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Abstract

Many previous studies have shown that the relative number of long-wavelength-selective (L) versus medium-wavelength-selective

(M) cones in the eye influences spectral sensitivity revealed perceptually. Here, we hypothesize that the L:M cone ratio should also

influence red/green chromatic contrast sensitivity. To test this, in each subject we derived an estimate of L:M ratio based on her red/

green equiluminance settings (obtained with heterochromatic flicker photometry), and measured both red/green chromatic and

luminance contrast sensitivity at different spatial and temporal frequencies. Factor analysis was applied to the data in order to reveal

covariance between conditions. As expected, chromatic and luminance contrast sensitivity were found to be independent of one

another, and no relationship was observed between L:M ratio and luminance contrast sensitivity. However, a significant relationship

was observed between L:M ratio and chromatic contrast sensitivity, wherein subjects possessing the most symmetrical L:M cone

ratios (i.e., near 1:1) appear to possess the relatively greatest chromatic contrast sensitivity. This relationship can be accounted for by

a simple model based on the notion of random L- and M-cone inputs to the center and surround receptive fields of chromatic (L–M)

mechanisms. � 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Several lines of retinally based evidence have shown
that the relative number of long-wavelength-selective
(L)- to medium-wavelength-selective (M)-cones in the
eye varies across individuals, with a mean L:M ratio of
approximately 2:1 (e.g., Rushton & Baker, 1964; Dartn-
all, Bowmaker, & Mollon, 1983; Hagstrom, Neitz, &
Neitz, 1997; Yamaguchi, Motulsky, & Deeb, 1997;
Roorda & Williams, 1999). Long before methodologies
were developed to allow direct sampling of cone types in
the eye, the relative number of L- versus M-cones was
estimated by modeling the psychophysically derived
spectral sensitivity function (also referred to as the
‘‘luminous efficiency function’’ or ‘‘Vk function’’) as a
weighted sum of activity in L- and M-cones, with the
weighting factor thought to represent the L:M cone
ratio (e.g., Smith & Pokorny, 1975; Kremers et al., 2000,
see also Jacobs & Neitz, 1993; Brainard et al., 2000;

Kremers et al., 2000 for similar derivations based on
data from electroretinogram flicker photometry). That
is, when sensitivity for two colors is equated, referred to
as equiluminance, the weighted sum of L- and M-cone
excitation produced by one color ought to be equal to
the weighted sum of L- and M-cone excitation produced
by the other color. This model thus supposes that
‘‘luminance’’ is encoded by neural mechanisms that re-
ceive a weighted LþM cone input (see Lennie, Pokorny,
& Smith, 1993 for review). And, implicit in this model is
that the relative number of L- versus M-cones in the eye
has direct consequences for spectral sensitivity revealed
perceptually, a notion that has been supported by recent
studies demonstrating a close correspondence between
retinally based and spectral sensitivity-derived L:M ra-
tios within individual subjects (Vimal, Pokorny, Smith,
& Shevell, 1989; Wesner, Pokorny, Shevell, & Smith,
1991; Brainard et al., 2000; Kremers et al., 2000).
While the connection between L:M cone ratio and

spectral sensitivity has received much attention, the
possibility that the relative number of L- versus M-cones
may influence red/green chromatic contrast sensitivity
has been largely unexplored (but see Lennie, Haake,
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& Williams, 1991; Lennie, 2000). Here we hypothesize
such a relationship, whereby individuals with symmet-
rical numbers of L- versus M-cones should possess rel-
atively high chromatic contrast sensitivity. (Note that
L:M asymmetry is distinguishable from L:M ratio, in
that the former refers to the overall imbalance of L-
versus M-cones, without regard for which cone type is in
higher proportion.)
The logic behind this prediction is as follows. It is

generally believed that red/green chromatic contrast
sensitivity is mediated by midget ganglion cells in the
eye, which are known to receive chromatically opponent
(i.e., L–M) cone input (e.g., Lee, Martin, & Valberg,
1989; Lee, Pokorny, Smith, Martin, & Valberg, 1990;
Smith, Pokorny, Davis, & Yeh, 1995). Within the cen-
tral 5–10� of the retina, midget ganglion cells have small
receptive fields, receiving single cone input to the center
and multiple cone input to the surround (e.g., Kolb &
Dekorver, 1991; Dacey, 1993; Goodchild, Ghosh, &
Martin, 1996; McMahon, Lankheet, Lennie, & Wil-
liams, 2000). Although there is debate as to whether the
surround input is selective or indiscriminant (see Lennie
et al., 1991; Dacey, 1996; Lee, 1999; Lennie, 2000), it is
the difference in spectral sensitivity between the center
and surround that renders these cells chromatically op-
ponent, thus allowing them to signal chromatic contrast.
Based on a model by Mullen and Kingdom (1996),

which assumes indiscriminant cone inputs to the L–M
mechanism, the predicted amount of cone opponency
across a population of midget ganglion cells (referred to
as the ‘‘average cone opponency purity’’) can be calcu-
lated from the L:M cone ratio and the number of cones
inputting to the center and surround, as follows:

XNc
j¼0

XNs
k¼0
0:5CS ðNc½j � 2jÞ=Nc� � ðNs½ � 2kÞ=Ns�j

where Nc is the number of cones in the receptive field
center; Ns, the number of cones in the receptive field
surround, which is set to 6(Nc); j and k are the number of
L-cones in each permutation of center and surround,
respectively; p, the proportion of L-cones; C, the prob-
ability of selecting j out of Nc L-cones in the center ¼
½Nc!ðpjð1� pÞNc�jÞ�=½j!ðNc � jÞ!� and S, the probability of
selecting k out of Ns L-cones in the surround ¼
½Ns!ðpkð1� pÞNs�kÞ�=½k!ðNs � kÞ!�.
For a given neuron, a cone opponency purity value of

