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Abstract

In this note we solve the edge-connectivity augmentation problem over symmetric parity families. It provides a solution for the
minimum T -cut augmentation problem. We also extend a recent result of Zhang [C.Q. Zhang, Circular flows of nearly eulerian
graphs and vertex splitting, J. Graph Theory 40 (2002) 147–161].
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Parity families were introduced in Goemans and Ramakrishnan [2]. In this note we consider only symmetric parity
families. The definition and some examples for such families can be found in Section 2. Our definition is equivalent
to that of Goemans and Ramakrishnan by Lemma 9 in [2].

The main purpose of this paper is to solve the minimum T -cut augmentation problem, namely for a given connected
undirected graph G, a subset T of vertices of G of even cardinality and an integer k, what is the minimum number of
new edges whose addition results in a graph where the minimum cardinality of a T -cut is at least k. In fact we will solve
a more general problem, namely the minimum F-cut augmentation problem where F is a symmetric parity family.
Our main result (Theorem 5) also contains as a special case the min–max theorem of Watanabe and Nakamura [7] for
the global edge-connectivity augmentation problem.

This paper is organized as follows. After the necessary definitions we give some easy properties of symmetric
parity families and F-joins. Then, in Section 4, we present a min–max theorem on the minimum value of a symmetric
submodular function over a symmetric parity family. We need this result to prove, in Section 5, the existence of a
splitting off that maintains the minimumF-cut in a graph G for a symmetric parity familyF . This splitting off theorem
will be applied, in Section 6, to solve the global edge-connectivity augmentation problem over a symmetric parity
family. In Section 5 we also provide a common generalization of the weak orientation theorem of Nash-Williams [4]
and a result of Rizzi [5]. In Section 7, we generalize a splitting off result of Zhang [8].
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2. Definitions

Let G = (V, E) be an undirected graph. For a vertex s of G we denote by ΓG(s) the set of neighbours of s.
For X, Y ⊆ V , δG(X,Y) denotes the set of edges between X − Y and Y − X, δG(X) = δG(X, V − X), dG(X) =
|δG(X)|, dG(X,Y) = |δG(X, Y )| and dG(X,Y) = dG(X ∩ Y, V − (X ∪ Y )). The subgraph of G induced by X is
denoted by G[X]. For all X, Y ⊆ V,

dG(X)+ dG(Y ) = dG(X ∩ Y )+ dG(X ∪ Y )+ 2dG(X, Y ), (1)

dG(X)+ dG(Y ) = dG(X − Y )+ dG(Y − X)+ 2dG(X, Y ). (2)

For two vertices u and v of G, the local edge-connectivity between u and v is defined as λG(u, v) = min{dG(X) :
X ⊂ V, u ∈ X, v ∈ V − X}. Let D = (V, A) be a directed graph. For a set X ⊆ V , the number of arcs
leaving X is denoted by d+D(X). For two vertices u and v of D, the local edge-connectivity from u to v is defined
λD(u, v) = min{d+D(X) : X ⊂ V, u ∈ X, v ∈ V − X}. More generally, for a function f on V and for u, v ∈ V , we
define the local f -connectivity as λf (x, y) := min{ f (X) : X ⊂ V, x ∈ X, y ∈ V − X}.

Suppose G is connected and let T ⊆ V with |T | even. The pair (G, T ) is called graft. A subset X of V
is called T -odd if |X ∩ T | is odd and then the cut δ(X) is called a T -cut. An edge set F is called a T -join if
T = {v ∈ V : dF (v) is odd}. A T -pairing is a perfect matching of the complete graph on T .

A family F of subsets of V is called symmetric parity family if (i)–(iii) are satisfied: (i) ∅, V 6∈ F , (ii) if A ∈ F ,
then V − A ∈ F , (iii) if A, B 6∈ F and A ∩ B = ∅, then A ∪ B 6∈ F . The most important examples for symmetric
parity families are the following: F := 2V

− {∅, V } and F := {X ⊂ V : |X ∩ T | is odd} where T ⊆ V with |T | even;
for others see [2].

