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A model associated with the formation of sedimentary ocean deltas is presented.
This model is a generalized one-dimensional Stefan problem bounded by two moving
boundaries, the shoreline and the alluvial-bedrock transition. The sediment transport is
a non-linear diffusive process; the diffusivity modeled as a power law of the fluvial slope.
Dimensional analysis shows that the first order behavior of the moving boundaries is
determined by the dimensionless parameter 0 � Rab � 1—the ratio of the fluvial slope
to bedrock slope at the alluvial-bedrock transition. A similarity form of the governing
equations is derived and a solution that tracks the boundaries obtained via the use of
a numerical ODE solver; in the cases where the exponent θ in the diffusivity model is
zero (linear diffusion) or infinite, closed from solutions are found. For the full range of the
diffusivity exponents, 0 � θ → ∞, the similarity solution shows that when Rab < 0.4 there
is no distinction in the predicted speeds of the moving boundaries. Further, within the
range of physically meaningful values of the diffusivity exponent, i.e., 0 � θ ∼ 2, reasonable
agreement in predictions extents up to Rab ∼ 0.7. In addition to the similarity solution a
fixed grid enthalpy like solution is also proposed; predictions obtained with this solution
closely match those obtained with the similarity solution.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

In a moving boundary problem one or more of the domain boundaries is an a priori unknown function of space and
time. The classical example is the one phase Stefan melting problem [1] where one of the domain boundaries is the moving
solid/liquid front. Generalizations of the Stefan problem have been applied to wide classes of problems. A Stefan like problem
of current interest—dating back to the work of Swenson et al. [2] and Marr et al. [3]—is associated with the formation of
sediment ocean deltas and fluvial sediment fans. For such systems, an analogy between sediment and heat transport can be
effectively applied to arrive at a generalized Stefan problem that has some interesting features. In particular, the appearance
of multiple moving boundaries; a feature also seen in some solidification [4–6] and polymer swelling systems [7].

Both analytical and numerical solutions have been developed for the sediment ocean delta problem. Under the conditions
of a constant sediment flux applied at x = 0 and a constant bedrock slope, Voller et al. [8] developed a closed form similarity
solution for a one-dimensional version of the sediment delta problem in which the moving boundary of interest is the
shoreline (SHL) x = ssh(t). Capart and co-workers [9–11] and Lorenzo-Trueba et al. [12] expand on this work by developing
analytical and semi-analytical solutions that track two moving boundaries, the seaward movement of the shoreline and the
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landward movement of the alluvial-bedrock transition (ABT) x = −sab(t). A feature in the analytical dual moving boundary
treatments is the assumption of a linear diffusion law to model the sediment unit flux in terms of a constant diffusivity ν
multiplied by the local slope of the sediment deposit, i.e.,

q(x) = −ν
∂h

∂x
(1)

where h is the sediment height above a horizontal datum and the units of the flux q are volumetric sediment bed transport
per unit width and time; a definition that takes account for porosity in the sediment deposit.

A basic approximate solution to the dual moving boundary sediment delta problem can be obtained by assuming that
the surface of the deposited sediment is linear. As detailed in Kim and Muto [13], this allows for the construction of a
geometric relationship that can be used to track both the SHL and ABT. In more sophisticated approximate approaches nu-
merical solutions, employing coordinated transforms have been presented by Parker and Muto [14], Swenson and Muto [15].
A feature in these works is the consideration of a non-linear model for the unit flux where the constant diffusivity ν in (1)
is replaced by a function of the sediment deposit’s slope, i.e.,

ν = ν∗
∣∣∣∣∂h

∂x

∣∣∣∣
θ

(2)

where ν∗ is a constant with dimensions of diffusivity and the exponent θ � 0 is a constant.
A drawback of the coordinate transform numerical approaches for the sediment delta problem [14,15] is that there is not

an obvious path toward the solution of two-dimensional problems. To address this, Voller et al. [16] develop an “enthalpy”
like solution that can operate on a fixed grid in the untransformed space. This solution approach has been successfully
verified with the single moving shoreline analytical solution of Voller et al. [8] and applied to the problems of the growth
of two-dimensional deltas [16]. As the method stands, however, is not able to handle the simultaneous tracking of the SHL,
x = ssh(t) > 0, and the ABT, x = sab(t) < 0.

