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It has been proved that the perfect binary and ternary single error correcting 
AN codes exist. 

In this paper, perfect radix-r single error correcting codes of type I and II 
are defined as generalized versions of perfect binary codes, and a general theory 
is developed for the existence of perfect single error correcting AN codes by 
using number theoretic concepts. 

This leads us to the followings: 

(1) There do not exist perfect radix 4k ~ codes of type I and perfect radix k S 
codes of type II. 

(2) In the cases of radix 4, 5, 8 and 9, no perfect code of either type 
exists. 

(3) There exist perfect codes with radices 6 and 7. 

1. INTRODUCTION 

A N  codes are useful for computation as well as data transmission. Therefore 
A N  codes have been the subject of cont inuing investigation over the past 
years. However few papers treat perfect A N  codes. We know only two works 
by Peterson (1961) and Gritsenko (1969). Peterson has proved that a prime p 
such that 2 or - - 2  is a primitive root modulo p generates a perfect binary 
single error correcting A N  code. Gritsenko has shown that there exist 
perfect ternary single error correcting A N  codes characterized in the manner  

similar to that of the binary case by Peterson. 
In  this paper we treat modular arithmetic A N  codes (Massey and Gareia, 

1972). First it is shown that no composite number  generate perfect single 
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error correcting codes. Next perfect radix r codes of type I and I I  are defined 
as generalized versions of Peterson's. Number  theoretic concepts are used 
to develop a general theory for the existence of perfect radix r codes. This 
theory leads us to the following conclusion: 

(1) There  do not exist perfect radix 4k 2 codes of type I and perfect 
radix k s codes of type II .  

(2) In  the cases of radix 4, 5, 8 and 9, no perfect codes exist. 

(3) There  exist perfect codes with radices 6 and 7. 

2. PRELIMINARIES AND EARLIER WORKS ON PERFECT AN CODES 

An A N  code generated by an integer A is the set of integers A N  for 
0 ~ N < B, where the code length is the number of digits required to 
represent the integer A B  in the radix r system. 

In  this paper we use modular distance and modular weight as metric 
(Massey and Garcia, 1972). As well known, modular distance is a true 
metric if 

A B  = r n ~= 1, (1) 

where n is the code length in the radix r system. In  what follows we will 
impose this restriction on AB. In  this metric, a radix r code is capable of 
single modular error correction for all numbers in the range of 0 ~< N < B 
if and only if the residues of ~a~rJ modulo A, for 0 < a~ < r and for a l l j  
in 0 ~< j < n, are all distinct and nonzero. 

I t  follows that the total number of single error patterns to be corrected 
in the radix r code of length n is 2n(r -- 1). When no error occurs, the residue 
of a code word modulo A is zero. Therefore, for the code generated by A to 
be a single error correcting code, A must satisfy at least the following 
inequality. 

A > ~ 2 n ( r - - 1 ) + l .  

I f  the generator A satisfies 

A = 2n( r  - -  1) + 1, (2) 

A is said to generate a perfect single error correcting code. Clearly the perfect 
code uses all residues modulo A to correct errors. 

Next we show that no composite number A can generate perfect single 
error correcting codes. 
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LEMMA 1. Let A be a composite number, p be one of its factors where 
1 < p < A and J be a multiple ofp. Then if J -~ QrJ mod A, Q is a multiple 
of p, i.e., Q = pq. 

Proof. Because r and A are relatively prime, for any integer J, there exist 
integers Q and j > 0 such that 

J = Q# m o d A .  

I f  J is a multiple of p, the factor p must  be included in Q, as r and A are 
relatively prime. Q.E.D. 

Suppose that the factor p is greater than r. Then  it follows from L e m m a  1 
that no multiple J of p can be congruence to error pattern ai# modulo A, 
because [ ai ] is always less than r. Thus  if a composite number  A generate 
a perfect code, equivalently if there exists a one to one onto correspondence 
between the set of residues modulo A and the set of single error patterns, 
every factor p must  be less than r. This  means that A is less than r ~, and hence 
has weight of at most two. But, in the A N  code, A itself is one of the code 
words and so the min imum distance of this code cannot be more than or 
equal to three, which is not enough to correct single errors. As a consequence 
we have the following theorem. 

THEOREM 2. No composite number generates a perfect single error correcting 
A N  code. 