zero indicates that the center and surround possess the
same proportion of L- to M-cones, while a value of 1.0
indicates that cones of all one type input to the center
and cones of all the other type input to the surround.
The average cone opponency purity value combines all
possible cone opponent purities with their associated
probabilities. The resulting values are plotted as a
function of L:M asymmetry in Fig. 1. For the case of a
single cone center (filled symbols, solid line), which is

representative of midget ganglion cells in the central 10�,
the largest average cone opponency purity value (and
thus the strongest overall opponency) is observed when
the number of L- versus M-cones is perfectly sym-
metrical (i.e., L:M equal to 1:1), with values decreasing
markedly as L:M asymmetry is increased. For example,
an L:M of 1:1 yields a cone opponency purity of 0.50,
while an L:M of 8:1 yields a value of 0.20; a difference of
2.5-fold. This model thus predicts that subjects with the
most symmetrical L:M ratios should possess stronger
chromatic opponency than those with asymmetrical
L:M ratios, and, in turn, exhibit relatively greater
chromatic contrast sensitivity.
For luminance stimuli, it is generally believed that

contrast sensitivity is mediated by parasol ganglion cells,
which receive additive (i.e., LþM) cone input (Lee et al.,
1990; Shapley, 1990; Smith et al., 1995, but cf. Ingling &
Martinez-Uriegas, 1983a; De Valois & De Valois, 1993;
Billock, 1995 for discussion of possible mediation by
L–M mechanisms). In comparison to midget ganglion
cells, parasol ganglion cells have large receptive fields,
receiving multiple L- and M-cone input to both their
center and surround (e.g., Curcio & Allen, 1990;
Goodchild et al., 1996). For these cells, differences in the
proportion of L- versus M-cones should have no effect
on responses to (and thus contrast sensitivity for) lu-
minance stimuli. This is because the amount of modu-
lation produced in the L- and M-cones will be equal to
and in phase with the luminance contrast in the stimu-

Fig. 1. Average cone opponency purity values calculated as a function

of L:M cone asymmetry. For the case of a single cone in the center of

the receptive field (filled symbols, solid line), which is representative

of midget ganglion cells in the central 10�, there is a substantial effect
of cone asymmetry. For a multiple-cone center (e.g., eight cones, open

symbols, dashed lines), which is representative of midget ganglion cells

in the far periphery, there is a negligible effect of cone asymmetry.
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lus, and thus the signals carried by the L- and M-cones
are effectively identical to one another. For this reason,
an individual’s L:M cone ratio is expected to have little
or no influence on her luminance contrast sensitivity.
In the present study, we investigated the relationship

between L:M asymmetry, red/green chromatic contrast
sensitivity and luminance contrast sensitivity using a
factor analysis approach. The methods and theories
underlying this approach have been described in detail
elsewhere (e.g., Sekuler, Wilson, & Owsley, 1984; Web-
ster & MacLeod, 1988; Peterzell, Kaplan, & Werner,
1993; Peterzell & Teller, 1996). For each subject, an
estimate of L:M asymmetry was derived from her red/
green equiluminance settings obtained using hetero-
chromatic flicker photometry (HFP). Data were ana-
lyzed from two separate groups of subjects. In the first
(n ¼ 19), nine women carriers of dichromacy were in-
cluded, with the expectation that they would possess
more extreme L:M values, thereby expanding the range
of L:M asymmetries in our sample and thus potentially
increasing the power of our analyses. In addition, we
analyzed data from a second group of subjects (n ¼ 41),
which were obtained during the course of another ex-
periment (Gunther & Dobkins, 2002). In line with our
predictions based on the cone opponency model, the
results from both subject groups suggest that more
symmetrical L:M ratios are associated with higher
chromatic contrast sensitivity. As expected, chromatic
and luminance contrast sensitivity were found to be in-
dependent of one another, and no relationship was ob-
served between L:M ratio and luminance contrast
sensitivity.

2. Methods

2.1. Subjects

2.1.1. Subject group #1
Nineteen subjects participated in the main experiment

(18 females, 1 male). All had normal or corrected-
to-normal vision, and normal red/green color vision as
assessed by the Ishihara Tests for Color Deficiency.
Subject age ranged from 18 to 37 years (mean ¼ 22:6	
6:8). Nine of these subjects were women carriers of di-
chromacy (determined by self-report of a dichromatic
father), who were intentionally recruited in order to
increase the range of L:M asymmetry values across our
sample of subjects.
The logic behind exaggerated L:M asymmetries in

women carriers of dichromacy is as follows. The genes
for both the L- and M-cone pigments reside on both X
chromosomes in women. However, due to ‘‘X inactiva-
tion’’, only one of the two X chromosomes is expressed
per cone (Lyon, 1962). In deutan carriers, one X chro-
mosome lacks the M-cone pigment gene, and thus, when

this chromosome is activated, it can produce only the L-
cone pigment. This results in an overall greater number
of L-cones and thus a larger-than-average L:M ratio in
such individuals. In protan carriers, the converse sce-
nario occurs, resulting in an overall greater number of
M-cones, and a lower-than-average L:M ratio. In terms
of red/green spectral sensitivity, deutan carriers are ex-
pected to be relatively more sensitive to red, whereas
protan carriers are expected to be relatively more sen-
sitive to green, a prediction that has been borne out in
several psychophysical studies (Crone, 1959; Adam,
1969; Swanson, 1991). Based on our nine carriers’ rela-
tive red/green equiluminance settings (see Section 2.4),
we estimate that seven were deutan carriers and two
were protan carriers.

2.1.2. Subject group #2
In addition to the data from the 19 subjects described

above, data were analyzed from another group of 41
subjects (age range ¼ 17–30 years, mean ¼ 20:6	 2:6
years, 31 females, 10 males). These data were obtained
during the course of another study, which used factor
analysis to investigate the independence of cardinal and
non-cardinal mechanisms in color vision (Gunther &
Dobkins, 2002). Although not intentionally recruited as
such, two of the women subjects in this experiment were
carriers of dichromacy. Subject group #2 was tested
over a slightly different range of spatial/temporal fre-
quencies than was subject group #1 (see below), and
thus data from the two groups could not be combined.