The objective of this paper is two-fold. In the first place the dual boundary delta growth similarity solution of Lorenzo-
Trueba et al. [12] will be extended to allow for the non-linear diffusion form in (2). In the general case, θ > 0, the resulting
similarity ODE requires a numerical solution. In the special limit cases, θ = 0 and θ → ∞, however, closed form solutions
can be obtained. In the θ = 0 limit, the error function closed form solution presented by Lorenzo-Trueba et al. [12] results. In
the θ → ∞ limit, the geometrical solution of Kim and Muto [13] is obtained. Numerical treatment of the similarity equations
indicates that the solution in the general case of finite non-zero value of θ is bounded by these two limit solutions.

The second objective of this paper is to further develop the enthalpy solution of Voller et al. [16] so that it can deal
with the dual moving boundary delta growth problem under the assumption of the non-linear diffusion form in (2). This
numerical approach is verified by comparing with the closed (θ = 0) and numerical (θ > 0) solutions of the similarity ODE.

2. The dual moving boundary problem

2.1. Equations

Following from previous work [12], a one-dimensional schematic of the problem of interest, a cross sectional view of a
sediment delta building on a non-subsiding constant slope (−β > 0) bedrock into an ocean with a fixed relative sea-level
z = 0, is shown in Fig. 1. Initially a constant unit sediment flux q0 > 0 (area/time) is introduced upstream of the initial
SHL position x = 0. The bedrock slope is sufficient to transport this sediment flux to the ocean where it deposits to form
a small sediment wedge. Over time this sediment wedge increases in size, consisting of a submarine component advancing
into the deepening ocean and a subaerial fluvial component moving landward, up the bedrock slope, see Fig. 1. When
the downstream moving sediment flux on the bedrock encounters the upstream portion of the sediment wedge it begins to
deposit. This deposition continues down the length of the fluvial surface. At the SHL the remaining flux is deposited offshore,
contributing to the advance of the SHL. The sediment is moved and deposited over the fluvial surface by channel processes.
Through the coupling of the momentum balance with fundamental descriptions of the sediment bed-load transport it can
be argued, for a wide range of laboratory and field cases [14,15,17], that the sediment flux on the fluvial surface can be
modeled by the general non-linear form given in (2). Depending on the assumptions made and situations considered values
of the exponent in this model have been reported in the range 0 � θ ∼ 2. To close the model, the mechanism for submarine
sediment transport and deposition needs to be defined. In keeping with previous works [2,12] it is assumed that grain
movement by subaqueous avalanches is much more rapid than the movement of sediment by the fluvial processes in the
subaerial domain, and as such the offshore transport deposition can be modeled as a “sediment wedge” with a constant
angle of repose with slope α.

With the above assumption for the sediment transport, a governing equation is derived by using the unit flux defini-
tion (1) in the Exner equation [18] for the mass balance in the sediment wedge, to arrive at the diffusion equation

∂h

∂t
= ∂

∂x

(
ν∗

∣∣∣∣∂h

∂x

∣∣∣∣
θ
∂h

∂x

)
, sab(t) � x � ssh(t). (3)

The boundary conditions for this dual moving boundary problem are
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Fig. 1. Schematic of dual moving boundary problem; the shoreline (SHL) moves seaward, and the alluvial-bedrock transition (ABT) moves landward.

h|x=sab(t) = −βsab(t), (4a)

h|x=ssh(t) = 0, (4b)

ν∗
∣∣∣∣∂h

∂x

∣∣∣∣
θ
∂h

∂x

∣∣∣∣
x=sab(t)

= −q0, (4c)

ν∗
∣∣∣∣∂h

∂x

∣∣∣∣
θ
∂h

∂x

∣∣∣∣
x=ssh(t)

= −γ ssh
dssh

dt
(4d)

where the slope ratio γ = αβ/(α − β) is referred to as the effective submarine slope; the product γ ssh gives the depth
of the ocean at the delta toe. The first condition (4a) fixes the upstream vertex of the sediment wedge to the height of
the bedrock at the current position of the ABT. The second condition (4b) sets the SHL at sea-level. The extra boundary
conditions (4c) and (4d) are required to track the positions of the unknown moving boundaries, the SHL x = ssh(t) and
ABT x = sab(t). The condition (4c) is a statement of the continuity of flux at x = sab(t) and the condition (4d), analogous
to the Stefan condition in heat transfer, expresses the sediment balance at the SHL. The appropriate initial conditions are
ssh(0) = sab(0) = h(x,0) = 0.