Let F be a symmetric parity family on V . Let H = (V, E ′) be a tree. For each edge e of H , let Ve ⊂ V so that
δH (Ve, V − Ve) = {e}. Let JF (H) := {e ∈ E ′ : Ve ∈ F}. An edge set F ⊆ V × V is called F -join if there exists
a tree H on V so that F = JF (H). For a symmetric function f on V , let us define the value of an F-join F by
valf (F) := min{λ f (x, y) : xy ∈ F}. If G = (V, E) is a graph and X ∈ F , then δG(X) is called an F -cut. Let λG

F
denote the minimum size of an F-cut, that is λG

F = min{dG(X) : X ∈ F}.
Let G = (U, E) be a graph and s ∈ U . For two edges sr, st , the graph obtained from G by splitting off sr, st

is denoted by Gr,t := G − {sr, st} + r t . Let F be a symmetric parity family on V ⊆ U . The pair {sr, st} is called

λF -admissible if after splitting off this pair, the minimum F-cut does not decrease that is if λ
Gr,t
F ≥ λG

F .
A function f on 2V is called symmetric and submodular if for all X, Y ⊆ V, f (X) = f (V − X) and

f (X) + f (Y ) ≥ f (X ∩ Y ) + f (X ∪ Y ). Note that the degree function of an undirected graph is symmetric and,
by (1), it is submodular. A function p on 2V is called skew-supermodular if at least one of (3) and (4) holds for all
X, Y ⊆ V .

p(X)+ p(Y ) ≤ p(X ∩ Y )+ p(X ∪ Y ), (3)

p(X)+ p(Y ) ≤ p(X − Y )+ p(Y − X). (4)

3. Preliminaries

An easy observation on T -odd sets, namely if we have two T -odd sets then either their intersection and union or
their differences are T -odd sets, can be generalized for symmetric parity families as follows.

Claim 1. Let F be a symmetric parity family. Then, for all X, Y ∈ F , either X ∩Y, X ∪Y ∈ F or X −Y, Y − X ∈ F .

Proof. Suppose that X ∩ Y 6∈ F . Then, by X ∈ F and (iii), X − Y ∈ F . Similarly, by Y ∈ F and (iii), Y − X ∈ F .
Now suppose that X ∪ Y 6∈ F , so by (ii), V − (X ∪ Y ) 6∈ F . Since X, Y ∈ F , we have, by (ii), V − X, V − Y ∈ F .
Then, by V − X ∈ F and (iii), Y − X ∈ F . Similarly, by V − Y ∈ F and (iii), X − Y ∈ F . �

Now we generalize the fact that a T -join and a T -cut always have an edge in common.

Lemma 1. Let F be a symmetric parity family. If F is an F-join and A ∈ F , then δF (A) 6= ∅.
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Proof. By definition there exists a tree H on V so that F = JF (H). Let us denote by A1, . . . , Ak the connected
components of H [A]. Since A ∈ F and

⋃
Ai = A, there exists an index i so that Ai ∈ F by (iii). Let us denote by

B1, . . . , Bl the connected components of H − Ai . Since V − Ai ∈ F by (ii) and
⋃

B j = V − Ai , there exists an
index j so that B j ∈ F by (iii). H is a tree, H [Ai ] and H [B j ] are connected and B j is a connected component of
H − Ai , so there exists exactly one edge e ∈ E(H) between H [Ai ] and H [B j ]. It follows that e ∈ JF (H) = F and
e enters A which has to be proved. �

If F = {T -odd sets}, then F-joins can be characterized as follows.

Claim 2. If F := {X ⊂ V : |X ∩ T | is odd} where T ⊆ V with |T | even, then the F-joins are exactly the cycle free
T -joins.

Proof. Note that any tree H on V contains a T -join F and a set X belongs to F if and only if dF (X) is odd. Thus if
F is a T -join and H is a tree on V containing F , then JF (H) = F and the claim follows. �

4. Min–max theorems

Let f be a symmetric submodular function on 2V and F a symmetric parity family on V . It is mentioned in
Goemans and Ramakrishnan [2] that there exists a cut equivalent tree H f for f and f can be minimized over F using
H f , namely min{ f (X) : X ∈ F} = val f (JF (H f )). This can be presented as a min–max result.

Theorem 1. Let f be a symmetric submodular function on 2V and F be a symmetric parity family on V . Then

min{ f (X) : X ∈ F} = max{val f (F) : F is an F-join}.

