intersectionof twovague setsA andB is a vague setC , written asC = A∩B, whose truth-membership
and false-membership functions are related to those of A and B defined by

tC (x) = min{tA(x), tB(x)}

and

fC (x) = min{(1 − fA(x)), (1 − fB(x))} = 1 − max{fA(x), fB(x)}

for all x ∈ X , that is, tC = tA ∩ tB and fC = fA ∪ fB.

The notions of union and intersection of two vague sets can be extended to a family of vague sets in X . Let {Ai}i∈I be a
family of vague sets in X , where I is an index set. Define ∩i∈I Ai and ∪i∈I Ai as follows:

t∩i∈I Ai(x) = inf
i∈I

tAi(x), 1 − f∩i∈I Ai(x) = inf
i∈I
(1 − fAi(x)) = 1 − sup

i∈I
fAi(x)

and

t∪i∈I Ai(x) = sup
i∈I

tAi(x), 1 − f∪i∈I Ai(x) = sup
i∈I
(1 − fAi(x)) = 1 − inf

i∈I
fAi(x).

If I is a finite set, say I = {1, 2, . . . , n}, we sometimes denote

t∩i∈I Ai(x) = min{tA1(x), . . . , tAn(x)}, 1 − f∩i∈I Ai(x) = 1 − max{fA1(x), . . . , fAn(x)}

and

t∪i∈I Ai(x) = max{tA1(x), . . . , tAn(x)}, 1 − f∪i∈I Ai(x) = 1 − min{fA1(x), . . . , fAn(x)}.

For the sake of simplicity, we use A = [tA, 1 − fA] to denote the vague set A = {(x, [tA(x), 1 − fA(x)])|x ∈ X}. For any
r, s ∈ [0, 1], denote A(r,s) = {x ∈ X |tA(x) > r and fA(x) < s}, which is called the (r, s)-strong level set of A.

It follows easily that for all A, B ∈ V (X),

(1) A ⊆ B and r, s ∈ [0, 1] imply A(r,s) ⊆ B(r,s).
(2) r1 ≤ r2 and s2 ≤ s1 for r1, r2, s1 s2 ∈ [0, 1] imply A(r2,s2) ⊆ A(r1,s1).
(3) A = B if and only if A(r1,s1) = A(r2,s2) for all r1, r2, s1 s2 ∈ [0, 1].

Let us now introduce two new ordering relations on F (X), denoted as ‘‘⊆ ∨q ’’ and ‘‘⊆ ∧q’’, as follows: ∀µ, ν ∈ F (X)

(1) By µ ⊆ ∨q ν we mean that xr ∈ µ implies xr ∈ ∨q ν for all x ∈ X and r ∈ (0, 1].
(2) By µ ⊆ ∧qν we mean that xr ∈ ∧q µ implies xr ∈ ν for all x ∈ X and r ∈ (0, 1].

In what follows, unless otherwise stated, α means α does not hold, where α ∈ {∈, q,∈ ∨q,∈ ∧q ,⊆,⊆ ∨q ,⊆ ∧q}.

Lemma 2.6. Let µ, ν ∈ F (X). Then:

(1) µ ⊆ ∨q ν if and only if ν(x) ≥ min{µ(x), 0.5} for all x ∈ X.
(2) µ ⊆ ∧qν if and only if µ(x) ≤ max{ν(x), 0.5} for all x ∈ X.
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Proof. We prove (2). (1) can be similarly proved. Assume that µ ⊆ ∧qν. Let x ∈ X . If µ(x) > max{ν(x), 0.5}, then there
exists r such that µ(x) > r > max{ν(x), 0.5}. Hence xr ∈ µ and xrqµ, that is, xr ∈ ∧qµ, but xr∈ν, a contradiction.
Therefore, µ(x) ≤ max{ν(x), 0.5}.

Conversely, assume that µ(x) ≤ max{ν(x), 0.5} for all x ∈ S. If µ⊆ ∧qν, then there exists xr ∈ ∧qµ but xr∈ ν, and so
µ(x) ≥ r , µ(x) + r > 1 and ν(x) < r , which imply µ(x) > 0.5. Hence µ(x) > max{ν(x), 0.5}, a contradiction. Therefore,
µ ⊆ ∧qν. �

Lemma 2.7. Let µ, ν, ω ∈ F (X).

(1) If µ ⊆ ∨q ν and ν ⊆ ∨qω, then µ ⊆ ∨qω.
(2) If µ ⊆ ∧qν and ν ⊆ ∧qω, then µ ⊆ ∧qω.

Proof. It is straightforward by Lemma 2.6. �

Based on the ordering relations ‘‘⊆ ∨q ’’ and ‘‘⊆ ∧q’’ on F (X), we introduce a new ordering relation ‘‘b’’ on V (X) as
follows.

For any two vague sets A and B, by A b Bwe mean that tA ⊆ ∨q tB and fB ⊆ ∧qfA.

2.3. Vague soft sets

LetU be an initial universe, E a set of parameters,P(U) the power set ofU , and X ⊆ E. Molodtsov [6] defined the concept
a soft set, which is a mapping from a set of parameters into the power set of a universe set. However, the notion of soft set,
as given in its definition, cannot be used to represent the vagueness of the associated parameters. To overcome this, Xu
et al. [21] further introduced the concept of a vague soft set based on soft set theory and vague set theory as follows.

Definition 2.8 ([21]). A pair (F̃ , X) is called a vague soft set over U , where F̃ is a mapping given by F̃ : X → V (U).

In other words, a vague soft set over U is a parameterized family of vague sets of the universe U . For ε ∈ X, F̃(ε) is
regarded as the set of ε-approximate elements of the vague soft set (F̃ , X).

For a vague soft set, Xu et al. [21] have introduced the following definitions concerning its operations.

Definition 2.9 ([21]). If (F̃ , X) and (G̃, Y ) are two vague soft sets over a universe U . ‘‘(F̃ , X) AND (G̃, Y )’’, denoted by
(F̃ , X)∧̃(G̃, Y ), is defined by (F̃ , X)∧̃(G̃, Y ) = (H̃, X × Y ), where

tH̃(α,β)(x) = min{tF̃(α)(x), tG̃(β)(x)}

and

1 − fH̃(α,β)(x) = min{1 − fF̃(α)(x), 1 − fG̃(β)(x)} = 1 − max{fF̃(α)(x), fG̃(β)(x)}

for all (α, β) ∈ (X, Y ) and x ∈ U .

Definition 2.10 ([21]). If (F̃ , X) and (G̃, Y ) are two vague soft sets over a universe U . ‘‘(F̃ , X) OR (G̃, Y )’’, denoted by
(F̃ , X)∨̃(G̃, Y ), is defined by (F̃ , X)∨̃(G̃, Y ) = (Õ, X × Y ), where

tÕ(α,β)(x) = max{tF̃(α)(x), tG̃(β)(x)}

and

1 − fÕ(α,β)(x) = max{1 − fF̃(α)(x), 1 − fG̃(β)(x)} = 1 − min{fF̃(α)(x), fG̃(β)(x)}

for all (α, β) ∈ (X, Y ) and x ∈ U .

Definition 2.11 ([21]). The union of two vague soft sets (F̃ , X) and (G̃, Y ) over a universe U is a vague soft set denoted by
(H̃, Z), where Z = X ∪ Y and

tH̃(α)(x) =


tF̃(α)(x) if α ∈ X − Y ,
tG̃(α)(x) if α ∈ Y − X,
max{tF̃(α)(x), tG̃(α)(x)} if α ∈ X ∩ Y ,

and

1 − fH̃(α)(x) =


1 − fF̃(α)(x) if α ∈ X − Y ,
1 − fG̃(α)(x) if α ∈ Y − X,
1 − min{fF̃(α)(x), fG̃(α)(x)} if α ∈ X ∩ Y ,

for all α ∈ Z and x ∈ U . This is denoted by (H̃, Z) = (F̃ , X)∪̃(G̃, Y ).
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Definition 2.12 ([21]). The intersection of two vague soft sets (F̃ , X) and (G̃, Y ) over a universe U is a vague soft set denoted
by (H̃, Z), where Z = X ∪ Y and

tH̃(α)(x) =


tF̃(α)(x) if α ∈ X − Y ,
tG̃(α)(x) if α ∈ Y − X,
min{tF̃(α)(x), tG̃(α)(x)} if α ∈ X ∩ Y ,

and

1 − fH̃(α)(x) =


1 − fF̃(α)(x) if α ∈ X − Y ,
1 − fG̃(α)(x) if α ∈ Y − X,
1 − max{fF̃(α)(x), fG̃(α)(x)} if α ∈ X ∩ Y ,

for all α ∈ Z and x ∈ U . This is denoted by (H̃, Z) = (F̃ , X)∩̃(G̃, Y ).