2.2. Apparatus

For all experiments, visual stimuli were generated on
a Sony Trinitron 500PS monitor (21 in. display,
1024
 768 pixels, 100 Hz refresh) driven by a Cam-
bridge Research Systems (CRS) VSG 2/3 video board.
The 15-bit board allowed for 32,768 discrete lumi-
nance levels. The maximum output for the monitor was
calibrated to equal energy white (CIE chromatic-
ity coordinates ¼ 0:333, 0.333), and the voltage/lumi-
nance relationship was linearized independently for each
of the three guns in the display, using a Gamma Cor-
rection System and an OptiCAL 256M (CRS). A PR-
650 SpectraColorimeter (PhotoResearch) was used for
spectroradiometric and photometric measurements of
our stimuli.

2.3. Stimuli

Stimuli consisted of horizontally oriented, chromatic
(red/green) and luminance (black/white) sinusoidal
gratings, counterphase-reversed (temporal sinusoidal) at
different spatial and temporal frequencies. For subject
group #1, four combinations were tested: two spa-
tial frequencies (0.25 and 2 c/deg) and two temporal
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frequencies (4 and 16 Hz). For subject group #2, three
different spatial frequencies (0.25, 0.5 and 1 c/deg) at a
single temporal frequency (4 Hz) were tested. Note that
we chose to go no higher in spatial frequency than 2
c/deg in order to avoid luminance artifacts produced by
chromatic aberration in red/green gratings (Flitcroft,
1989; Cavanagh & Anstis, 1991; Bradley, Zhang, &
Thibos, 1992). Gratings subtended 5.4� of visual angle,
and were convolved with a Gaussian circular envelope
(Gabor standard deviation ¼ 2:7�) to eliminate spatial
edges. Gratings were presented with the zero-crossing
positioned in the center of the stimulus to ensure equal
number of light and dark (or red and green) stripes in
the stimulus. Note that because stimulus size was held
constant across all conditions, the total number of cycles
necessarily varied across different spatial frequencies.
All gratings (chromatic and luminance) were modu-

lated through equal energy white (CIE ¼ 0:333, 0.333)
at 28 cd/m2, and were of the same mean chromaticity
and luminance as the background. Chromatic gratings
were created to selectively modulate activity within
L- and M-cones, while keeping the S-cone excitation
constant. Luminance gratings were produced by sinu-
soidally modulating the luminance of the gray back-
ground. The contrast of all stimuli was defined in terms
of the root-mean-square (r.m.s.) cone contrast produced
in L- and M-cones. For chromatic gratings, these values
were computed by determining the L- and M-cone ex-
citations produced by the peaks of the red and green
phases of our chromatic gratings. These excitations were
obtained by integrating the cross-product of stimulus
spectral output of these stimuli (measured with the PR-
650 in 4 nm intervals from 400 to 700 nm) by the
Stockman, MacLeod, and Johnson (1993) cone funda-
mentals (see Dobkins, Gunther, & Peterzell, 2000 for
details). R.m.s. cone contrast for chromatic stimuli was
calculated as follows:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½ðLr � LgÞ=ðLr þ LgÞ�2 þ ½ðMr �MgÞ=ðMr þMgÞ�2

2

s

where Lr and Mr refer to the L- and M-cone excitations,
respectively, produced by the red peak, and Lg and Mg

refer to the cone excitations produced by the green
peak. For luminance gratings, r.m.s. cone contrast
directly corresponds to conventional Michelson con-
trast: ðLuminancemax � LuminanceminÞ=ðLuminancemaxþ
LuminanceminÞ.

2.4. Procedure

For all portions of these experiments, subjects were
tested in a dark room and viewed the video display
binocularly from a chin rest situated 57 cm away. Sub-
jects were instructed to maintain fixation on a small
central cross, and provide perceptual reports via key-

presses on a response box. For each spatio/temporal
frequency tested, three types of data were obtained: (1)
red/green equiluminance, (2) red/green chromatic con-
trast sensitivity and (3) luminance contrast sensitivity.
For each subject, red/green equiluminance was de-

termined via heterochromatic flicker photometry (HFP).
On each trial, the red/green grating appeared centered
on the fixation cross, and the subject adjusted the rela-
tive luminance between the red and the green phases
until the percept of flicker was least salient. At Vk

equiluminance, the chromatic gratings produced 12.1%
r.m.s. cone contrast in L- and M-cones, which was ap-
proximately 20 times the mean chromatic contrast
threshold. The equiluminance point was determined
from the mean setting across 20 trials (see Dobkins et al.,
2000 for further details). For subject group #1, HFP
was performed separately for each of the four stimulus
conditions (20 trials per condition). These equilumi-
nance settings were used to: (1) set the red/green lumi-
nance ratio for each subject when tested in the
chromatic contrast sensitivity condition and (2) derive
estimates of L:M cone ratios for each subject (see be-
low). For subject group #2, HFP was performed only
for the 0.5 c/deg, 4 Hz condition, and the resulting value
was used to set red/green equiluminance for all three
spatial frequencies, including 0.25 and 1 c/deg. Our
reason for using this one setting is based both on pre-
vious studies (e.g., Cavanagh, MacLeod, & Anstis, 1987;
Mullen, 1991; Dobkins et al., 2000; Dobkins, Thiele, &
Albright, 2000) and on our findings from subject group
#1 (F ð1; 18Þ ¼ 0:94, p ¼ 0:35) that spatial frequency has
negligible effects on equiluminance settings.
Chromatic and luminance contrast sensitivities were

determined using a Best-PEST staircase procedure
(Lieberman & Pentland, 1982) in a spatial two-alterna-
tive forced-choice paradigm. On each trial, the stimulus
appeared centered 2.5� to the left or right of fixation,
and the subject reported its location via a key press on a
response box. No feedback was provided. Stimuli were
presented for 300 ms, with contrast ramped on and off in
a cosine manner within the first and last 100 ms. The
staircase procedure continued until the subject had
completed 125 trials for each stimulus condition.
Chromatic and luminance stimuli, as well as the different
spatial and temporal frequencies, were randomized
across trials. Approximately 2.5–6 h were required to
complete the experiment, with testing divided into 1- to
2-h blocks.