2.2. Behavior in limit θ → ∞
At this point it is worthwhile briefly noting the behavior of the problem in (3) and (4) in the limit of a large value

for the exponent θ in the non-linear diffusion model (2). First, based on the purely depositional nature of the system, the
following behaviors that hold regardless of the value of θ are noted:

(i) the rate of deposition is finite and positive, ∂h/∂t > 0, ∀x ∈ [sab, ssh], t � 0,
(ii) the velocity of the SHL dssh/dt is finite at any SHL position ssh > 0,

(iii) the slope of the fluvial surface is bounded by −β � ∂h/∂x < 0, ∀x ∈ [sab, ssh], t � 0.

Together, through (3), (4c), and (4d) these conditions imply that for any value of θ the value of sediment unit flux decreases
monotonically between x = sab and x = ssh and is bounded by

q0 � −ν∗
∣∣∣∣∂h

∂x

∣∣∣∣
θ
∂h

∂x
� γ ssh

dssh

dt
. (5)

This in turn implies, through (iii) above, that the non-linear diffusion term ν = ν∗|∂h/∂x|θ is strictly positive and bounded.
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Further progress is made from these observations by using the fact that |∂h/∂x| = −∂h/∂x to expand the right-hand side
of (3) and arrive at

1

(θ + 1)

∂h

∂t
= ν∗

∣∣∣∣∂h

∂x

∣∣∣∣
θ
∂2h

∂x2
, sab(t) � x � ssh(t). (6)

Based on the observations made above, finite positive deposition and bounded non-linear diffusivity, it can be concluded
from (6) that in the limit θ → ∞ the curvature of the fluvial surface ∂2h/∂x2 → 0, i.e., the fluvial surface becomes linear.
As a linear fluvial surface is approached the rate of deposition ∂h/∂t becomes a function of time alone and hence, with
reference to (3), the flux term ν∗|∂h/∂x|θ ∂h/∂x needs to approach a linear function in space. So in the limit of θ → ∞ both
the fluvial surface and the flux become linear functions in space.

2.3. A dimensionless form

On defining the ratio of the fluvial to bedrock slope at the ABT to be

Rab = − 1

β

∂h

∂x

∣∣∣∣
x=sab

, (7)

which through (4c) is a constant, appropriate dimensionless variables for the problem at hand can be defined as follows

xd = x

�
, hd = h

β�
, sd = s

�
, td = tq0

�2βRab
, (8)

where the superscript d indicates a dimensionless variable, and � is a convenient length scale. In this way, dropping the
d superscript for convenience of notation, the following dimensionless version of the governing equations (3) and (4) results

∂h

∂t
= ∂

∂x

(
1

Rθ
ab

∣∣∣∣∂h

∂x

∣∣∣∣
θ
∂h

∂x

)
, sab(t) � x � ssh(t) (9)

with boundary conditions

h|x=sab(t) = −sab(t), (10a)

h|x=ssh(t) = 0, (10b)

1

Rθ
ab

∣∣∣∣∂h

∂x

∣∣∣∣
θ
∂h

∂x

∣∣∣∣
x=sab(t)

= −Rab, (10c)

1

Rθ
ab

∣∣∣∣∂h

∂x

∣∣∣∣
θ
∂h

∂x

∣∣∣∣
x=ssh(t)

= −Rshssh
dssh

dt
. (10d)

In the above

Rsh = γ

β
= α − β

α
(11)

is the ratio of the effective submarine slope to the bedrock slope and

qd = − 1

Rθ
ab

∣∣∣∣∂h

∂x

∣∣∣∣
θ
∂h

∂x
(12)

is identified as the dimensionless flux, qd = qRab/q0.
The dimensionless form (9) and (10) shows that the dual moving boundary problem related to the formation of an

ocean sediment delta is fully specified by the value of the exponent in the non-linear diffusion law θ and the dimensionless
parameters of the alluvial-bedrock slope ratio, Rab , and the shoreline slope ratio, Rsh . For future reference, note that the
value of the alluvial-bedrock slope ratio is theoretically bounded by 0 � Rab � 1 and the value of the shoreline slope ratio
is restricted to be Rsh � 1.