In contrast with the above definition of vague soft set intersections, we may sometimes adopt a different definition of
intersection given as follows.

Definition 2.13. Let (F̃ , X) and (G̃, Y ) be two vague soft sets over a universe U such that X ∩ Y ≠ ∅. The bi-intersection of
(F̃ , X) and (G̃, Y ) is defined to be the soft set (H̃, Z), where C = A∩ B and H̃(α) = F̃(α)∩ G̃(α) for all α ∈ Z . This is denoted
by (H̃, Z) = (F̃ , X)⊓̃(G̃, Y ).

The notions of AND, OR and bi-intersection operations of vague soft sets can be extended to a family of vague soft sets
over U . Let {(F̃i, Xi)}i∈I be a non-empty family of vague soft sets over a common universe U , where I is an index set. The
AND-vague soft set ∧̃i∈I(F̃i, Xi) of these soft sets is defined to be the soft set (G̃, Y ) such that Y =

∏
i∈I Xi and G̃(α) = ∩i∈I F̃i(α)

for all α = (αi)i∈I ∈ Y . Similarly, the OR-vague soft set ∨̃i∈I(F̃i, Xi) of these soft sets is defined to be the soft set (G̃, Y ) such
that Y =

∏
i∈I Xi and G̃(α) = ∪i∈I F̃i(α) for all α = (αi)i∈I ∈ Y . The bi-intersection vague soft set ⊓i∈I(F̃i, Xi) of these soft sets

is defined to be the soft set (G̃, Y ) such that Y = ∩i∈I Xi and G̃(α) = ∩i∈I F̃i(α) for all α ∈ Y .
Next, we introduce some new relations based on the ordering relation ‘‘ b′′ on V (U).

Definition 2.14. For two vague soft sets (F̃ , X) and (G̃, Y ) over a universeU , we say that (F̃ , X) is a vague soft subset in (F̃ , Y ),
if

X ⊆ Y and F̃(ε) b G̃(ε)

for all ε ∈ X . This relationship is denoted by (F̃ , X)⊆̃(G̃, Y ). Similarly, (F̃ , X) is said to be a vague soft superset in (G̃, Y ), if
(G̃, Y ) is a vague soft subset in (F̃ , X). We denote it by (F̃ , X)⊇̃(G̃, Y ).

Definition 2.15. Two vague soft sets (F̃ , X) and (G̃, Y ) over a universe U are said to vague soft equal if (F̃ , X)⊆̃(G̃, Y ) and
(G̃, Y )⊆̃(F̃ , X).

3. (∈, ∈ ∨q)-vague left h-ideals of a hemiring

In this section, we introduce the concept of (∈,∈ ∨q)-vague soft left h-ideals over a hemiring and investigate some of
their basic properties. Let us first provide the following definitions.

Definition 3.1. Let A and B be two vague sets in a hemiring S. Define the h-sum of A and B by A+h B = [tA+htB, 1− fA+hfB],
where

(tA+htB)(x) = sup
x+a1+b1+z=a2+b2+z

min{tA(a1), tA(a2), tB(b1), tB(b2)}

and

(fA+hfB)(x) = inf
x+a1+b1+z=a2+b2+z

max{fA(a1), fA(a2), fB(b1), fB(b2)}

for all x ∈ S.

Definition 3.2. Let A and B be two vague sets in a hemiring S. Define the h-intrinsic product of A and B by A⊙h B =

[tA⊙htB, 1 − fA⊙hfB], where

(tA⊙htB)(x) = sup
x+

m∑
i=1

aibi+z=
n∑

j=1
a′jb

′
j+z

min{tA(ai), tA(a′

j), tB(bi), tB(b
′

j)}
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and

(fA⊙hfB)(x) = inf
x+

m∑
i=1

aibi+z=
n∑

j=1
a′jb

′
j+z

max{fA(ai), fA(a′

j), fB(bi), fB(b
′

j)}

for all i = 1, . . . ,m; j = 1, . . . , n, and (tA⊙htB)(x) = 0 and (fA⊙hfB)(x) = 1 if x cannot be expressed as x +
∑m

i=1 aibi + z =∑n
j=1 a

′

jb
′

j + z for all ai, bi, a′

j, b
′

j, z ∈ S.

By the direct calculation we obtain immediately the following results.

Proposition 3.3. Let A and B be two vague sets in a hemiring S. Then both A+h B and A⊙h B are vague sets in S.

Lemma 3.4. Let S be a hemiring and A1, A2, B1, B2 ∈ V (S) such that A1 b A2 and B1 b B2. Then
(1) A1 +h B1 b A2 +h B2.
(2) A1 ⊙h B1 b A2 ⊙h B2.
(3) A1 ∩ B1 b A2 ∩ B2.

Definition 3.5. A vague set A in a hemiring S is called an (∈,∈ ∨q)-vague left h-ideal if it satisfies:
(V1a) A+h A b A;
(V2a) χS ⊙h A b A;
(V3a) ar , bs ∈ tA → xmin{r,s} ∈ ∨q tA and xmax{r,s} ∈ ∧q fA → ar ∈ fA or bs ∈ fA for all a, b, x, z ∈ S and r, s ∈ (0, 1] such that

x + a + z = b + z.

Note that if A is an (∈,∈ ∨q)-vague left h-ideal of S, then tA(0) ≥ min{tA(x), 0.5} and fA(0) ≤ max{fA(x), 0.5}. In fact, for
any x ∈ S, since 0+ x+ 0 = x+ 0, if tA(0) < r = min{tA(x), 0.5}, then xr ∈ tA and tA(0)+ r < r + r ≤ 1, that is, 0r∈ ∨q tA,
which contradicts to (V3a). Hence tA(0) ≥ min{tA(x), 0.5}. Similarly, fA(0) ≤ max{fA(x), 0.5}.

Example 3.6. Let S be as in Example 2.4 in [31]. Define a vague set A in S by

tA(x) =


0.6 if x ∈


0 0
0 0


,

0.4 if

a 0
b c


(a, b ∈ P, c ∈ N),

0 otherwise,

and

1 − fA(x) =


0.7 if x ∈


0 0
0 0


,

0.4 if

a 0
b c


(a, b ∈ P, c ∈ N),

0 otherwise.

Then A is an (∈,∈ ∨q)-vague left h-ideal of S.

In what follows, we provide some characterizations of (∈,∈ ∨q)-vague left h-ideals of a hemiring S.

Theorem 3.7. A vague set A in a hemiring S is an (∈,∈ ∨q)-vague left h-ideal of S if and only if it satisfies the following
conditions: ∀a, b, x, y, z ∈ S
(V1b) tA(x + y) ≥ min{tA(x), tA(y), 0.5} and fA(x + y) ≤ max{fA(x), fA(y), 0.5};
(V2b) tA(xy) ≥ min{tA(y), 0.5} and fA(xy) ≤ max{fA(y), 0.5};
(V3b) tA(x) ≥ min{tA(a), tA(b), 0.5} and fA(x) ≤ max{fA(a), fA(b), 0.5} if x + a + z = b + z.

Proof. Assume that A is an (∈,∈ ∨q)-vague left h-ideal of S. Now, if there exist x, y ∈ S such that fA(x + y) >
max{fA(x), fA(y), 0.5}. Choose r such that fA(x + y) > r > max{fA(x), fA(y), 0.5}. Then fA(x + y) > r and fA(x + y) + r >
r + r > 1, and so (x + y)r ∈ ∧q fA. On the other hand, we have fA(0) ≤ max{fA(x), 0.5} and so

(fA+hfA)(x + y) = inf
x+y+a1+b1+z=a2+b2+z

max{fA(a1), fA(a2), fA(b1), fA(b2)}

≤ max{fA(0), fA(x), fA(y)} ≤ max{fA(x), fA(y), 0.5} < r.