2.5. Determining L:M cone ratio asymmetries from red/
green equiluminance settings

Estimates of L:M cone ratios were derived from HFP
equiluminance settings in the following manner. We first
determined the L- and M-cone excitations produced by
the peaks of the red and green phases of chromatic
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gratings (as described above) set to be equiluminant.
These values were calculated separately for each subject
and for each stimulus condition (see Dobkins et al., 2000
for details). As addressed in Section 1, at equiluminance,
the weighted sum of L- and M-cone excitation produced
by the red peak of the chromatic grating is expected to
equal the weighted sum of L- and M-cone excitation
produced by the green peak. The weighting factors are
thought to represent the relative proportion of L-cones
(PL) versus M-cones (PM). The equation describing this is
as follows:

PLLr þ PMMr ¼ PLLg þ PMMg

where Lr and Mr refer to the cone excitations produced
by the red peak, and Lg and Mg refer to the cone exci-
tations produced by the green peak. Thus, PL=PM (which
represents the L:M ratio) is calculated as

PL=PM ¼ ðMg �MrÞ=ðLr � LgÞ ¼ L :M ratio

For subject group #1, we used each subject’s mean L:M
ratio derived from 16 Hz stimuli (i.e., averaged across
the 0.25 and 0.5 c/deg conditions). Our reason for using
the data from only the 16 Hz condition is based on the
notion that the luminance (i.e., LþM) mechanism is
isolated at high temporal frequencies (e.g., Kelly & van
Norren, 1977; Varner, Piantanida, & Baker, 1997) and
because studies using HFP and electroretinography to
derive L:M ratios typically use high temporal frequen-
cies (e.g., Smith & Pokorny, 1975; Kremers et al., 2000).
However, we also analyzed our data using 4 Hz-derived
L:M ratios, in order to compare the results to those
obtained from 16 Hz-derived estimates. For subject
group #2, equiluminance was obtained only for the 0.5
c/deg, 4 Hz condition, and thus this sole condition was
used for estimating each subject’s L:M ratio.
After determining an L:M ratio for each subject, this

value was transformed into an L:M asymmetry value.
This latter metric was chosen because it tests our hy-
pothesis that imbalances in the number of L- versus M-
cones, regardless of which is in higher proportion, may
influence chromatic contrast sensitivity. Thus, any esti-
mated L:M ratio that was <1.0 was converted to the
inverse ratio (e.g., an L:M ratio of 0.2 was converted to
an asymmetry of 5.0).
It is important to emphasize that our estimates of

L:M asymmetry assume that PL=PM represents the rel-
ative proportion of L- versus M-cones, as opposed to
some post-receptoral synaptic weighting of L- versus M-
cones. We believe this is a reasonable assumption since
there exists empirical evidence, within individual human
subjects, demonstrating that spectral sensitivity is clo-
sely tied to the relative proportion of L- versus M-cones
(e.g., Vimal et al., 1989; Wesner et al., 1991; Brainard
et al., 2000; Kremers et al., 2000). Note also that our
L:M asymmetry estimates rely on cone fundamentals for
the ‘‘standard’’ observer (as determined by Stockman

et al. (1993)) to compute L- and M-cone excitations.
Because cone fundamentals are expected to differ
somewhat across individuals (based on differences
across subjects in photopigment kmax, photopigment
optical density, as well as lens and macular pigment),
there will be some error in L:M derivations associated
with using a standard set of cone fundamentals for all
subjects (see Bieber, Kraft, & Werner, 1998 for further
discussion). However, this type of error, albeit likely
present in our estimates, cannot account for the results
of our factor analyses (see Section 3).

2.6. Factor analyses

Covariance analyses of individual differences (i.e.,
factor analyses) were performed on the correlations
from the data (as previously described, e.g., Peterzell,
Kaplan, & Werner, 1995; Peterzell & Teller, 1996; Dob-
kins et al., 2000) to determine the degree of depen-
dence versus independence between L:M asymmetry,
chromatic contrast sensitivity and luminance contrast
sensitivity. Because subject data conformed to normal
distributions when log-transformed, all analyses were
performed on log values, and all mean data are pre-
sented here as geometric means (i.e., the linear equiva-
lents of the log means).
As a first step in our factor analysis, a principal

component analysis (PCA) was performed on the cor-
relational data. Eigenvalues reflect the proportion of
variance explained by a given factor, with 1.0 being the
value expected by chance alone. Hence, an eigenvalue
greater than one was used as the criterion for statistical
significance of the components (Guttman, 1954; Gor-
such, 1983). In order to maximize the number of zero or
near zero factor loadings, these orthogonal principle
components, or factors, were rotated to ‘simple struc-
ture’ using the Varimax criterion (Kaiser, 1958) and
then further rotated obliquely.

3. Results

3.1. Sample L:M ratios

A frequency histogram of L:M ratios derived from
red/green equiluminance settings in all 60 subjects is
shown in Fig. 2. Data from each subject group are
shown separately for color-normal subjects (solid bars)
and carriers of dichromacy (bars with white diagonal
lines). For subject group #1 (n ¼ 19, black bars), the
geometric mean L:M ratio for color-normal subjects
(n ¼ 10) was 1.41 (based on 16 Hz equiluminance data).
For subjects presumed to be deutan carriers (n ¼ 7,
based on their relatively greater sensitivity to red) and
protan carriers (n ¼ 2, based on their relatively greater
sensitivity to green), the mean L:M ratios were 3.33 and
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0.32, respectively. For subject group #2 (n ¼ 41, gray
bars), the geometric mean L:M ratio for color-normal
subjects (n ¼ 39) was 1.03 (based on 4 Hz equiluminance
data), which was not significantly different from the
color-normal subjects in the first group (tð47Þ ¼ 1:61,
p ¼ 0:11). The presumed deutan carrier and protan
carrier in this subject group had estimated L:M ratios of
1.60 and 0.22, respectively.