In  the sequel the perfect codes generated by a prime p are investigated. 
In  the binary and ternary cases, we know the existence of such perfect codes. 

DEFINITION 3. Let  e(r, p) be the min imum positive integer satisfying 

r ~cr'~) ~ 1 m o d p .  (3) 

THEOREM 4 (Peterson 1961). An odd prime p such that e(2, p) = p -  1 
generates a type I perfect binary code. Moreover an odd prime p such that 
e(2, p) = (p  - -  1)/2 and odd generates a type I l  perfect binary code. 

THEOREM 5 (Gritsenko 1969). Let p be a prime of form 24k + 13. I f  
e(3, p) is (p -- 1)/2, p generates a type I perfect ternary code. I f  e(3, p) is 
(p  - -  1)/4, p generates a type H perfect ternary code. 

The  type I and I I  perfect codes stated in the above theorems will be defined 
later. 
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This paper investigates the existence and nonexistence of the perfect 
single error correcting codes with radices greater than three. To do this, we 
require some preliminaries. 

DEFINITION 6. Let G(p)  be a set of 1, 2,..., p - -  1 and (r, p )  be a subset 
of G(P)  consisting of integers k i such that 

ki =- r i m o d p .  (4) 

As well known, for a prime p, G(p)  is a cyclic group under the operation 
of multiplication modulo p, and (r, p )  is one of its subgroups. Thus  G(p)  
can be expanded into eosets of (r, p )  in the following manner: 

G(p) / ( r ,  p )  ~- al(r  , p )  + as(r, p )  + "'" + aq(r, p ) ,  (5) 

where the number  q of cosets satisfies 

q = (p  - -  1)/e(r, p)  (6) 

and ai's are coset leaders. 
I t  should be noted that the elements of each coset ai(r, p )  are of the same 

form as the single error patterns ai rs . 

LEMMA 7. (i) When e(r, p)  is even, both a and - -a  are included in the 

same coset of  G(p) / ( r ,  p ) .  

(ii) When e(r, p)  is odd, a and - -a  are included in the distinct cosets 

of  G(p) / ( r ,  p ) .  

Proof. Let e(r, p)  be even. Then  we get from congruence (3) 

r ~(r'~) - -  1 = (r *(~'~)/z - -  1)(r *°''v)/~ + 1) ~ 0 modp ,  

Since p does not divide r~(r'~)l ~ - -  1, p must divide r~(~,~)l ~ q- 1. Hence we 
have 

r ~(~'~)/~ ~ --1 modp .  (7) 

Next let e(r, p)  be odd. As e(r, p) /2  is not an integer, congruence (7) does 
not hold. Suppose r ~ ~ - -1  mod p for some e in the range 0 < e < e(r, p). 
From this congruence, we get r 2~ ~ 1 m o d p  for some 2e in the range 
0 < e < 2e(r,p) .  Definition 3 tells us that d satisfying r a ~ 1 m o d p  must  
be a multiple of e(r, p). Thus 2e in the range 0 < 2e < 2e(r, p)  must be 
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equal to e(r, p). This contradicts the assumption. Therefore, if e(r, p) is 
odd, for any e 

r e ~ --1 modp.  (8) 

Elements a and - - a  are included in a particular coset, if and only if for 
some j 

--a =- arJ modp.  

This leads us to 

r J ~ - - I  modp,  

because a and p are relatively prime. As previously known, this holds for 
even e(r, p) but does not for odd e(r, p). Q.E.D. 

As a result, the coset expansion (5) may be rewritten as follows: 
For even e(r, p), 

G(p)/(r, p)  = al(r, p)  + as(r, p)  + "." + aq(r, p), (9) 

where both a and - - a  belong to the same coset. For odd e(r, p), 

G(p)/(r, p)  = al(r , p)  + as(r , p)  + "" + a~/s(r, p)  

+ (--al)(a ,p)  + (--as)(r ,p)  + . ' . +  (--aq/~)(r,p). (10) 

Finally we describe some properties of quadratic residue modulo p. 
Let a and p be relatively prime. Then a is a quadratic residue (QR) modulop 

if the congruence 

x s = a m o d p  (11) 

is solvable. I f  this congruence has no solution, a is said to be a quadratic 
nonresidue (QNR) modulo p. 