Hence (x + y)r ∉ fA+hfA, which contradicts fA ⊆ ∧q fA+hfA. Therefore fA(x + y) ≤ max{fA(x), fA(y), 0.5}. Similarly,
tA(x+y) ≥ min{tA(x), tA(y), 0.5}. Hence, condition (V1b) is satisfied. Condition (V2b) can be similarly proved. For condition
(V3b), if there exist a, b, x, z ∈ S with x + a + z = b + z and s ∈ (0, 1] such that fA(x) > s > max{fA(a), fA(b), 0.5}, then
fA(x) > s, fA(x) + s ≥ 2s > 1 and s > max{fA(a), fA(b)}, and so xs ∈ ∧q fA, but as ∉ fA and bs ∉ fA, a contradiction. Hence
fA(x) ≤ max{fA(a), fA(b), 0.5}. Similarly, tA(x) ≥ min{tA(a), tA(b), 0.5}. Hence, condition (V3b) is valid.
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Conversely, assume that the given conditions hold. For any fuzzy points xr in S, if xr ∈ ∧q fA, then fA(x) ≥ r and
fA(x) + r > 1, and so fA(x) > 0.5. Let a1, a2, b1, b2, x, z ∈ S be such that x + a1 + b1 + z = a2 + b2 + z, then by
conditions (V1b) and (V3b), we have

0.5 < fA(x) ≤ max{fA(a1 + b1), fA(a2 + b2), 0.5}
≤ max{max{fA(a1), fA(b1), 0.5},max{fA(a2), fA(b2), 0.5}, 0.5}
= max{fA(a1), fA(b1), fA(a2), fA(b2), 0.5},

which implies fA(x) ≤ max{fA(a1), fA(b1), fA(a2), fA(b2)}. Hence we have

(fA+hfA)(x) = inf
x+a1+b1+z=a2+b2+z

max{fA(a1), fA(b1), fA(a2), fA(b2)}

≥ inf
x+a1+b1+z=a2+b2+z

fA(x) = fA(x) ≥ r.

Hence xr ∈ fA+hfA and so fA ⊆ ∧qfA+hfA. Similarly, tA+htA ⊆ ∨q tA, and so A+h A b A, that is, condition (V1a) is
satisfied. Condition (V2a) can be similarly proved. For condition (V3a), if there exist a, b, x, z ∈ S and r, s ∈ (0, 1] with
x + a + z = b + z and xmax{r,s} ∈ ∧q fA such that ar ∉ fA and bs ∉ fA, then fA(x) ≥ max{r, s} > max{fA(a), fA(b)} and
2fA(x) ≥ fA(x) + max{r, s} > 1, which imply fA(x) > 0.5 and so fA(x) > max{fA(a), fA(b), 0.5}, a contradiction. Thus
xmax{r,s} ∈ ∧q fA implies ar ∈ fA or bs ∈ fA. Similarly, we may show that ar , bs ∈ tA implies xmin{r,s} ∈ ∨q tA for r, s ∈ (0, 1]
and x, z, a, b ∈ S such that x+ a+ z = b+ z. Hence, condition (V3a) is valid. Therefore, A is an (∈,∈ ∨q)-vague left h-ideal
of S. �

Theorem 3.8. A vague set A in a hemiring S is an (∈,∈ ∨q)-vague left h-ideal of S if and only if it satisfies condition (V3a) and
∀x, y ∈ S and r, s ∈ [0, 1]

(V1c) xr , ys ∈ tA → (x + y)min{r,s} ∈ ∨qtA and (x + y)max{r,s} ∈ ∧q fA → xr ∈ fA or ys ∈ fA;
(V2c) yr ∈ tA → (xy)r ∈ ∨qtA and (xy)r ∈ ∧q fA → xr ∈ fA.

Proof. The proof is similar to that of Theorem 3.7. �

For any r ∈ [0, 1] and fuzzy subset µ in S, denote µr = {x ∈ S|µ(x) > r}, ⟨µ⟩r = {x ∈ S|xr qµ}, [µ]r = {x ∈ S|xr ∈

∨qµ},µr = {x ∈ S|µ(x) < r} and [µ]r = {x ∈ S|xr∈ ∨ qµ}. Clearly, A(r,s) = tAr̂ ∩ fAs for all r, s ∈ [0, 1].
The next theorem presents the relationships between (∈,∈ ∨q)-vague left h-ideals and crisp left h-ideals of a hemi-

ring S.

Theorem 3.9. Let S be a hemiring and A a vague set in S. Then:

(1) A is an (∈,∈ ∨q)-vague left h-ideal of S if and only if non-empty subsets tAr̂ andfAs are left h-ideals of S for all r ∈ [0, 0.5)
and s ∈ (0.5, 1].

(2) A is an (∈,∈ ∨q)-vague left h-ideal of S if and only if non-empty subsets tAr̂ and [fA]s are left h-ideals of S for all r ∈ [0, 0.5)
and s ∈ (0, 1].

(3) A is an (∈,∈ ∨q)-vague left h-ideal of S if and only if non-empty subsets ⟨tA⟩r and fAs are left h-ideals of S for all
r, s ∈ (0.5, 1].

(4) A is an (∈,∈ ∨q)-vague left h-ideal of S if and only if non-empty subsets ⟨tA⟩r and [fA]s are left h-ideals of S for all r ∈ (0.5, 1]
and s ∈ (0, 1].

(5) A is an (∈,∈ ∨q)-vague left h-ideal of S if and only if non-empty subsets [tA]r andfAs are left h-ideals of S for all r ∈ (0, 1]
and s ∈ (0.5, 1].

(6) A is an (∈,∈ ∨q)-vague left h-ideal of S if and only if non-empty subsets [tA]r and [fA]s are left h-ideals of S for all
r, s ∈ (0, 1].

Proof. We only show (1) and (2). The other properties can be similarly proved.

(1) Let A be an (∈,∈ ∨q)-vague left h-ideal of S and assume that tAr̂ ≠ ∅ andfAs ≠ ∅ for some r ∈ [0, 0.5) and s ∈ (0.5, 1].
We only show that fAs is a left h-ideal of S. The case for tAr̂ can be similarly proved. Let x, y ∈ fAs. Then fA(x) < s and
fA(y) < s. Since A is an (∈,∈ ∨q)-vague left h-ideal of S, we have fA(x+y) ≤ max{fA(x), fA(y), 0.5} < s. Hence x+y ∈ fAs.
In a similar way, we may show that xy, yx ∈ fAs for all x ∈ fAs and y ∈ S and that x + a + z = b + z for x, z ∈ S and
a, b ∈ fAs implies x ∈ fAs. Therefore,fAs is a left h-ideal of S.

Conversely, assume that the given conditions hold. We only show that fA satisfies conditions (V1b)–(V3b). The case
for tA can be similarly proved. Now, let x, y ∈ S. Choose s = max{fA(x), fA(y), 0.5} + ε, where ε > 0. Then s ∈ (0.5, 1]
and x, y ∈ fAs. Since fAs is a left h-ideal of S, we have x + y ∈ fAs, and so fA(x + y) < s = max{fA(x), fA(y), 0.5} + ε.
Hence fA(x + y) ≤ max{fA(x), fA(y), 0.5} since ε is arbitrary. Similarly, we may show that fA(xy) ≤ max{fA(y), 0.5} for
all x, y ∈ S and that fA(x) ≤ max{fA(a), fA(b), 0.5} for all x, z, a, b ∈ S such that x + a + z = b + z. It follows from
Theorem 3.7 that A is an (∈,∈ ∨q)-vague left h-ideal of S.
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(2) Let A be an (∈,∈ ∨q)-vague left h-ideal of S and assume that tAr̂ ≠ ∅ and [fA]s ≠ ∅ for some r ∈ [0, 0.5) and s ∈ (0, 1].
By (1), is suffices to show that [fA]s is a left h-ideal of S, let x, y ∈ [fA]s. Then xs∈ ∨ qfA and ys∈ ∨ qfA, that is, fA(x) < s or
fA(x)+ s ≤ 1, and fA(y) < s or fA(y)+ s ≤ 1. We consider the following cases.