3.2. Factor analysis of subject group #1

The results from our factor analysis based on the data
from the first group of subjects (n ¼ 19) are presented in
Fig. 3. Shown are the factor loadings for a two-factor
solution, based on nine data points (four chromatic
sensitivities, four luminance sensitivities and one derived
L:M value). Note that a two-factor solution was chosen
based on our hypothesis that L:M asymmetries should
correlate with chromatic contrast sensitivity but not
luminance contrast sensitivity, and because only two
factors were found to be significant based on their ei-
genvalues (see Section 2). As has been used previously
(e.g., Peterzell et al., 1995; Peterzell & Teller, 1996;
Dobkins et al., 2000), our criterion for factor loading
significance was a factor loading of 	0.4. Thus, factor
loadings with values greater than or equal to j0:4j are
plotted for each of the data points. The correlation
matrix underlying the factor analysis for subject group
#1 is provided in Appendix A.
In accordance with previous findings from factor

analysis (Dobkins et al., 2000; Peterzell & Teller, 2000),
chromatic and luminance contrast sensitivity were found
to load onto separate factors. Specifically, chromatic
contrast sensitivity loaded onto Factor 1, accounting for
48.3% of the overall variance, while luminance contrast
sensitivity loaded onto Factor 2, accounting for 25.8%
of the variance. (Note that a single chromatic stimulus
at 2 c/deg, 16 Hz also loaded onto Factor 2, although

the factor loading for this point just barely surpassed
our criterion loading.) Thus, in line with previous
studies employing paradigms such as adaptation,
masking and summation-near-threshold (e.g., Kraus-
kopf, Williams, & Heeley, 1982; Barbur, Harlow, &
Plant, 1994; Mullen & Losada, 1994, 1999; Mullen &
Sankeralli, 1999; Gunther & Dobkins, 2002), this factor
analysis result implies the existence of independent
mechanisms underlying red/green chromatic and lumi-
nance contrast sensitivity. Most relevant to our predic-
tions, in addition to chromatic contrast sensitivity
loading onto Factor 1, L:M asymmetry also loaded onto
this factor, but negatively. This result suggests that
higher chromatic contrast sensitivity is associated with
lower L:M asymmetry (i.e., more equal numbers of L-
and M-cones). And, conversely, higher L:M asymmetry
is associated with lower chromatic contrast sensitivity.
As expected, L:M asymmetry did not co-load with lu-
minance contrast sensitivity values.
It is perhaps important to point out that this set of

results is not an artifact of choosing a two-factor solu-
tion, as the two factors are completely unconstrained in
the analysis. Although only the first two factors yielded

Fig. 2. Frequency histogram of L:M ratios derived from red/green

equiluminance points for all 60 subjects. Data from subject groups #1

and #2 are presented as black and gray bars, respectively. For both

groups, color-normal subjects are represented by solid bars, and car-

riers of dichromacy by striped bars. Bins are of equal log divisions, yet

linear L:M cone ratios are presented for ease of interpretation.

Fig. 3. Factor analysis for subject group #1. Factor loadings, which

represent the correlation between each of the 9 measures (one L:M

estimate, four chromatic contrast sensitivities and four luminance

contrast sensitivities) and the factor, are shown for a two-factor so-

lution. White and black squares represent positive and negative factor

loadings, respectively. Squares are scaled in size according to their

value. Small gray squares represent factor loadings that fell below the

criterion for significance (absolute value of factor loading <0.4). Note

that chromatic and luminance contrast sensitivity load separately onto

Factors 1 and 2, respectively. In addition, note that chromatic contrast

sensitivity and L:M asymmetry co-load inversely onto Factor 1 (i.e.,

positive loadings for chromatic sensitivity and negative loading for

L:M asymmetry), indicating that more symmetrical L:M cone ratios

are associated with greater chromatic contrast sensitivity. The L:M

asymmetry values in this analysis were calculated from 16 Hz data

collapsed over the 0.25 and 2.0 c/deg conditions (see Section 2).
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significant eigenvalues, we nonetheless investigated the
effects of requesting three- and four-factor solutions.
For both, spatial frequency tuning was revealed. Spe-
cifically, in the three-factor solution, separate luminance
contrast sensitivity factors emerged for 0.25 versus 2 c/
deg. In the four-factor solution, both luminance and
chromatic contrast sensitivity split into spatial frequency
factors. However, this did not affect our main pattern of
results, i.e., the separation between chromatic and lu-
minance contrast sensitivity and the negative relation-
ship between chromatic contrast sensitivity and L:M
asymmetry were maintained.
The above-presented factor analysis for subject group

#1 was conducted using L:M estimates derived solely
from 16 Hz data. To determine whether these results
depend on the use of 16 Hz data, and to compare more
directly results from subject group #1 with those of
group #2 (whose L:M estimates were based on 4 Hz
data), we also conducted an analysis on data from
subject group #1 using L:M estimates derived from 4 Hz
data. The results of this analysis were nearly identical to
those obtained using 16 Hz data. Specifically, chromatic
contrast sensitivity loaded positively and L:M asym-
metry loaded negatively onto Factor 1, accounting for
48.1% of the variance, while luminance contrast sensi-
tivity alone loaded onto Factor 2, accounting for 24.7%
of the variance. This result is perhaps not surprising
given that our 16 Hz-derived L:M estimates were highly
correlated with those derived from 4 Hz data (r ¼ 0:97,
p < 0:001, slope of regression ¼ 1:03).