2.4. Similarity equations

On setting the movement of the ABT and the SHL to be respectively

sab = −2λabt
1
2 , (13a)

ssh = 2λsht
1
2 , (13b)
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introducing the similarity variable

ξ = x

2t
1
2

(14)

and scaling the sediment height by

η = h

2t
1
2

, (15)

Eqs. (9) and (10) reduce to the ordinary differential equation

1

2

d

dξ

(
1

Rθ
ab

∣∣∣∣dη

dξ

∣∣∣∣
θ dη

dξ

)
+ ξ

dη

dξ
− η = 0, −λab � ξ � λsh (16)

with

η|ξ=−λab = λab, (17a)

η|ξ=λsh = 0, (17b)

1

Rθ
ab

∣∣∣∣∂η∂ξ

∣∣∣∣
θ dη

dξ

∣∣∣∣
ξ=−λab

= −Rab, (17c)

1

Rθ
ab

∣∣∣∣∂η∂ξ

∣∣∣∣
θ dη

dξ

∣∣∣∣
ξ=λsh

= −2Rshλ
2
sh. (17d)

In application it is worth noting that since ∂η/∂ξ is always negative the term |∂η/∂ξ | can be replaced with the more
convenient term (−∂η/∂ξ).

3. Analytical and numerical solution methods

3.1. Closed form solutions for the similarity equations

Two closed form solutions of the similarity statement of the problem (16) to (17) can be identified. The first at θ = 0,
and the second in the limit θ → ∞. The case θ = 0 has been previously been investigated by Capart and co-workers [9–11]
and Lorenzo-Trueba et al. [12]. A full derivation is given in Lorenzo-Trueba et al. [12]. In brief, in this limit, the solution
of (16) satisfying (17b) and (17c) is

η(ξ) = Rab

[
λsh

(
e−ξ2 + π

1
2 (ξer f (ξ) + er f (λab))

e−λ2
sh + π

1
2 λsh(er f (λab) + er f (λsh))

)
− ξ

]
. (18)

On substituting this relationship into (17a) and (17d) the following non-linear equations in λab and λsh can be obtained

Rabe−λ2
sh

e−λ2
sh + π

1
2 λsh(er f (λab) + er f (λsh))

− 1 = 2λ2
sh Rsh, (19a)

Rabe−λ2
ab

e−λ2
sh + π

1
2 λsh(er f (λab) + er f (λsh))

= λab

λsh
(1 − Rab). (19b)

To arrive at the second closed solution in the limit θ → ∞, we first note that, by discussion above, in this limit the fluvial
surface and the sediment flux approach linear functions of space, i.e.,

lim
θ→∞η = Rab(λsh − ξ), (20)

lim
θ→∞

1

Rθ
ab

∣∣∣∣dη

dξ

∣∣∣∣
θ dη

dξ
= −Rab − ξ + λab

λsh + λab

(
2λ2

sh Rsh − Rab
)
. (21)

The profile in (20) automatically satisfies the fixed elevation condition at the SHL (17b) and by construction the sediment
flux in (21) satisfies the flux conditions in both (17c) and (17d). In order to satisfy the remaining elevation condition (17a)
the moving boundary parameters need to be constrained by the relationship

λab =
[

Rab
]
λsh. (22)
1 − Rab
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In this way, the limit values on the right-hand sides of (20) and (21) satisfy the boundary conditions but to complete the
solution they must also satisfy the governing equation (16). On substitution of the right-hand sides of (20) and (21) into
(16) it is seen, after some manipulation using (22), that the governing equation is satisfied if the condition

λsh =
√

1
2 Rab(1 − Rab)

Rsh(1 − Rab) + Rab
(23)

is met. Eqs. (22) and (23) match the solution generated by Kim and Muto [13] from geometric arguments alone. Hence,
the purely geometric solution of Kim and Muto [13] is in fact the θ → ∞ limit solution of the diffusion model given in (3)
and (4).