Case 1. s ∈ (0, 0.5]. Then 1 − s ≥ 0.5 ≥ s.
(1) If fA(x) < s and fA(y) < s, then fA(x + y) ≤ max{fA(x), fA(y), 0.5} = 0.5 ≤ 1 − s, that is, (x + y)s q fA.
(2) If fA(x)+ s ≤ 1 or fA(y)+ s ≤ 1, then fA(x + y) ≤ max{fA(x), fA(y), 0.5} ≤ 1 − s, that is, (x + y)s q fA.

Case 2. s ∈ (0.5, 1]. Then s > 0.5 > 1 − s.
(1) If fA(x) < s or fA(y) < s, then fA(x + y) ≤ max{fA(x), fA(y), 0.5} < s, that is, (x + y)s∈ fA.
(2) If fA(x)+s ≤ 1 and fA(y)+s ≤ 1, then fA(x+y) ≤ max{fA(x), fA(y), 0.5} ≤ max{1−s, 1−s, 0.5} < s, that is, (x+y)s∈ fA.

Thus, in any case, (x+ y)s∈∨ qfA, that is, x+ y ∈ [fA]s. Similarly, we can show that xy, yx ∈ [fA]s for all x ∈ [fA]s and y ∈ S
and that x + a + z = b + z for x, z ∈ S and a, b ∈ [fA]s imply x ∈ [fA]s. Therefore, [fA]s is a left h-ideal of S.

Conversely, assume that the given conditions hold. By (1), conditions (V1b)–(V3b) hold for tA. Now, if there exist x, y ∈ S
and s ∈ (0, 1] such that fA(x + y) > s > max{fA(x), fA(y), 0.5}. Then xs, ys∈fA but (x + y)s ∈ ∧q fA, that is, x, y ∈ [fA]s but
x, y ∉ [fA]s, a contradiction. Hence fA(x + y) ≤ max{fA(x), fA(y), 0.5}. Similarly, we may show that fA(xy) ≤ max{fA(y), 0.5}
for all x, y ∈ S and that fA(x) ≤ max{fA(a), fA(b), 0.5} for all x, z, a, b ∈ S such that x + a + z = b + z. It follows from
Theorem 3.7 that A is an (∈,∈ ∨q)-vague left h-ideal of S. �

Next let us consider the (∈,∈ ∨q)-vague left h-ideals of S induced by an (∈,∈ ∨q)-vague left h-ideal of S.

Proposition 3.10. If A is an (∈,∈ ∨q)-vague left h-ideal of a hemiring S, then so are (1) �A, (2) ♦A, (3) Pr,t(A), (4) Qr,t(A),
where r, t ∈ [0, 1] and r + t ≤ 1.

Proof. It is straightforward. �

In view of Proposition 3.10, it is easy to verify that the following theorem is valid.

Theorem 3.11. A vague fuzzy set A in S is an (∈,∈ ∨q)-vague left h-ideal of a hemiring S if and only if �A and♦A are (∈,∈ ∨q)-
vague left h-ideals of S.

Corollary 3.12. A = [χS , 1 − χ c
S
] is an (∈,∈ ∨q)-vague left h-ideal of a hemiring S.

Theorem 3.13. A non-empty set P in a hemiring S is a left h-ideal of S if and only if A = [χP , 1 − χ c
P
] is an (∈,∈ ∨q)-vague

left h-ideal of S.

Proof. It is straightforward. �

Theorem 3.14. Let A and B be (∈,∈ ∨q)-vague left h-ideals of a hemiring S. Then so are A ∩ B = [tA ∩ tB, 1 − (fA ∪ fB)] and
A+h B = [tA+htB, 1 − (fA+hfB)].

Proof. We show that A+h B is an (∈,∈ ∨q)-vague left h-ideal of a hemiring S. The proof for A ∩ B is straightforward.
(1) For any x, y ∈ S, we have

(tA+htB)(x + y) = sup
x+y+a1+b1+z=a2+b2+z

min{tA(a1), tA(a2), tB(b1), tB(b2)}

≥ min


sup
x+c1+d1+z1=c2+d2+z1

min{tA(c1), tA(c2), tB(d1), tB(d2)},

sup
y+e1+f1+z2=e2+f2+z2

min{tA(e1), tA(e2), tB(f1), tB(f2)}, 0.5


= min{(tA+htB)(x), (tA+htB)(y), 0.5}.

Similarly, (fA+hfB)(x + y) ≤ max{(fA+hfB)(x), (fA+hfB)(y), 0.5}.
(2) For any x, y ∈ S, we have

min{(tA+htB)(y), 0.5} = min


sup
y+a1+b1+z=a2+b2+z

min{tA(a1), tA(a2), tB(b1), tB(b2)}, 0.5


≤ sup
xy+xa1+xb1+xz=xa2+xb2+xz

min{tA(xa1), tA(xa2), tB(xb1), tB(xb2)}

≤ sup
xy+c1+d1+z1=c2+d2+z1

min{tA(c1), tA(c2), tB(d1), tB(d2)}

= (tA+htB)(xy).

Similarly, (fA+hfB)(xy) ≤ max{(fA+hfB)(y), 0.5}.
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(3) Let a, b, x and z1 be any elements of S such that x+ a+ z1 = b+ z1, and let c1, c2, d1, d2, e1, e2, f1, f2, z2, z3 ∈ S be such
that

a + c1 + d1 + z2 = c2 + d2 + z2 and b + e1 + f1 + z3 = e2 + f2 + z3.

Then we have x + c2 + d2 + e1 + f1 + z4 = c1 + d1 + e2 + f2 + z4,where z4 = z1 + z2 + z3, and so

(tA+htB)(x) = sup
x+a1+b1+z=a2+b2+z

min{tA(a1), tA(a2), tB(b1), tB(b2)}

≥ min{tA(c2 + e1), tA(c1 + e2), tB(d2 + f1), tB(d1 + f2)}
≥ min{min{tA(c2), tA(e1), 0.5},min{tA(c1), tA(e2), 0.5},

min{tB(d2), tB(f1), 0.5},min{tB(d1), tB(f2), 0.5}}
= min{min{tA(c1), tA(c2), tB(d1), tB(d2)},min{tA(e1), tA(e2), tB(f1), tB(f2)}, 0.5},

this gives

(tA+htB)(x) ≥ min


sup
a+c1+d1+z2=c2+d2+z2

min{tA(c1), tA(c2), tB(d1), tB(d2)},

sup
b+e1+f1+z3=e2+f2+z3

min{tA(e1), tA(e2), tB(f1), tB(f2)}, 0.5


= min{(tA+htB)(a), (tA+htB)(b), 0.5}.

Similarly, (fA+hfB)(x) ≤ max{(fA+hfB)(a), (fA+hfB)(b), 0.5}.
Summing up the above statements, A+h B is an (∈,∈ ∨q)-vague left h-ideal of a hemiring S. �

In what follows, we denote by GVLI(S) the set of all (∈,∈ ∨q)-vague left h-ideals of a hemiring S with the same tip, that
is, tA(0) = tB(0) and fA(0) = fB(0) for all A, B ∈ GVLI(S). Theorem 3.14 gives that (GVLI(S),+h) is a semigroup.

Theorem 3.15. Let S be a hemiring. Then (GVLIT (S),+h,∩) is a complete latticewithminimal element [χ c
S , 1−χ

c
S ] andmaximal

element [χS, 1 − χS] under the ordering relation ‘‘b’’.

Proof. Let A, B ∈ GVLIT (S). It follows from Theorem 3.14 that A∩ B ∈ GVLIT (S) and A+h B ∈ GVLIT (S). It is clear that A∩ B
is the greatest lower bound of A and B. We now show that A+h B is the least upper bound of A and B. Since tA(0) = tB(0),
for any x ∈ S, we have

(tA+htB)(x) = sup
x+a1+b1+z=a2+b2+z

min{tA(a1), tA(a2), tB(b1), tB(b2)}

≥ min{tA(0), tA(x), tB(0), tB(0)} = min{tA(0), tA(x)}
≥ min{tA(x), 0.5},

hence tA ⊆ ∨q tA+htB. Similarly, fA+hfB ⊆ ∧qfA. Thus A b A+h B. In a similar way, we have B b A+h B. Now, let
C ∈ GVLIT (S) be such that A, B b C . Then, we have A+h B b C +h C b C . Hence A ∨ B = A+h B. There is no difficulty in
replacing the {A, B} with an arbitrary family of GVLIT (S) and so (GVLIT (S),+h,∩) is a complete lattice under the relation
‘‘b’’. It is easy to see that [χ c

S , 1−χ c
S ] and [χS, 1−χS] are the minimal element and maximal element in (GVLIT (S),+h,∩),

respectively. �

Theorem 3.16. Given any chain of left h-ideals S0 ⊂ S1 ⊂ · · · ⊂ Sn = S of a hemiring S, there exists an (∈,∈ ∨q)-vague left
h-ideal of S whose non-empty strong level sets are precisely the members of the chain with A(0.5,0.5) = S0.