Proof. To prove max ≤ min, let X ′ ∈ F and let F ′ be an F-join. By Lemma 1, there exists an edge x ′y′ ∈ δF ′(X ′).
Then val f (F ′) = min{λ f (x, y) : xy ∈ F ′} ≤ λ f (x ′, y′) = min{ f (Y ) : Y ⊂ V, x ′ ∈ Y, y′ ∈ V − Y } ≤ f (X ′) and
the inequality follows. As we mentioned above, JF (H f ) provides equality, thus min = max . �

If F := {T -odd sets} then the dual objects in Theorem 1 can be simplified. For f = dG , the following theorem
gives a result of Rizzi [5] on T -cuts.

Theorem 2. Let f be a symmetric submodular function on 2V and F := {X ⊂ V : |X ∩ T | is odd} where T ⊆ V
with |T | even. Then

min{ f (X) : X ∈ F} = max{val f (P) : P is a T -pairing}.

Proof. Let α := max{val f (F) : F is an F-join} and β := max{val f (P) : P is a T -pairing}. We show that α = β

and then Theorem 1 implies Theorem 2. Since a perfect matching P on T is a T -join and, by Claim 2, is an F-join,
we have α ≥ β. Now, let F be an F-join of value α for which |F | is minimum. We prove that F is a T -pairing
implying α ≤ β. Otherwise, F contains two adjacent edges uv and vw. Let F ′ be obtained from F by splitting
off these edges. By Claim 2, F ′ is an F-join. Since a set separating u and w separates either u and v or v and
w, val f (F ′) ≥ val f (F) = α. Then F ′ is an optimum F-join and |F ′| < |F |, a contradiction. �

We note that Theorem 2 is true for symmetric parity families that satisfy the following condition: if X, Y ∈ F and
X ∩ Y = ∅, then X ∪ Y 6∈ F . However, it can be shown that such a family can be defined as the T -odd sets for some
T ⊆ V with |T | even.

5. Local edge-connectivity

Lemma 2. Let G = (U, E) be a graph, s ∈ U,U − s ⊆ V ⊆ U and let F be a symmetric parity family on V . Then
for all A ∈ F there exist x ∈ A and y ∈ V − A so that λG(x, y) ≥ λG

F .
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Proof. Let f (X) := min{dG(X), dG(V − X)} for all X ⊆ V . It is easy to check, by (1) and (2), that f is a symmetric
submodular function on 2V . Then, by Theorem 1, there exists an F-join F on V with min{λ f (a, b) : ab ∈ F} =
min{ f (X) : X ∈ F}. By Lemma 1, there exists an edge xy ∈ F with x ∈ A and y ∈ V − A. Let δG(Y ) be a minimum
cut in G separating x and y so that s 6∈ Y . Then λG(x, y) = dG(Y ) and f (Y ) ≥ λ f (x, y). Since V = U − s or U ,
we have Y ⊆ V , thus dG(Y ) ≥ f (Y ). It follows that λG(x, y) = dG(Y ) ≥ f (Y ) ≥ λ f (x, y) ≥ min{λ f (a, b) : ab ∈
F} = min{ f (X) : X ∈ F} = min{min{dG(X), dG(V − X)} : X ∈ F} ≥ λG

F and we are done. �

We show two applications of the above lemma. The first result is on splitting off and it will be applied in Section 6
to prove the augmentation result.

Lemma 3. Let G = (V + s, E) be a graph so that d(s) 6= 3 and no cut edge is incident to s. Let F be a symmetric
parity family on V . Then there exists a λF -admissible pair.

Proof. By Mader’s local splitting off theorem [3], there exists a pair of edges {sr, st} so that λGr,t (x, y) = λG(x, y)
for all x, y ∈ V . By Lemma 2, applied for U = V + s and V , for all X ∈ F , there exist x ∈ X and y ∈ V − X so
that λG(x, y) ≥ λG

F . Then dGr,t (X) ≥ λGr,t (x, y) = λG(x, y) ≥ λG
F so λ

Gr,t
F ≥ λG

F that is {sr, st} is a λF -admissible
pair. �

The second application of Lemma 2 is the following orientation result. It is a common generalization of the weak
orientation theorem of Nash-Williams [4] (if F = 2V

− {∅, V }) and an orientation theorem on T -cuts of Rizzi [5]
(if F = {T -odd sets}).