3.2. Numerical solution of the similarity equations

For the general case of a finite non-zero value of θ , the similarity equations (16) and (17) can also be solved numerically.
This involves an iterative approach with the following steps.

(i) For the chosen values of θ , Rab , and Rsh , initial estimates of λab and λsh are obtained from an approximate. The
geometric solution (22) and (23) can be used to get an initial guess.

(ii) Then Eq. (16) along with the boundary conditions (17b) and (17c) is solved using the bvp4c routine in Matlab [19].
(iii) The boundary conditions (17a) and (17d) are then used to update the guesses for λab and λsh; an under-relaxation of

0.25 is used.
(iv) Steps (ii) and (iii) are repeated until convergence; declared when the change in the sum of λab and λsh between

iterations falls below 10−5.

This basic approach works well for values of Rab � 0.9. To achieve convergence at larger values of θ and values of Rab
that approach unity care needs to be taken in running the solver, e.g., choosing the initial guess.

3.3. A fixed grid numerical solution

In addition to the numerical solution of the similarity equations a numerical solution of the problem in the physical
space can also be developed. Such a solution is seen as having the advantage of being able to operate in cases where
similarity does not hold. The solution used here is an adaptation of the fixed grid “enthalpy” like solution proposed by
Voller et al. [16] for modeling linear diffusion sediment transport problems with a single moving boundary.

As a proxy for the enthalpy of heat transfer solutions we define total sediment in the system as

H =
{

h + L(x), h > 0,

0, h = 0
(24)

where, taking account of the dimensionless variable definitions in (8), L is the dimensionless depth of the ocean at the delta
toe when the SHL is at x, i.e.,

L =
{

0, x < 0,

x · Rsh, x � 0.
(25)

With this definition we can write down a single Exner sediment balance equation for the full solution space as

∂ H

∂t
= ∂

∂x

(
qd), −∞ � x � ∞ (26)

where

qd = min

(
− 1

Rθ
ab

∣∣∣∣∂h

∂x

∣∣∣∣
θ
∂h

∂x
, Rab

)
(27)

and, inverting (24),

h = max(H − L,0). (28)

The boundary conditions for (26) are

lim
x→−∞ qd = Rab and lim

x→∞ h = 0 (29)

and the initial conditions are

H = h =
{

x, x < 0,

0, x � 0.
(30)
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Fig. 2. The discrete domain. In general the shoreline and the alluvial-bedrock transition positions, ssh and sab respectively, are in between two nodes of our
discrete domain.

The one-dimensional discretization illustrated in Fig. 2 is used to develop a numerical solution of Eq. (24) to (30). Note that
(i) this discretization is based on a uniform grid size x, (ii) that the origin point x = 0 is located at the interface between
two nodes, (iii) the first landward node is indexed i = 0, (iv) as we move seaward the node index increases (i = 1,2,3 . . .)

and (v) as we move landward the node index decreases (i = 0,−1,−2 . . .). In this way the location of any node is given by
x = (i − 0.5) · x.

On the domain in Fig. 2 the explicit time integration finite difference form of (24) is

Hnew
i = Hi + t

x
· (qd

i+ 1
2

− qd
i− 1

2

)
(31)

where the superscript new refers to values at the new time step, subscript i + 1/2 refers to the interface between nodes i
and i + 1, and the flux from node i to node i + 1 is approximated as

qd
i+ 1

2
= min

(
1

Rθ
ab

∣∣∣∣hi+1 − hi

x

∣∣∣∣
θ(hi − hi+1

x

)
, Rab

)
. (32)

Note since the slope |∂h/∂x| is bounded above by Rab the maximum value for the non-linear diffusivity in the system

ν = 1

Rθ
ab

∣∣∣∣hi+1 − hi

x

∣∣∣∣
θ

(33)

cannot exceed unity. Therefore positive coefficient and hence a reasonable guarantee of stability will be established if the
time and space steps are chosen such that t/x2 < 0.5. In addition to stability considerations it is also noted that to retain
accuracy the switching of the interface flux qd

i+ 1
2

, from the input value Rab to one controlled by the fluvial surface, Eq. (32),

needs to take place at a frequency larger than the simulation time step. In meeting these stability and accuracy conditions
the simulations in the current work use a space step x = 1 and a time step in the range 0.01 � t � 0.05.