Proof. Let {ri|ri ∈ (0, 0.5), i = 1, 2, . . . , n} and {ti|ti ∈ (0, 0.5), i = 1, 2, . . . , n} be such that r1 > r2 > · · · > rn,
t1 < t2 < · · · < tn and ri + ti ≤ 1 for all i = 1, . . . , n. Let tA and fA be fuzzy subsets in S such that

tA(x) =


r0 > 0.5 if x ∈ S0,
r1 if x ∈ S1 − S0,
· · ·

rn if x ∈ Sn − Sn−1,

fA(x) =


t0 < 0.5 if x ∈ S0,
t1 if x ∈ S1 − S0,
· · ·

tn if x ∈ Sn − Sn−1,

for all x ∈ S. Then it is easy to see that A = [tA, 1 − fA] is an vague set in S, and

tAr =


S0 if r ∈ [r1, r0),
S1 if r ∈ [r2, r1),
· · ·

Sn if r ∈ [0, rn),

fAt =


S0 if t ∈ (t0, t1],
S1 if t ∈ (t1, t2],
· · ·

Sn if t ∈ (tn, 1].
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Hence, for any r ∈ [0, r0) and t ∈ (t0, 1], there exist i, j ∈ {1, 2, · · ·, n} such that r ∈ [ri, ri−1) and t ∈ (tj, tj+1]. Without
loss of generality, we may assume that i ≤ j, then tAr = Si−1,fAt = Sj and A(r,t) = tAr ∩ fAt = Si−1 ∩ Sj = Si−1. Thus,
our assumption and Theorem 3.9 give that A is an (∈,∈ ∨q)-vague left h-ideal of S whose non-empty strong level sets are
precisely the members of the chain. Clearly, A(0.5,0.5) = S0. �

4. (∈, ∈ ∨q)-vague soft left h-ideals over a hemiring

In this section, we consider (∈,∈ ∨q)-vague soft left h-ideals over a hemiring. Let us first introduce the following
definition.

Definition 4.1. Let (F̃ , X) be a vague soft set over a hemiring S. Then (F̃ , X) is called an (∈,∈ ∨q)-vague soft left h-ideal over
S if F̃(α) is an (∈,∈ ∨q)-vague left h-ideal of S for all α ∈ X .

Example 4.2. The set N0 of all non-negative integers with usual addition and multiplication is a hemiring. Define a vague
soft set (F̃ , X) over N0, where X = N0, by

tF̃(α)(x) =


1 if x = 0,
1
α

if x ∈ (α)− {0},
0 otherwise,

1 − fF̃(α)(x) =


1 if x = 0,
1
α

if x ∈ (α)− {0},
0 otherwise,

for all α, x ∈ N0. Then (F̃ , X) is an (∈,∈ ∨q)-vague soft left h-ideal over N0.

Proposition 4.3. Let (F̃ , X) be a vague soft set over a hemiring S and let Y ⊂ X. If (F̃ , X) is an (∈,∈ ∨q)-vague soft left h-ideal
over S, then so is (F̃ , Y ) whenever it is non-null.

Proof. It is straightforward by Definition 4.1. �

Theorem 4.4. Let (F̃ , X) and (G̃, Y ) be two (∈,∈ ∨q)-vague soft left h-ideals over a hemiring S. Then (F̃ , X)∧̃(G̃, Y ) is an
(∈,∈ ∨q)-vague soft left h-ideal over S.

Proof. By Definition 2.9, we can write (F̃ , X)∧̃(G̃, Y ) = (H̃, Z), where Z = X × Y and H̃(α, β) = F̃(α) ∩ G̃(β) for all
(α, β) ∈ Z . Now for any (α, β) ∈ Z , since (F̃ , X) and (G̃, Y ) are (∈,∈ ∨q)-vague soft left h-ideals over S, we have both
F̃(α) and G̃(β) are (∈,∈ ∨q)-vague left h-ideals of S. Thus it follows from Theorem 3.14 that H̃(α, β) = F̃(α) ∩ G̃(β) is an
(∈,∈ ∨q)-vague left h-ideal of S. Therefore, (F̃ , X)∧̃(G̃, Y ) is an (∈,∈ ∨q)-vague soft left h-ideal over S. �

Theorem 4.5. Let (F̃ , X) and (G̃, Y ) be two (∈,∈ ∨q)-vague soft left h-ideals over a hemiring S. If for any α ∈ X and β ∈ Y ,
either F̃(α) ⊆ G̃(β) or G̃(β) ⊆ F̃(α), then (F̃ , X)∨̃(G̃, Y ) is an (∈,∈ ∨q)-vague soft left h-ideal over S.

Proof. By Definition 2.10, we can write (F̃ , X)∨̃(G̃, Y ) = (Õ, Z), where Z = X × Y and Õ(α, β) = F̃(α) ∪ G̃(β) for all
(α, β) ∈ Z . Now for any (α, β) ∈ Z , by the assumption, either F̃(α) ⊆ G̃(β) or G̃(β) ⊆ F̃(α), say F̃(α) ⊆ G̃(β), that is,
tF̃(α) ⊆ tG̃(β) and fG̃(β) ⊆ fF̃(α). Now, for any x, y ∈ S, we have

tÕ(α,β)(x + y) = (tF̃(α) ∪ tG̃(β))(x + y) = max{tF̃(α)(x + y), tG̃(β)(x + y)}

= tG̃(β)(x + y) ≥ min{tG̃(β)(x), tG̃(β)(y), 0.5}

= min{(tF̃(α) ∪ tG̃(β))(x), (tF̃(α) ∪ tG̃(β))(y), 0.5}

= min{tÕ(α,β)(x), tÕ(α,β)(y), 0.5}

and

fÕ(α,β)(x + y) = (fF̃(α) ∩ fG̃(β))(x + y) = min{fF̃(α)(x + y), fG̃(β)(x + y)}

= fG̃(β)(x + y) ≤ max{fG̃(β)(x), fG̃(β)(y), 0.5}

= max{(fF̃(α) ∩ fG̃(β))(x), (fF̃(α) ∩ fG̃(β))(y), 0.5}

= max{fÕ(α,β)(x), fÕ(α,β)(y), 0.5}.

Similarly, we may show that tÕ(α,β)(xy) ≥ min{tÕ(α,β)(y), 0.5} and fÕ(α,β)(xy) ≤ max{fÕ(α,β)(y), 0.5} for all x, y ∈ S, and
that tÕ(α,β)(x) ≥ min{tÕ(α,β)(a), tÕ(α,β)(b), 0.5} and fÕ(α,β)(x) ≤ max{fÕ(α,β)(a), fÕ(α,β)(b), 0.5} for all x, z, a, b ∈ S such that
x + a + z = b + z.