Theorem 3. Let G = (V, E) be an undirected graph and F a symmetric parity family on V . Then G has an
orientation EG so that d+

EG
(X) ≥ k for all X ∈ F if and only if dG(X) ≥ 2k for all X ∈ F .

Proof. We prove only the non-trivial part. By Nash-Williams’ well-balanced orientation theorem [4], there exists an
orientation EG of G such that λ EG(x, y) ≥ bλG(x, y)/2c for all (x, y) ∈ V 2. We show that EG will do. By Lemma 2,
applied for U = V , for every X ∈ F , there exist x ∈ X and y ∈ V − X so that λG(x, y) ≥ λG

F . Then, since, by the
condition, λG

F ≥ 2k, we have d+
EG
(X) ≥ λ EG(x, y) ≥ bλG(x, y)/2c ≥ bλG

F/2c ≥ k. �

6. Augmentation

In this section we solve the following augmentation problem: Given a graph G = (V, E), a symmetric parity
family F on V and an integer k, what is the minimum number of edges whose addition results in a graph in which
each F-cut contains at least k edges. As a special case it solves the minimum T -cut augmentation problem: how many
new edges must be added to a graft so that the minimum T -cut contains at least k edges. It also contains as a special
case the global edge-connectivity augmentation problem, namely how many new edges must be added to a graph to
make it k-edge-connected. A general approach to solve edge-connectivity augmentation problems is summarized in
the following theorem.

Theorem 4 (Frank [1]). Let p : 2V
→ Z ∪ {−∞} be a symmetric skew-supermodular function. Then there exists

a graph (V + s, K ) with 2γ edges, all incident to s so that dK (X) ≥ p(X) for all X ⊂ V if and only if for each
subpartition {X1, . . . , Xl} of V,

∑l
i=1 p(X i ) ≤ 2γ.

Theorem 4 and Lemma 3 will provide the main result of this paper. We mention that it provides a new special case
of the NP-hard problem of covering symmetric skew-supermodular functions (see in [6]) that can be polynomially
solved.

Theorem 5. For a connected graph G = (V, E), a symmetric parity family F on V and an integer k ≥ 2, the
minimum cardinality of an F-cut can be augmented to k by adding at most γ edges if and only if for each subpartition
{X1, . . . , Xl} of V with X i ∈ F ,

∑l
i=1(k − dG(X i )) ≤ 2γ.

Proof. For X ⊂ V , let p(X) := k − dG(X) if X ∈ F , and −∞ otherwise. Since F and d are symmetric so is p. We
show that p is skew-supermodular. Let X, Y ⊆ V . If X 6∈ F or Y 6∈ F then (3) and (4) are satisfied. If X, Y ∈ F ,
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then, by Claim 1, either X ∩Y, X ∪Y ∈ F and then (3) is satisfied by (1) or X−Y, Y − X ∈ F and then (4) is satisfied
by (2).

The subpartition condition of Theorem 5 implies that the subpartition condition of Theorem 4 is satisfied, thus, by
Theorem 4, there exists a graph (V + s, K ) with 2γ edges, all incident to s so that dK (X) ≥ p(X) for all X ⊂ V . Let
L := (V + s, E ∪ K ). Then dL(X) = dG(X)+ dK (X) ≥ dG(X)+ p(X) = k for all X ∈ F that is λL

F ≥ k. Note that
dL(s) = 2γ 6= 3 and, since G is connected, no cut edge of L is incident to s. Then, by Lemma 3, we can split off all
the edges of L incident to s by preserving λF . Thus the resulting graph G ′ is obtained from G by adding γ edges and
λG ′
F = λ

L
F ≥ k. �

By applying Theorem 5, for F = 2V
− {∅, V }, we get the theorem of Watanabe and Nakamura [7], and for

F = {T -odd sets}, we get the following theorem on T -cuts.