For an odd prime p, Legendre introduced a symbol defined in the following 
manner: 

DEFINITION 8. 

when a is a QR modulo p. 

when a is a QNR modulo p. 
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With  regard to the quadratic residue, we have some useful results described 

in what follows. For  the proofs see Nagell (1951). 

LEMMA 9. Ira  and p are relatively prime, 

(-~-) ~ a(r-1)/2 mod p. (12) 

LEMMA 10. I f  p is an odd prime, there are just as many quadratic residues 
as nonresidue modulo p in the set G(p),  i.e., therefore (p -- 1)/2 of each kind. 

Table  I shows the forms of the pr ime p of which an integer a is a quadratic 
residue or a quadratic nonresidue modulo p. 

TABLE I 

The Forms of the Prime p of which 
a is a QR or a QNR Modulo p 

a QR QNR 

- -1  4k + 1 4k - -  1 

2 8k + 1 8k + 3 

--2 8k + 1, -/3 8k -- 1, --3 

3 12k + 1 12k + 5 

- - 3  6k + 1 6k + 5 

5 10k + 1 10k + 3 

--5 20k + 1, --3, --7, +9  20k -- 1, +3, -t-7, --9 

7 28k + 1, -t-3, -t-9 28h + 5, + i1 ,  -t-13 

3. NONEXISTENCE OF PERFECT RADIX 4, 5, 8 AND 9 CODES 

At  the beginning, we consider the conditions under  which an odd prime p 
generates a perfect single error correcting code. By using the conditions 
derived, we show the nonexistence of some perfect codes. 

First ,  it is clear from (2) that  the code length n of perfect code must  satisfy 

n = (p  - -  1 ) / 2 ( r -  1). (13) 

In  addit ion to this, the residues of all possible single errors " a i #  modulo p 
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must be distinct and exhaust all element of G(p). These conditions can be 
satisfied only in the following two cases. 

(I) e(r,p) is (p - -  1 ) / ( r -  1) and even, and the subsequent expansion 

G(p) / ( r ,p )  = l ( r , p )  + 2 ( r , p )  + "" + (r - -  1 ) ( r ,p )  (14) 

holds. 

(II) e(r, p) is (p - -  1)/(r - -  1) and odd, and the subsequent expansion 

G(p)/(r, p )  = l(r,  p )  + 2(r, p )  + "" + (r -- 1) (r, p )  

4- ( - - 1 ) ( r , p )  + ( - - 2 ) ( r , p )  + "" 4- (1 - -  r ) ( r ,p )  (15) 

holds. 
Except the cases (I) and (II), it may occur that p divides r n 4- a for some a 

less than r but not equal to one, and that p generates a perfect single error 
correcting code. But this means 

pB = r ~ 4- a, (16) 

and so no such case occurs in the modular A N  codes satisfying (1). 
For convenience, in the following investigation we call the perfect codes 

satisfying the conditions in (I) and (II) type I and II,  respectively. 

Type I. We have from congruence (3) and (12) 

( 9 )  --  r"-l ' /2 = (r"~.~'/2)r-l -~ (-- l)~-l  mod p. (17) 

Hence if r is odd, r is a QR modulo p. This implies that the elements of 
(r, p )  are all QR's  modulo p. Then  in order for G(p) expanded in the manner 
of Eq. (14) to satisfy Lemma 10, half of the coset leaders 2, 3 ..... and r must  
be QR's  and the remaining must be QNR's  modulo p. Because r is a Q N R  
modulo p in the cases where r is even, such a condition is not obtained. 

Type II .  We see in this type that r must be a QR m o d u l o p  and so 
(r,  p )  is the set of QR's, because, referring to (3), we have 

1, i .  = m o d p  

Next, from the condition that the code length n (e(r, p)) is odd and (13), we 
have 

p = 2(2k0 + 1)(r - -  1) 4- 1. 
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Suppose that r is odd. Then  this may be written as p = 4k + 1. With regard 
to this p, we have (a/p)(--a/p) = 1, which means that both a .  (r, p )  and 
( - -a)  • (r, p )  are the sets of QR's  or QNR's  modulo p. Therefore in order 
for G(p) expanded in the form of (15) to satisfy Lemma 10, half of the coset 
leaders 2, 3,..., r must  be QR's  and the remaining must be QNR's  modulo p. 
This condition is the same as that of type I. These discussions lead us to 
Table II.  