Therefore, (F̃ , X)∨̃(G̃, Y ) is an (∈,∈ ∨q)-vague soft left h-ideal over S. �

If there exist α ∈ X and β ∈ Y such that F̃(α)⊆G̃(β) and G̃(β)⊆F̃(α) in Theorem 4.5, then Theorem 4.5 is not true in
general as seen in the following example.
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Example 4.6. Let N0 /(6) = {[0], [1], . . . , [5]} be the hemiring of non-negative integers module 6 with usual addition and
multiplication. Let X = N0 /(6) and Y = {[2]}. Define vague soft sets (F̃ , X) and (G̃, Y ) over N0 /(6) by

tF̃([α])(x) =


1 if x = [0],
1
α

if x ∈ ([α])− {[0]},

0 otherwise,

1 − fF̃([α])(x) =


1 if x = [0],
1
α

if x ∈ ([α])− {[0]},

0 otherwise,

and

tG̃[(2)](x) =


1
3

if x ∈ [(3)],

0 otherwise,
1 − fG̃[(2)](x) =


1
3

if x ∈ [(3)],

0 otherwise,

for all α ∈ N0 and x ∈ N0 /(6). Then both (F̃ , X) and (G̃, Y ) are (∈,∈ ∨q)-vague soft left h-ideals over N0 /(6), and
F̃ [(2)]⊆G̃[(2)] and G̃[(2)]⊆F̃ [(2)]. However, (Õ, Z) = (F̃ , X)∨̃(G̃, Y ) is not an (∈,∈ ∨q)-vague soft left h-ideal over N0 /(6)
since

tÕ([2]×[2])([2] + [3]) = max{tF̃ [(2)]([2] + [3]), tG̃[(2)]([2] + [3])} = 0,

while

min{tÕ([2]×[2])[(2)], tÕ([2]×[2])[(3)], 0.5} = min{max{tF̃ [(2)][(2)], tG̃[(2)][(2)]},max{tF̃ [(2)][(3)], tG̃[(2)][(3)]}, 0.5}

= min

max


1
2
, 0


,max


0,

1
3


, 0.5


=

1
3
,

that is, tÕ([2]×[2])([2] + [3]) < min{tÕ([2]×[2])[(2)], tÕ([2]×[2])[(3)], 0.5}.

Theorem 4.7. Let (F̃ , X) and (G̃, Y ) be two (∈,∈ ∨q)-vague soft left h-ideals over a hemiring S. If X∩Y ≠ ∅, then (F̃ , X)⊓̃(G̃, Y )
is an (∈,∈ ∨q)-vague soft left h-ideal over S.

Proof. By Definition 2.13, we can write (F̃ , X)⊓̃(G̃, Y ) = (H̃, Z), where Z = X ∩ Y and H̃(α) = F̃(α) ∩ G̃(α) for all α ∈ Z .
Now for any α ∈ Z , since (F̃ , X) and (G̃, Y ) are (∈,∈ ∨q)-vague soft left h-ideals over S, we have both F̃(α) and G̃(α) are
(∈,∈ ∨q)-vague left h-ideals of S. Thus it follows from Theorem 3.14 that H̃(α) = F̃(α) ∩ G̃(α) is an (∈,∈ ∨q)-vague left
h-ideal of S. Therefore, (F̃ , X)⊓̃(G̃, Y ) is an (∈,∈ ∨q)-vague soft left h-ideal over S. �

As a generalization of Theorems 4.4–4.5 and 4.7, we have the following result.

Theorem 4.8. Let (F̃i, Xi)i∈I be a family of (∈,∈ ∨q)-vague soft left h-ideals over a hemiring S, where I is an index set. Then

(1) ∧̃i∈I(F̃i, Xi) is an (∈,∈ ∨q)-vague soft left h-ideal over S.
(2) If either F̃i(αi) ⊆ F̃j(αj) or F̃j(αj) ⊆ F̃i(αi) for all (αi)i∈I ∈

∏
i∈I Xi and i, j ∈ I , then ∨̃i∈I(F̃i, Xi) is an (∈,∈ ∨q)-vague soft

left h-ideal over S.
(3) If ∩i∈I Xi ≠ ∅, then ⊓̃i∈I(F̃i, Xi) is an (∈,∈ ∨q)-vague soft left h-ideal over S.

Proof. The proof is similar to that of Theorems 4.4–4.5 and 4.7. �

Theorem 4.9. Let (F̃ , X) and (G̃, Y ) be two (∈,∈ ∨q)-vague soft left h-ideals over a hemiring S. Then (F̃ , X)∩̃(G̃, Y ) is an
(∈,∈ ∨q)-vague soft left h-ideal over S.

Proof. By Definition 2.12, we can write (F̃ , X)∩̃(G̃, Y ) = (H̃, Z), where Z = X ∪ Y and

H̃(α) =

F̃(α) if α ∈ X − Y ,
G̃(α) if α ∈ Y − X,
F̃(α) ∩ G̃(α) if α ∈ X ∩ Y .

for all α ∈ Z .
Now for any α ∈ Z , we consider the following cases.

Case 1. α ∈ X − Y . Then H̃(α) = F̃(α) is an (∈,∈ ∨q)-vague left h-ideal of S since (F̃ , X) is an (∈,∈ ∨q)-vague soft left
h-ideal over S.
Case 2. α ∈ Y − X . Then H̃(α) = G̃(α) is an (∈,∈ ∨q)-vague left h-ideal of S since (G̃, Y ) is an (∈,∈ ∨q)-vague soft left
h-ideal over S.
Case 3. α ∈ X ∩ Y . Then H̃(α) = F̃(α) ∩ G̃(α) is an (∈,∈ ∨q)-vague left h-ideal of S by the assumption and Theorem 4.13.

Thus, in any case, H̃(α) is an (∈,∈ ∨q)-vague left h-ideal of S. Therefore, (F̃ , X)∩̃(G̃, Y ) is an (∈,∈ ∨q)-vague soft left
h-ideal over S. �
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Theorem 4.10. Let (F̃ , X) and (G̃, Y ) be two (∈,∈ ∨q)-vague soft left h-ideals over a hemiring S. If X and Y are disjoint, then
(F̃ , X)∪̃(G̃, Y ) is an (∈,∈ ∨q)-vague soft left h-ideal over S.

Proof. It is straightforward by the proof of Theorem 4.9. �

Note that Example 4.6 also shows that Theorem 4.10 is not true in general if X and Y are not disjoint.
Next let us introduce the h-sum of two vague soft sets over a hemiring S.

Definition 4.11. Let (F̃ , X) and (G̃, Y ) be two vague soft sets over a hemiring S. The h-sum of (F̃ , X) and (G̃, Y ) is defined to
be the vague soft set (H̃, Z), where Z = X ∪ Y and

tH̃(α)(x) =


tF̃(α)(x) if α ∈ X − Y ,
tG̃(α)(x) if α ∈ Y − X,
(tF̃(α)+htG̃(α))(x) if α ∈ X ∩ Y ,

and

1 − fH̃(α)(x) =


1 − fF̃(α)(x) if α ∈ X − Y ,
1 − fG̃(α)(x) if α ∈ Y − X,
1 − (fF̃(α)+hfG̃(α))(x) if α ∈ X ∩ Y ,

for all α ∈ Z and x ∈ S, that is,

H̃(α) =

F̃(α) if α ∈ X − Y ,
G̃(α) if α ∈ Y − X,
F̃(α)+h G̃(α) if α ∈ X ∩ Y .

for all α ∈ Z . This is denoted by (H̃, Z) = (F̃ , X)+h(G̃, Y ).

By Theorem 3.14, we can obtain the following result.

Theorem 4.12. Let (F̃ , X) and (G̃, Y ) be two (∈,∈ ∨q)-vague soft left h-ideals over a hemiring S. Then (F̃ , X)+h(G̃, Y ) is an
(∈,∈ ∨q)-vague soft left h-ideal over S.

Proof. The proof is similar to that of Theorem 4.9. �

Denote by GVSLIT (S) the set of all (∈,∈ ∨q)-vague soft left h-ideals with the same tip t , that is, tF̃(α)(0) = tG̃(β)(0) and
fF̃(α)(0) = fG̃(β)(0) for all (F̃ , X), (G̃, Y ) ∈ GVSLIT (S) and α ∈ X, β ∈ Y . Then we have the following result.

Theorem 4.13. Let S be a hemiring. Then (GVSLIT (S),+h, ⊓̃) is lattice under the ordering relation ‘‘⊆’’.

Proof. The proof is similar to that Theorem 3.15. �

5. The homomorphism properties of (∈, ∈ ∨q)-vague (soft) left h-ideals of a hemiring

Definition 5.1. Let (S,+, ·) and (S ′,+′, ·′) be hemirings and ϕ : S → S ′ a homomorphism of hemirings. A left h-ideal L of
S is called ϕ-compatible if, for all x, z,∈ S and a, b ∈ A, ϕ(x + a + z) = ϕ(b + z) implies x ∈ A. An (∈,∈ ∨q)-vague left
h-ideal A of S is called ϕ-compatible if, for all x, z, a, b ∈ S, ϕ(x + a + z) = ϕ(b + z) implies

tA(x) ≥ min{tA(a), tA(b), 0.5} and fA(x) ≤ max{fA(a), fA(b), 0.5}.