3.3. Factor analysis of subject group #2

The results from our factor analysis based on the data
from the second group of subjects (n ¼ 41) are presented
in Fig. 4. Shown are the factor loadings, based on seven
data points (three chromatic sensitivities, three lumi-
nance sensitivities and one derived L:M value). Mir-

roring the results observed in the first group of subjects,
chromatic contrast sensitivity loaded positively and L:M
asymmetry loaded negatively onto Factor 1, accounting
for 58.0% of the variance. Luminance contrast sensi-
tivity alone loaded onto Factor 2, accounting for 20.1%
of the variance. As for the first group of subjects, L:M
asymmetry did not co-load with luminance contrast
sensitivity. In sum, the results for subject group #2
provide a replication of the effects observed for subject
group #1. This is despite the fact that, unlike subject
group #1, group #2 included an extreme minority of
women carriers of dichromacy (two of the 41 subjects).
This suggests that an exaggerated range of L:M asym-
metries is not, in fact, required to see this pattern of
results. Most likely, the ability to observe this effect in
group #2 is a result of the greater number of subjects in
this analysis (twice as many as in group #1), yielding
more statistical power. The correlation matrix underly-
ing the factor analysis for subject group #2 is provided
in Appendix B.

3.4. Effects of age

Due to the yellowing of the lens with age, older
subjects are expected to be relatively less sensitive to
green as compared to younger subjects (e.g., Said &
Weale, 1959; Ruddock, 1965; Fiorentini, Porciatti,
Morrone, & Burr, 1996 and see Werner, Peterzell, &
Scheetz, 1990 for a review). However, this factor should
not have affected our results since these effects are
thought to be minimal within our subject age range of
18–37 years (e.g., Ruddock, 1965; Knoblauch, Vital-
Durand, & Barbur, 2001). Nonetheless, if a tendency
existed for our older subjects to be less green sensitive as
a consequence of lens yellowing, derived L:M ratios
(and consequently L:M asymmetries) would have been
artificially high in these individuals. If these older sub-
jects were also less sensitive to chromatic contrast than
the younger subjects (as previous research suggests they
might be, e.g., Fiorentini et al., 1996; Knoblauch et al.,
2001, and see Werner et al., 1990 for a review), this
could potentially drive the negative relationship between
L:M asymmetry and chromatic contrast sensitivity ob-
served in our factor analyses.
To investigate whether age could account for our

results, we included subject age as a dimension in our
factor analyses. As before, we requested a two-factor
solution, because if age underlies variations in both L:M
asymmetry and chromatic contrast sensitivity, it would
be expected to co-load with both of these measures (but
not with luminance contrast sensitivity). The results of
this factor analysis produced a pattern that was essen-
tially identical to that observed in the main analyses (see
Figs. 3 and 4), with age not loading (absolute values of
factor loadings were all <0:4) onto either Factor 1 or 2.

Fig. 4. Factor analysis for subject group #2. Data are presented as in

Fig. 2. As for subject group #1, chromatic and luminance contrast

sensitivity load onto separate factors. And, chromatic contrast sensi-

tivity and L:M asymmetry co-load inversely onto Factor 1, indicating

that more symmetrical L:M cone ratios are associated with greater

chromatic sensitivity. The L:M asymmetry values in this analysis were

calculated from 0.5 c/deg, 4 Hz data (see Section 2).
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Specifically, chromatic contrast sensitivity and L:M
asymmetry loaded onto Factor 1 (43.8% of the variance
in subject group #1; 50.8% of the variance in sub-
ject group #2), while luminance contrast sensitivity
loaded onto Factor 2 (23.3% of the variance in subject
group #1, which also included the 2 c/deg, 16 Hz,
chromatic data point; 17.6% of the variance in subject
group #2). Based on these results, we believe that age
cannot account for the relationship observed between
L:M asymmetry and chromatic contrast sensitivity.

3.5. Effects of cone fundamentals used to derive L:M
ratios

Our derived L:M asymmetry values relied on cone
fundamentals provided by Stockman et al. (1993) for 2�
stimuli (see Section 2), where the kmax for the L- and M-
cone fundamentals are at 568 and 540 nm, respectively.
However, cone fundamental values are known to vary
somewhat across studies, on the order of approximately
5 nm (Vos & Walraven, 1971; Smith & Pokorny, 1975;
Stockman et al., 1993). Because derived L:M ratios have
been shown to be dependent on the particular kmax
employed for L-cones (although only small effects are
seen for kmax of M-cones), different cone fundamentals
are likely to produce different values of L:M ratios (see
Bieber et al., 1998). For example, the mean L:M ratio
for our 49 color-normal subjects (subject groups #1 and
#2, combined) was 1.10 when using a 568 nm kmax for
the L-cone fundamental. However, when the L-cone
kmax was shifted by þ4 nm (to 572 nm), the mean L:M
ratio for this sample decreased to 0.79. A �4 nm shift (to
564 nm) increased the mean to 1.88. In accordance with
Bieber et al. (1998), much smaller changes were observed
for variations in M-cone kmax, i.e., L:M ratios of 0.90
and 1.26 for M-cone kmax’s of 544 nm (þ4 nm) and 536
nm (�4 nm), respectively.
In order to determine the effects of variations in kmax

on our results, we conducted additional factor analyses
using L:M estimates derived from 	4 nm shifted cone
fundamentals. When the value of the L-cone kmax was
shifted 4 nm in either direction, the pattern of factor
loadings was identical to those obtained for the non-
shifted values reported above, for both subject groups.
The only exception to this, a minor one, was the reversal
of Factors 1 and 2 for the �4 nm shift in subject group
#1. Here, chromatic contrast sensitivity and L:M
asymmetry loaded onto Factor 2, while luminance
contrast sensitivity (and chromatic contrast sensitivity at
16 Hz, 2 c/deg) loaded onto Factor 1. Shifting the kmax of
the M-cone by 	4 nm also had no effect on our results,
for either subject group. Thus, the results of these ad-
ditional analyses suggest that the observed relationship
between L:M asymmetry and chromatic contrast sensi-
tivity is not an artifact of the particular cone funda-
mental kmax’s employed.