At each time step solution of (31) will explicitly provide new values for the nodal values of the total sediment Hnew .
From this field new time step values for the sediment heights hnew

i are calculated from the discrete form of (28). This
provides sufficient information to recalculate the fluxes in (32) and propagate the solution of (31) forward in time.

Although not required as part of the solution process, at each time step the location of the SHL and ABT can be estimated
with the following steps. For the SHL (i > 0) the current total sediment field Hi is searched, and the unique node i where
0 < Hi < Li is located. The SHL position is then determined by interpolation through the control volume around node i, i.e.,

ssh = (i − 1)x + Hi

Li
x. (34)

For the ABT a search is made through the nodes in the order i = 0,−1,−2 . . . until the first node where the upstream flux
qd

i−1/2 is, by (32), calculated as Rab . The ABT position is then determined by interpolation between nodes i and i − 1

sab = hi − Rab(0.5 − i)x

1 − Rab
. (35)

4. Results

4.1. Similarity solution

The solution of the similarity solution is fully determined by the specification of the alluvial-bedrock slope ratio, Rab ,
and the shoreline slope ratio, Rsh . Our interest is to explore the consequence of the various solutions methods presented
under conditions that match those in the field. In this setting the foreset slope, α, is typically much greater than the
bedrock slope, β , hence through (11) it is reasonable to always assume a value Rsh = 1. In contrast the value of Rab could
vary across the full theoretical range 0 � Rab � 1; typically observed field values are in the range 0.2 � Rab � 0.8 (see
discussion in [12]). In this way the results from the similarity solution are best presented by fixing Rsh = 1 and plotting the
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Fig. 3. The solution space for the moving boundary parameters λab (ABT) and λsh (SHL).

values of the moving boundary parameters λab and λsh against 0 � Rab � 1. Fig. 3 shows these plots for the cases where
θ = 0,2,10,∞. Predictions for the finite values of θ are obtained from the ODE solution of (16) and (17). Note, however,
the θ = 0 solution obtained in this manner is indistinguishable from the values obtained from the closed form analytical
solution (19). The θ → ∞ solution is obtained from the geometric solution in (22) and (23).

Some key observation on the predicted behaviors are made.

(i) All the solutions are bounded by geometric, θ → ∞, and linear diffusion, θ = 0 models.
(ii) In the range 0 < Rab < 0.4 the predicted values of lam λab and λsh are not affected by the value of diffusive exponent θ .

(iii) There is a convergence tendency in the similarity solution predictions to the geometric solution as the value θ increases.
(iv) The value of λsh that controls the shoreline advance is only monotonic for the linear diffusion case, θ = 0. For all other

values there is a decrease in this value at high values of Rab . In the geometric model, θ → ∞, this value goes to zero
as Rab approaches 1 indicating an immobile SHL.
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Fig. 4. Comparison between enthalpy solution (open circles) and similarity solution (continuous line). The sketch on top represents the longitudinal profile
at the latest time in the graph.

(v) There is a marked sensitivity in the predictions for ABT parameter λab as larger values of Rab are approached. The
geological consequences of this feature is extensively discussed in the linear diffusion analysis recently precedent by
Lorenzo-Trueba et al. [12].

4.2. Enthalpy solution

The enthalpy method provides an accurate approximation of the similarity solution. For a range of θ and Rab values,
Figs. 4 and 5 show plots of the movement of the SHL and ABT with time. In all cases a close match between the similarity
and the enthalpy predictions is observed.

A further test of the robustness of the enthalpy solution is revealed by investigating its performance when θ approaches
a large value. Fig. 6 shows predictions of the SHL and ABT movements when θ = 200. As predicted by the theory this
enthalpy solution closely matches the geometric model predictions from (22) and (23).