T A B L E  II 

Necessary Condit ions for Perfect  Codes 

Type  I Type  II  

p 2k'(r -- 1) + 1 2(2h" + 1)(r - -  1) + 1 

e(r,p) ( p -  1 ) / ( r -  1); even (p  - -  1 ) / 2 ( r -  1); odd 

n e(r, p)/2 e(r, p) 

(riP) ( - -  1) "-1 1 

for odd r Ha l f  of  2, 3 , . . ,  r are QR's  and the  remaining 
are Q N R ' s  modulo p. 

THEOREM 11. I f  r is (2k) 2, there exists no perfect radix r code. 

Proof. As (2k) 2 is always a QR modulo p, ((2h)2/p) = 1. On the other 
hand ( - -  1) (2k)~-1 is always - -  1. They  contradict (17). Q.E.D. 

THEOREM 12. I f  r is k 2, there exists no type H perfect radix r code. 

Pro@ From the definition of e(r, p) we have 

r ~(~'~) - -  1 = (h ~(~'~) - -  1)(k ~(~.~) + 1) ~ 0 mod p. 

Hence either 

or  

k ~(r'~) -~ 1 m o d p  (19) 

(20) h ~(~'~) ~ - -1  m o d p  

holds. 

Clearly h or - - k  must  be a coset leader in the expansion (15), because k 



344 GOTO AND FUKUMURA 

is less than r. This requires at least that the set (r, p )  should not contain k 
or --k,  i.e., 

# ~  4-k mod p, O < j < e ( r , p ) .  

Referring to r = k 2, the above congruence means that 

h 2j-1 ~ 4-1 modp,  

for any 2 j - - 1  in the range 0 < 2 j - - 1  < 2 e ( r , p ) -  1. This, however, 
contradicts either (19) or (20), because e(r, p) is odd in the type II.  Hence 
the coset expansion (15) is impossible. Q.E.D. 

By using the results obtained above, we investigate the cases of radix 
4 and 5. 

THEOREM 13. There exists no perfect radix 4 code. 

Proof. This is obvious from Theorem 11 with k = 1 and Theorem 12 
with k = 2, because 4 = 22. Q.E.D. 

Next we consider the case where r is five. I t  follows then from Table I I  
that r must be 8k' + 1 in the type I and 16k" + 1 in the type II. In both 
cases 2 is a QR modulo p. As the radix 5 is odd, 5 also must be a QR modulo p 
in both types. Trivially 4 is a QR modulo any p. These results contradict 
the necessary condition in the bottom row in Table II. Thus we get the 
subsequent theorem. 

THEOREM 14. There exists no perfect radix 5 code. 

The following lemma (Redei, 1967) dealing with finite cyclic groups is 
useful in the investigation of perfect radix 8 and 9 codes. 

LEMMA 15. Let H be a finite cyclic group with order h. Then H has one 
and only one subgroup whose order is a divisor of h. Such groups exhaust all 
subgroups of H. 

Let p be a prime and r be h ~. Then G(p), (k, p)  and (k t, p )  are all finite 
cyclic groups and their orders are p --  1, e(k, p) and e(k ~, p), respectively. 

LEMMA 16. Let d be the greatest common divisor o f t  and e(k, p). Then 

e(h', p) = e(k, p)/d. (21) 
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The  proof is omitted here (Nagell, 1951). I t  should be noted that, if d = 1, 
then 

(k~, p )  = (k, p) .  

In  order for the perfect code with radix k* to exist, it is necessary that k as 
well as one are chosen as coset leaders of expansion G(p)/(k*, p ) ,  because h 
and one are less than the radix kL But it is impossible when (k, p )  = (k*, p) ,  
i.e., d = 1. 

Next consider the case where d v~ 1. In  the type I codes, we have from (14) 

(p - -  1)/e(k', p) = h e -  1. (22) 

Similarly we have for type I I  

(p - -  1)/e(k e, p) = 2 ( k ' - -  1). (23) 

Further  as (k, p )  is a subgroup of G(p), e(h, p) must divide p -  1. Thus  
for type I, 

(p - -  1)/e(k, p) -~ (p - -  1)/de(k ~, p) = (k ~ - 1)/d. 

This implies that d must  divide k e - -  1. Likewise in the type II, d must  divide 
2(k e - -  t). 