In addition to variation in cone fundamental kmax
across studies, kmax is also known to vary across indi-
viduals (by as much as 	1 to 3 nm, e.g., Eisner &
MacLeod, 1981; Kraft, Neitz, & Neitz, 1998; Sharpe,
Stockman, Jaegle, Knau, & Nathans, 1999), due to in-
dividual differences in photopigment kmax, photopigment
optical density, and lens and macular pigment. Because
we employed a ‘‘standard’’ set of cone fundamentals for
all of our subjects, the derived L:M values for some
subjects will necessarily be slightly erroneous. In addi-
tion to errors in L:M values, the use of a single set of
cone fundamentals will, of necessity, result in somewhat
erroneous estimates of chromatic contrast sensitivity for
some subjects (see Section 2 for details on these calcu-
lations). Consequently, we can expect varying degrees of
error in both derived L:M values and chromatic contrast
sensitivity across our sample of subjects. If such errors
tended to artificially elevate a given individual’s L:M
estimate while simultaneously lowering her estimate of
chromatic contrast sensitivity (or vice versa), this could
potentially drive the negative relationship between L:M
asymmetry and chromatic contrast sensitivity.
To address this possibility, we simulated the effects of

an erroneous kmax on both L:M asymmetry and chro-
matic contrast sensitivity values. This was performed
only for the L-cone fundamental, since variations in the
M-cone kmax produce only small changes in L:M values
(see above). To this end, we recalculated L:M values and
chromatic sensitivities for a representative subject
(whose L:M asymmetry and chromatic contrast sensi-
tivity were both close to the mean across subjects) using
an L-cone kmax shifted by 	4 nm. For this subject, a kmax
of 568 nm (used in our original analysis) yielded an L:M
asymmetry of 1.28 and a chromatic contrast sensitivity of
157. When kmax was shifted �4 nm to 564 nm, both the
L:M asymmetry (2.09) and chromatic contrast sensitivity
(169) for this individual were elevated. Conversely, when
kmax was shifted þ4 nm to 572 nm, both the L:M
asymmetry (1.09) and chromatic contrast sensitivity
(142) for this individual were decreased. Thus, had our
use of a 568 nm kmax been erroneously high (or low) for a
given subject, both the derived L:M asymmetry and
chromatic contrast sensitivity for that subject would
have been underestimated (or overestimated). Because
such errors are expected to be in the same direction, this,
if anything, would tend to create a positive relationship
between L:M asymmetry and chromatic contrast sensi-
tivity. Since this effect is opposite to that observed in the
present study, we feel confident that errors in cone fun-
damentals cannot account for our results.

4. Discussion

The results of these studies suggest that symmetry in
the number of L- versus M-cones creates an advantage
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for chromatic (red/green) contrast sensitivity, yet has
negligible effects on luminance contrast sensitivity. As
addressed in Section 1, this relationship between L:M
asymmetry and chromatic contrast sensitivity can be
accounted for by a model of indiscriminant L- and M-
cone inputs to chromatic (L–M) mechanisms, whereby
the most symmetrical L:M ratios produce the strongest
chromatic opponency, and, in turn, the greatest chro-
matic contrast sensitivity. By this account, variations in
chromatic contrast sensitivity across subjects appear to
be influenced by variations across subjects in the relative
number of L- versus M-cones inputting to the L–M
mechanism.
Although this hypothesis is tenable, it appears in-

consistent with the popular notion that inputs to the
L–M mechanism are normalized to �1:1 (L:M), re-
gardless of the actual L:M cone ratio in the eye. Evidence
for this idea is based largely on the finding that unique
yellow settings, which are thought to rely on the L–M
mechanism, vary much less than do L:M cone ratios, and
are roughly consistent with an L:M input ratio of 1:1
(Ingling & Martinez-Uriegas, 1983b; Pokorny, Smith, &
Wesner, 1991; Miyahara, Pokorny, Smith, Baron, &
Baron, 1998; Brainard et al., 2000). Recently, Yamauchi,
Williams, Carroll, Neitz, and Neitz (2001) provided ev-
idence that this normalization process arises from envi-
ronmental factors, by demonstrating that unique yellow
settings shift in a systematic fashion after prolonged (4–
20 h) experience in red or green environments (e.g.,
through the wearing of colored contact lenses). It is
perhaps important to point out, however, that not all
studies support the notion of normalized 1:1 input to
L–M mechanisms. Cicerone and colleagues have re-
ported that subjects who possess relatively higher L:M
ratios set unique yellow to relatively lower wavelengths,
and vice versa (Cicerone, 1990; Gowdy & Cicerone,
1998; Otake & Cicerone, 2000). Thus, both the chromatic
contrast sensitivity measure of the present experiment
and the unique yellow results of Cicerone and colleagues
suggest that the L–M mechanism is influenced by the
relative number of L- versus M-cones in the eye.
In another recent study, Kremers et al. (2000) inves-

tigated the issue of L:M input to the L–Mmechanism by
deriving L:M ratios from cone modulation thresholds
obtained across a wide range of temporal frequencies (1–
30 Hz). Their approach was based on the assumption
that lower frequencies (1–4 Hz) enhance the contribution
from the L–Mmechanism, while higher frequencies (15–
30 Hz) enhance the contribution from the LþM mech-
anism. At high temporal frequencies, they observed
substantial subject variation in derived L:M ratios (with
a mean near 2:1), which correlated extremely well
(r ¼ 0:93) with direct L:M estimates they obtained using
retinal densitometry. By contrast, at low temporal fre-
quencies, they observed little variability in derived L:M
ratios, with a mean near 1:1. These results were taken as

evidence that L:M input to the L–M, but not the LþM,
mechanism is normalized to 1:1 L:M, regardless of the
actual number of L- versus M-cones in the eye.
However, we would argue that, at least for their 4 Hz