The next theorem presents the relationships between ϕ-compatible (∈,∈ ∨q)-vague left h-ideals and ϕ-compatible left
h-ideals of a hemiring.

Example 5.2. Denote by N0 and N0 /(10) the hemiring of non-negative integers and the hemiring of non-negative integers
module 10, respectively. Define a mapping ϕ : N0 → N0 /(10) by ϕ(x) = [x]. Then ϕ is an epimorphism of N0 onto N0 /(10).
Now define a vague set A in N0 by

tA(x) =


0.6 if x = [(10)],
0.2 otherwise, 1 − fA(x) =


0.6 if x = [(10)],
0.2 otherwise,

for all x ∈ N0. Then A is an ϕ-compatible (∈,∈ ∨q)-vague left h-ideal of N0.

Theorem 5.3. Let (S,+, ·) and (S ′,+′, ·′) be hemirings, ϕ : S → S ′ a homomorphism of hemirings and A an (∈,∈ ∨q)-vague
left h-ideal of S. Then
(1) A is ϕ-compatible if and only if non-empty subsets tAr̂ andfAs are ϕ-compatible for all r ∈ [0, 0.5) and s ∈ (0.5, 1].
(2) A is ϕ-compatible if and only if non-empty subsets tAr̂ and [fA]s are ϕ-compatible for all r ∈ [0, 0.5) and s ∈ (0, 1].
(3) A is ϕ-compatible if and only if non-empty subsets ⟨tA⟩r andfAs are ϕ-compatible for all r, s ∈ (0.5, 1].
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(4) A is ϕ-compatible if and only if non-empty subsets ⟨tA⟩r and [fA]s are ϕ-compatible for all r ∈ (0.5, 1], s ∈ (0, 1].
(5) A is ϕ-compatible if and only if non-empty subsets [tA]r andfAs are ϕ-compatible for all r ∈ (0, 1] and s ∈ (0.5, 1].
(6) A is ϕ-compatible if and only if non-empty subsets [tA]r and [fA]s are ϕ-compatible for all r, s ∈ (0, 1].

Proof. The proof is similar to that of Theorem 3.9. �

Proposition 5.4. Let (S,+, ·) and (S ′,+′, ·′) be hemirings and ϕ : S → S ′ a mapping from S into S ′. Let A and B be vague sets
in S and S ′, respectively. Then the image ϕ(A) = [ϕ(tA), 1 − ϕ(fA)] of A is a vague set in S ′ defined by

ϕ(tA)(x′) =


sup

x∈ϕ−1(x′)
tA(x) if ϕ−1(x′) ≠ ∅,

0 otherwise,

and

1 − ϕ(fA)(x′) =


1 − inf

x∈ϕ−1(x′)
fA(x) if ϕ−1(x′) ≠ ∅,

1 otherwise,

for all x′
∈ S ′. And the inverse image ϕ−1(B) = [ϕ−1(tB), 1−ϕ−1(fB)] of B is a vague set in S defined by ϕ−1(tB)(x) = tB(ϕ(x)),

and 1 − ϕ−1(fB)(x) = 1 − fB(ϕ(x)), for all x ∈ S.

Proof. It is straightforward. �

Theorem 5.5. Let (S,+, ·) and (S ′,+′, ·′) be hemirings and ϕ : S → S ′ an epimorphism of hemirings. If A is an ϕ-compatible
(∈,∈ ∨q)-vague left h-ideal of S, then ϕ(A) is an (∈,∈ ∨q)-vague left h-ideal of S ′.

Proof. Let A be an ϕ-compatible (∈,∈ ∨q)-vague left h-ideal of S.
(1) Let x′, y′

∈ S ′. Then

ϕ(tA)(x′
+

′ y′) = sup
ϕ(a)=x′ +′ y′

tA(a) ≥ sup
ϕ(x)=x′,ϕ(y)=y′

tA(x + y) ≥ sup
ϕ(x)=x′,ϕ(y)=y′

min{tA(x), tA(y), 0.5}

= min


sup
ϕ(x)=x′

tA(x), sup
ϕ(y)=y′

tA(y), 0.5


= min{ϕ(tA)(x′), ϕ(tA)(y′), 0.5}.

Similarly, ϕ(fA)(x′
+

′ y′) ≤ max{ϕ(fA)(x′), ϕ(fA)(y′), 0.5}.
(2) Let x′, y′

∈ S ′. Analogous to (1), we have ϕ(tA)(x′y′) ≥ min{ϕ(tA)(y′), 0.5} and ϕ(fA)(x′y′) ≤ max{ϕ(fA)(y′), 0.5}.
(3) Let x, a, b, z ∈ S and x′, a′, b′, z ′

∈ S ′ be such that x′
+

′ a′
+

′ z ′
= b′

+
′ z ′, ϕ(x) = x′, ϕ(a) = a′, ϕ(b) = b′ and

ϕ(z) = z ′. Then ϕ(x+ a+ z) = ϕ(b+ z). Since A is ϕ-compatible, we have ϕ(tA)(x) ≥ min{ϕ(tA)(a), ϕ(tA)(b), 0.5} and
ϕ(fA)(x) ≤ max{ϕ(fA)(a), ϕ(fA)(b), 0.5}. Thus we have ϕ(tA)(x′) = supϕ(x)=x′ tA(x) ≥ min{tA(a), tA(b), 0.5}, and so

ϕ(tA)(x′) ≥ sup
ϕ(a)=a′,ϕ(b)=b′

min{tA(a), tA(b), 0.5} = min


sup
ϕ(a)=a′

tA(a), sup
tA(b)=b′

tA(b), 0.5


= min{ϕ(tA)(a′), ϕ(tA)(b′), 0.5}.

Similarly, ϕ(fA)(x′) ≤ max{ϕ(fA)(a′), ϕ(fA)(b′), 0.5}.
Summing up the above arguments, ϕ(A) is an (∈,∈ ∨q)-vague left h-ideal of S ′. �

Theorem 5.6. Let (S,+, ·) and (S ′,+′, ·′) be hemirings and ϕ : S → S ′ a homomorphism of hemirings. If A′ is an (∈,∈ ∨q)-
vague left h-ideal of S, then ϕ−1(A′) is an ϕ-compatible (∈,∈ ∨q)-vague left h-ideal of S.

Proof. The proof is similar to that Theorem 5.5. �

Combining Theorems 5.5 and 5.6, we have the following result.

Theorem 5.7. Let (S,+, ·) and (S ′,+′, ·′) be hemirings and ϕ : S → S ′ an epimorphism of hemirings. Then the mapping
ψ : A → ϕ(A) defines a one-to-one correspondence between the set of all ϕ-compatible (∈,∈ ∨q)-vague left h-ideals of S and
the set of all (∈,∈ ∨q)-vague left h-ideals of S ′.

Let (S,+, ·) and (S ′,+′, ·′) be hemirings, ϕ : S → S ′ a mapping from S into S ′. Let (F̃ , X) and (G̃, Y ) be vague soft
sets over S and S ′, respectively. Then we can define a vague soft set (ϕ(F̃), X) over S ′, where ϕ(F̃) : X → V (S ′) is given
by ϕ(F̃)(α) = ϕ(F̃(α)) for all α ∈ X , and a vague soft set (ϕ−1(G̃), Y ) over S, where ϕ−1(G̃) : Y → V (S) is given by
ϕ−1(G̃)(β) = ϕ−1(G̃(β)) for all β ∈ Y .

Definition 5.8. Let (S,+, ·) and (S ′,+′, ·′) be hemirings, ϕ : S → S ′ a homomorphism of hemirings and (F̃ , X) a vague soft
set over S. Then (F̃ , X) is called an ϕ-compatible (∈,∈ ∨q)-vague soft left h-ideal of S if F̃(α) is an ϕ-compatible (∈,∈ ∨q)-
vague left h-ideal of S for all α ∈ X .
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The next theorem presents the relationships between ϕ-compatible (∈,∈ ∨q)-vague soft left h-ideals and ϕ-compatible
left h-ideals of a hemiring.