THEOREM 16. Let d be the greatest common divisor of t and e(k, p). I f  d 
equals one, no perfect radix h e codes exist. Nex t  let d be not one. Then, i f  d does 
not divide h e - -  1, no type I perfect codes with radix k ~ exist. I f  d does not divide 
2(k* - -  1), no type I l  perfect codes with radix k* exist. 

COROLLARY 17. There exists no perfect radix 8 code. 

Proof. As 8 = 28, let k be 2 and t be 3. I f  d is not one, d must be 3. But 
3 does not divide 28 - -  1 as well as 2(28 - -  1). Q.E.D. 

Finally we consider the perfect radix 9 codes. First of all, it is clear from 
Theorem 12 that there exist no type I I  perfect radix 9 code, because 9 = 32. 
For type I, we obtain from Table I I  

p = 16k + 1. (24) 

Further, half of 2, 3,..., 8 and 9 must be QR's  and the remaining must be 
QNR's  modulo p. But 4 and 9 are trivially QR's, and 2 is a QR modulo p 
represented by (24). Thus  8 is also a QR. Hence the remaining 3, 5, 6 and 
7 must be QNR's .  
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As 9 = 32, let k = 3 and t = 2. Referring to Theorem 16, d, the greatest 
common divisor t and e(k, p), must be 2 in order for the perfect codes with 
radix 3 ~ to exist. From (21) and (24), 

e(3, p) = (p - -  1)/4 = 4k. (25) 

On the other hand, G(p) is represented by (g, p) ,  where g is a primitive 
root modulo p. The order of G(p) is p - -  1, which is divided by 4 [cf. (24)]. 
Thus 

e(g 4, p) = (p --  1)/4 = 4k. (26) 

From (25), (26), and Lemma 15, 

(g,,  p )  = (3, p) .  

Clearly g4 is always a QR and so (g4, p )  is the set of QR's. This contradicts 
the requirement that 3 must be a QNR. Hence we obtain the following 
t h e o r e m .  

THEOREM 18. There exists no perfect radix 9 code. 

4. SEARCH FOR PERFECT RAI)IX 6, 7, AND 10 CODES 

Because 6 and 10 are even, the nonexistence of perfect radix 6 and 10 codes 
is not decided by using the conditions listed in Table II.  The table gives us 
no information except that p must be of the form 

1 0 k + l  or 1 8 k + l  

i fp  generates a perfect radix 6 or 10 code. 
For radix 7 codes, we have a little more information. From the first row 

in Table II,  p must satisfy 

p = 12k-k 1. (27) 

Because the radix 7 is odd, 7 must be a QR modulo p. Obviously 3 is a QR 
modulo p satisfying (26). Trivially 4 is a QR. Therefore it follows from the 
last row in Table I I  that 2, 5, and 6 must be QNR's  modulo p. 

Referring to Table I, a prime p satisfying these conditions is one of the 
forms 

840k -k 37, 840 q- 235, 840k q- 277, 

840k ~- 373, 840h -k 613, 840k -k 757. 
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But these restriction on p are not enough to decide the existence or non- 
existence of perfect radix 7 codes as well as in the cases of radix 6 and 10 codes. 

In  this paper, we search which pr ime p makes the expansion (14) or (15) 
with r = 6, 7, 10 possible. This  required a long computat ion time. As a 
result, we found some perfect radix 6 and 7 codes (cf. Table  III) ,  bu t  no 
perfect radix 10 code for p less than 106. 

TABLE III 

Examples of Perfect Codes with Radices 6 and 7 

y = 6  y = 7  

prime n type prime n type 

7741 774 I 19237 1603 II  

10831 1083 I 30013 2501 II 

18191 1819 II 56053 4671 I 

20611 2061 II 67453 5621 I 

5. CONCLUSIONS 

This  paper treats a general theory with respect to perfect single error 
correcting A N  codes. Almost  all the results given here are negative for the 
existence of perfect codes. But this does not mean htat there exist no perfect 
codes except for binary and ternary cases. The  extensive computat ion shows 
the existence of perfect radix 6 and 7 codes. 

W e  do not  obtain theoretical results to assure the nonexistence of perfect 
decimal codes, even though the computer  search shows that there exist 
no such codes for primes p less than 106. This  is an open problem of interest 
from a practical point  of view. 
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