data (which matches one of the temporal frequencies
employed in the present study), the variability in Kre-
mers et al.’s derived L:M ratios, although reported to be
small (�0.13 log units), was in fact much larger than
would be expected if (1) their 4 Hz estimates relied ex-
clusively on the L–M mechanism and (2) the L–M
mechanism receives normalized 1:1 L:M cone input. To
illustrate this point, we compared the variability in their
L:M ratios to known variations in unique yellow set-
tings, under the assumption that unique yellow settings
are based on normalized 1:1 input of L:M cones to the
L–M mechanism. Using the equations of Cicerone
(1990), and the parameters used by Brainard et al. (2000),
we calculate that the Kremers et al. 4 Hz data predict a
standard deviation of approximately 17 nm in unique
yellow settings, which is substantially higher than known
standard deviations in unique yellow (typically on the
order of 2–5 nm, e.g., Miyahara et al., 1998). Some of the
unexplained variability in the 4 Hz-derived L:M esti-
mates of Kremers et al. could be due to noise arising
from individual variability across subjects in cone fun-
damentals. In addition to this possibility, the variability
is likely to reflect partial contribution from the LþM
mechanism (see Ingling & Tsou, 1988; Lennie et al., 1993;
Webster &Mollon, 1993; Dobkins et al., 2000 for further
discussion) and/or incomplete 1:1 normalization of L-
and M-cone input to the L–M mechanism.
Although the weighting of the L:M input to the L–M

mechanism is still somewhat controversial, there are two
ways to reconcile a 1:1 normalization (which suggests a
lack of dependence on L:M value) with the chromatic
contrast sensitivity results of the present study (which
suggest a dependence on L:M value). The first is to
propose that the normalization to 1:1 is not perfect,
leaving enough variability across subjects to reveal cor-
relations between L:M ratio and chromatic contrast
sensitivity (as in the present study) and between L:M
ratios and unique yellow (as in the studies by Cicerone
and colleagues). The second possibility is that the nor-
malization process in the L–M pathway simply occurs
after the site that underlies chromatic contrast sensitivity.
This latter scenario could also account for the residual
variability in the Kremers et al. low temporal frequency
data. That is, the cone modulation thresholds they used
to estimate L:M ratios may isolate the L–Mmechanism,
yet at a level prior to the point of normalization.
Although further experiments will be required to

distinguish these possibilities, the results of the present
experiment suggest that chromatic contrast sensitivity is
related to the relative number of L- versus M-cones in
the eye. Such findings are consistent with a model of
indiscriminant L- and M-cone inputs to single cone
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center midget ganglion cells of the central retina,
whereby the most symmetrical L:M ratios result in the
overall greatest chromatic opponency, and in turn, the
highest chromatic contrast sensitivity. If this model is
correct, then a different set of results would be predicted
for chromatic contrast sensitivity in the periphery, where
midget ganglion cells are known to receive multiple cone
inputs to the center and surround (Dacey, 1993;
Goodchild et al., 1996). To illustrate this point, in Fig. 1
we have plotted the predicted average cone opponency
purity value as a function of L:M asymmetry for the
case of eight cones in the center (open symbols, dashed
line). As for the case of a single cone center, the overall
strongest chromatic opponency occurs when the number
of L- versus M-cones is symmetrical (L:M ratio of 1:1),
while the weakest opponency occurs when there is a
large asymmetry. However, owing to the summing of
inputs in both the center and surround, the influence of
L:M asymmetry is far weaker than for the case of a

single cone center. For example, with eight cones in the
center, the cone opponency purity value varies from 0.15
for an L:M asymmetry of 1:1 to 0.10 for an L:M
asymmetry of 8:1; a difference of only 1.5-fold (down
from 2.5-fold for single-center cones, see Section 1).
Thus, as compared to chromatic contrast sensitivity in
central vision, peripheral sensitivity should be far less
affected by variations in L:M asymmetry. Testing this
hypothesis in future experiments will provide an im-
portant step in understanding how chromatic contrast
sensitivity might be constrained by the relative number
of L- versus M-cones in the eye.
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Appendix A

Correlation matrix underlying factor analysis for subject group #1.

RG
4 Hz
0.25 cpd

RG
16 Hz
0.25 cpd

RG
4 Hz
2 cpd

RG
16 Hz
2 cpd

LUM
4Hz0.25
cpd

LUM
16 Hz
0.25 cpd

LUM
4 Hz
2 cpd

LUM
16 Hz
2 cpd

LM
ASYM

RG 4 Hz 0.25 cpd 1.00
RG 16 Hz 0.25 cpd 0.717 1.00
RG 4 Hz 2 cpd 0.587 0.552 1.00
RG 16 Hz 2 cpd 0.576 0.628 0.781 1.00
LUM 4 Hz 0.25 cpd 0.163 0.185 0.076 0.554 1.00
LUM 16 Hz 0.25 cpd 0.437 0.426 0.409 0.608 0.741 1.00
LUM 4 Hz 2 cpd 0.025 0.195 0.232 0.387 0.531 0.431 1.00
LUM 16 Hz 2 cpd 0.116 0.351 0.217 0.382 0.484 0.574 0.825 1.00
LM ASYM �0.634 �0.448 �0.784 �0.566 0.020 �0.270 0.150 0.219 1.00

Pearson r values are presented. RG ¼ red/green chromatic contrast sensitivity, LUM ¼ luminance contrast sensitivity,
LM ASYM ¼ L:M cone asymmetry, cpd ¼ cycles/degree.

Appendix B

Correlation matrix underlying factor analysis for subject group #2.

RG
0.25 cpd

RG
0.5 cpd

RG
1 cpd

LUM
0.25 cpd

LUM
0.5 cpd

LUM
1 cpd

LM
ASYM

RG 0.25 cpd 1.00
RG 0.5 cpd 0.721 1.00
RG 1 cpd 0.848 0.799 1.00
LUM 0.25 cpd 0.290 0.308 0.359 1.00
LUM 0.5 cpd 0.500 0.438 0.566 0.665 1.00
LUM 1 cpd 0.269 0.427 0.420 0.611 0.710 1.00
LM ASYM �0.552 �0.544 �0.702 �0.194 �0.344 �0.255 1.00

Format as in Appendix A.
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