Theorem 5.9. Let (S,+, ·) and (S ′,+′, ·′) be hemirings, ϕ : S → S ′ a homomorphism of hemirings and (F̃ , X) an (∈,∈ ∨q)-
vague soft left h-ideal over S. Then
1. (F̃ , X) is ϕ-compatible if and only if non-empty subsets tF̃(α)r̂ and fF̃(α)s are ϕ-compatible for all r ∈ [0, 0.5), s ∈ (0.5, 1] and
α ∈ X.

2. (F̃ , X) is ϕ-compatible if and only if non-empty subsets tF̃(α)r̂ and [fF̃(α)]s are ϕ-compatible for all r ∈ [0, 0.5), s ∈ (0, 1] and
α ∈ X.

3. (F̃ , X) is ϕ-compatible if and only if non-empty subsets ⟨tF̃(α)⟩r and fF̃(α)s are ϕ-compatible for all r, s ∈ (0.5, 1] and α ∈ X.
4. (F̃ , X) is ϕ-compatible if and only if non-empty subsets ⟨tF̃(α)⟩r and [fF̃(α)]s are ϕ-compatible for all r ∈ (0.5, 1], s ∈ (0, 1]

and α ∈ X.
5. (F̃ , X) is ϕ-compatible if and only if non-empty subsets [tF̃(α)]r and fF̃(α)s are ϕ-compatible for all r ∈ (0, 1], s ∈ (0.5, 1] and
α ∈ X.

6. (F̃ , X) is ϕ-compatible if and only if non-empty subsets [tF̃(α)]r and [fF̃(α)]s are ϕ-compatible for all r, s ∈ (0, 1] and α ∈ X.

Proof. It is straightforward by Theorem 5.3. �

Theorem 5.10. Let (S,+, ·) and (S ′,+′, ·′) be hemirings and ϕ : S → S ′ an epimorphism of hemirings. If (F̃ , X) is an
ϕ-compatible (∈,∈ ∨q)-vague soft left h-ideal over S, then (ϕ(F̃), X) is an (∈,∈ ∨q)-vague soft left h-ideal over S ′.

Proof. For any α ∈ X , since (F̃ , X) is an ϕ-compatible (∈,∈ ∨q)-vague soft left h-ideal over S, F̃(α) is an ϕ-compatible
(∈,∈ ∨q)-vague left h-ideal of S. Hence ϕ(F̃)(α) = ϕ(F̃(α)) is an (∈,∈ ∨q)-vague left h-ideal of S ′ by Theorem 5.5, and so
(ϕ(F̃), X) is an (∈,∈ ∨q)-vague soft left h-ideal over S ′. �

Theorem 5.11. Let (S,+, ·) and (S ′,+′, ·′) be hemirings and ϕ : S → S ′ a homomorphism of hemirings. If (G̃, Y ) is an
(∈,∈ ∨q)-vague soft left h-ideal over S, then (ϕ−1(G̃), Y ) is an ϕ-compatible (∈,∈ ∨q)-vague soft left h-ideal over S.

Proof. The proof is similar to that Theorem 5.10. �

Combining Theorems 5.10 and 5.11, we have the following result.

Theorem 5.12. Let (S,+, ·) and (S ′,+′, ·′) be hemirings and ϕ : S → S ′ an epimorphism of hemirings. Then the mapping
ψ : (F̃ , X) → (ϕ(F̃), X) defines a one-to-one correspondence between the set of all ϕ-compatible (∈,∈ ∨q)-vague soft left
h-ideals over S and the set of all (∈,∈ ∨q)-vague soft left h-ideals over S ′.

Definition 5.13. Let (F̃ , X) and (G̃, Y ) be two vague soft sets over S and S ′, respectively. Let ϕ : S → S ′ and ψ : X → Y be
two mappings. Then the pair (ϕ, ψ) is called a vague soft hemiring homomorphism if it satisfies the following conditions:
(1) ϕ is an epimorphism of hemirings.
(2) ψ is a surjective mapping.
(3) ϕ(F̃(α)) = G̃(ψ(α)) for all α ∈ X .

If there exists a vague soft hemiring homomorphism between (F̃ , X) and (G̃, Y ), we say that (F̃ , X) is vague soft
homomorphic to (G̃, Y ), which is denoted by (F̃ , X) ∼ (G̃, Y ). Moreover, if ϕ is an isomorphism of hemirings and ψ is a
bijective mapping, then (ϕ, ψ) is called a vague soft hemiring isomorphism. In this case, we say that (F̃ , X) is vague soft
isomorphic to (G̃, Y ), which is denoted by (F̃ , X) w (G̃, Y ).

Example 5.14. Denote by N0 and N0 /(4) the hemiring of non-negative integers and the hemiring of non-negative integers
module 4, respectively. Let X = N0 and Y = N0 /(4). Define vague soft sets (F̃ , X) over N0 and (G̃, Y ) over N0 /(4) by

tF̃(α)(x) =


1 if x = 0,
1
α

if x ∈ (α)− {0},

0 otherwise,

1 − fF̃(α)(x) =


1 if x = 0,
1
α

if x ∈ (α)− {0},

0 otherwise,

and

tG̃(β)(y) =


1
4

if y ∈ (β),

0 otherwise,
1 − fG̃(α)(y) =


1
4

if y ∈ (β),

0 otherwise,

respectively, for all α, x ∈ N0, β, y ∈ N0 /(4). Let ϕ : N0 → N0 /(4) be the natural mapping defined by ϕ(x) = [x] for all
x ∈ N0. Evidently, ϕ is an epimorphism of hemirings. Now, it is easy to check that (ϕ, ϕ) is a vague soft homomorphic from
(F̃ , X) to (G̃, Y ).
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Theorem 5.15. Let (S,+, ·) and (S ′,+′, ·′) be hemirings, (F̃ , X) and (G̃, Y ) vague soft sets over S and S ′, respectively, and (ϕ, ψ)
a vague soft homomorphic from (F̃ , X) to (G̃, Y ). If (F̃ , X) is anϕ-compatible (∈,∈ ∨q)-vague soft left h-ideal over S, then (G̃, Y )
is an (∈,∈ ∨q)-vague soft left h-ideal over S ′.

Proof. Since (ϕ, ψ) is a vague soft homomorphic from (F̃ , X) to (G̃, Y ), by Definition 5.13, ψ is a surjective mapping from
X onto Y and ϕ is an epimorphism of from S onto S ′. Now, for any β ∈ Y , since ψ is surjective, there exists α ∈ X such that
ψ(α) = β . From Theorem 5.5, since ϕ is an epimorphism, G̃(β) = G̃(ψ(α)) = ϕ(F̃(α)) is an (∈,∈ ∨q)-vague left h-ideal of
S ′, and so (G̃, Y ) is an (∈,∈ ∨q)-vague soft left h-ideal over S ′. �

Theorem 5.16. Let (S,+, ·) and (S ′,+′, ·′) be hemirings, (F̃ , X) and (G̃, Y ) vague soft sets over S and S ′, respectively, and (ϕ, ψ)
a vague soft homomorphic from (F̃ , X) to (G̃, Y ). If (G̃, Y ) is an (∈,∈ ∨q)-vague soft left h-ideal over S and ϕ is an isomorphism
of hemirings, then (F̃ , X) is an ϕ-compatible (∈,∈ ∨q)-vague soft left h-ideal over S.

Proof. Let (G̃, Y ) be an (∈,∈ ∨q)-vague soft left h-ideal over S. Then, for any α ∈ X , G̃(ψ(α)) is an (∈,∈ ∨q)-vague left
h-ideal of S ′. Now, since ϕ is an isomorphism, it follows from Theorem 5.6 that F̃(α) = ϕ−1(ϕ(F̃(α))) = ϕ−1(G̃(ψ(α))) is
an ϕ-compatible (∈,∈ ∨q)-vague left h-ideal of S. Therefore, (F̃ , X) is an ϕ-compatible (∈,∈ ∨q)-vague soft left h-ideal
over S. �

6. Conclusions

In this paper, our aim is to promote research and the development of vague (soft) technology by studying the vague (soft)
hemirings. The goal is to explain new methodological development in hemirings which will also be of growing importance
in the future. The obtained results can be applied the other algebraic structures. Our future work on this topic will focus on
studying the relationships among hemirings, BL-algebras and IS-algebras.
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[8] N. Çaǧman, S. Enginoǧlu, Soft matrix theory and its decision making, Comput. Math. Appl. 59 (10) (2010) 3308–3314.
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