Theorem 6. For a graft (G, T ), the minimum cardinality of a T -cut can be augmented to k (k ≥ 2) by adding at most
γ edges if and only if

∑l
1(k − d(X i )) ≤ 2γ for each subpartition {X1, . . . , Xl} of V (G) into T -odd sets. �

7. Splitting off

In this section we present a generalization of a result of Zhang [8].
For a graph G = (V, E),FG := {X ⊂ V : dG(X) is odd} is a symmetric parity family such that each FG-cut is

odd. The odd-edge-connectivity λo of G is defined as λG
FG

.

Theorem 7 (Zhang [8]). Let G be a graph with odd-edge-connectivity λo. Let s be a vertex of G such that d(s) 6= λo
and 6= 2. Arbitrarily label the edges of G incident with s as {e1, . . . , ed(s)}. Then there is an integer i ∈ {1, . . . , d(s)}
such that the new graph obtained from G by splitting ei and ei+1 (mod d(s)) off at s remains of odd-edge-connectivity
λo.

Let s be a vertex of a graph G = (V, E) and let N be a graph on vertex set ΓG(s). A pair {sr, st} of
edges of G is called N -allowed if r t ∈ E(N ). This definition is motivated by Theorem 7 in which we are only
allowed to split off consecutive pairs of edges, ei = svi and ei+1 = svi+1 for some 1 ≤ i ≤ d(s), that is if
NZ = (ΓG(s), {vi vi+1 : 1 ≤ i ≤ d(s)}), then we can only split off NZ -allowed pairs. Note that v1v2, v2v3, . . . , vd(s)v1
provides an eulerian walk of NZ , and hence NZ is connected.

In the following we generalize Theorem 7 and provide a proof that is much shorter than that of [8].

Theorem 8. Let G = (V, E) be a graph, s ∈ V . Let F be a symmetric parity family on V such that dG(X) ≡ λG
F

(mod 2) for all X ∈ F . Let 2 ≤ d(s) 6= λG
F . Let N = (ΓG(s),M) be a connected graph with M 6= ∅. Then there

exists an N-allowed λF -admissible pair.

Proof. We call a set X ⊆ V−s tight if X ∈ F and dG(X) = λG
F . Since each element ofF has the same parity as λG

F , a
pair {sr, st} is not λF -admissible if and only if there exists a tight set containing r and t . Let t ∈ ΓG(s). If t belongs to
no tight set, then for an edge r t ∈ M (r exists since N is connected and M 6= ∅) {sr, st} is an N -allowed λF -admissible
pair. Otherwise, let Q be a maximal tight set containing t . Suppose ΓG(s)−Q = ∅. If {s} ∈ F , then λG

F ≤ d(s). Since
δ(s) ⊆ δ(Q) and Q is tight, d(s) ≤ d(Q) = λG

F . These inequalities provide λG
F = d(s), a contradiction. If {s} 6∈ F ,

then, since V − Q ∈ F , V − Q − s ∈ F and then, by d(s) ≥ 2, λG
F ≤ d(V − Q − s) = d(Q)− d(s) < d(Q) = λG

F ,
a contradiction. Thus ΓG(s) − Q 6= ∅, t ∈ ΓG(s) ∩ Q and N is connected so there exists an edge qr ∈ M such that
r ∈ Q, q 6∈ Q. Then {sq, sr} is N -allowed. The following claim completes the proof.

Claim 3. {sq, sr} is λF -admissible.

Proof. Suppose that {sq, sr} is not λF -admissible that is there is a tight set R containing q and r . By Claim 1, either
R − Q, Q − R ∈ F and then, by (2) and the existence of sr , λG

F+λG
F = d(R) + d(Q) = d(R − Q) + d(Q −

R) + 2d(Q, R) ≥ λG
F + λ

G
F + 2, a contradiction or Q ∩ R, Q ∪ R ∈ F and then, by (1) and the maximality of Q,

λG
F+λG

F = d(Q)+ d(R) ≥ d(Q ∩ R)+ d(Q ∪ R) > λG
F + λ

G
F , a contradiction. �
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Example. The following example shows the condition that each element of F is of the same parity cannot be omitted
from Theorem 8. Let G := ({q, r, s, t}, {qr, qs, qs, rs, r t, st, st}). Let F := {X : X ∩ {q, t} = 1}. Then λG

F = 3 and

dG(s) = 5. Let N := ({q, r, t}, {qr, r t}). Then for the N -allowed splittings, λG ′
F = 2 < 3 = λG

F .
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