5. Discussion

As noted in the introduction of this paper, depending on the situation considered and the semi-empirical sediment
transport laws used experiments [12,17] and theoretical models [12,14,15,17] report the diffusive exponent to be in the
range 0 � θ ∼ 2. Currently there is no consensus on a single correct value for use in modeling “real world systems” [17].
Experiments underscore this point. Lorenzo-Trueba et al. [12] recover accurate comparisons with experimental delta growth
models using an analytical solution based on a linear diffusion law θ = 0. In contrast, reported comparison between nu-
merical models and delta building experiments [14,15] show a best fit when 0.95 � θ � 1.25. Finally in analyzes of a delta
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Fig. 5. Further comparisons between enthalpy (open circles) solution and similarity solution (continuous line).

depositing system in a fixed domain (no ABT or SHL moving boundaries) Postma et al. [17], in fitting to a transient non-
linear diffusion model, obtain values of θ ∼ 2. In this respect a striking feature of the results in Fig. 3 is that while Rab < 0.7,
deviations between the θ = 0 and θ = 2 predictions of the moving boundary parameters λab and λsh are below 10%. Tak-
ing into account the field and experimental difficulties in accurately measuring Rab and other ambiguities in the system
such as porosity [12] these deviations may not be significant. Hence, it is reasonable to suggest that for values Rab � 0.7
the modeling detail of choosing the “correct” value of the exponent for θ in (2) will make no qualitative difference to the
boundary movement predictions and have only a marginal influence on quantitative values. It is not until we move beyond
Rab = 0.7—approaching the upper limit for field observations—that care may be required in identifying the appropriate value
for the exponent θ .

Experimental systems of delta building processes (e.g., see figures in [12]) often exhibit what on first inspection appears
to be a linear profile. This suggests that the simple geometric model (θ → ∞) should be a sound approach. The results in
Fig. 3 confirm that this is more than reasonable provided that Rab � 0.4. As we move beyond this value, however, there is
a dramatic departure between the geometric prediction for λab and λsh , and those obtained with “physically reasonable”
values for the diffusivity exponent 0 � θ ∼ 2. Hence, in terms of retaining quantitative predictions use of the geometric
model may only begin to err when higher values Rab are encountered. Nevertheless, due to the almost exact agreement
between all models at values of Rab � 0.4 and its profound simplicity, in qualitative studies of delta building processes use
of the geometric model could be recommended.

Finally we note that the excellent comparison of the enthalpy and analytical solutions across the full range of θ and Rab

values is very encouraging. As noted above the enthalpy method has the most utility in developing solutions in more than
one-dimension.
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Fig. 6. Comparison between enthalpy solution with θ = 200 (open circles) and geometric solution θ → ∞ (continuous line) for Rab = 0.9.

6. Conclusions

This paper has presented a generalized Stefan problem related to the formation of a sediment ocean delta. Ingredients
in this problem are a non-linear diffusivity related to the fluvial slope through the power law ν = ν∗|∂h/∂x|θ and the
appearance of two moving boundaries, the shoreline (SHL) and the alluvial-bedrock transition (ABT).

In terms of analysis, the key contribution has been to develop a similarity form and solution for the delta problem. In
the limit of a linear diffusion θ = 0 this solution recovers a recently derived closed form analytical solution [12]. At the
other extreme, as θ → ∞, a closed form solution that matches the solution derived from geometric arguments is obtained.

In addition to the similarity solutions a fixed grid enthalpy like numerical solution of the delta problem has been pro-
posed. Predictions from this solution have been shown to closely match those of the similarity solution. The utility of the
enthalpy solution is that it can be applied to situations where similarity will not hold (e.g., more general non-linear diffusive
terms) and to multi-dimensional cases.

The results in this paper also have some important geological consequence. First in interpreting field stratigraphy of
ocean delta deposits, there may be no need to be concerned about choosing the most appropriate value of the diffusive
exponent from the physical meaningful range 0 � θ ∼ 2. Provided the alluvial-bedrock ratio Rab < 0.7—near the upper end
of observations—the differences in SHL and ABL predicted are well within the ambiguities in the system. Further, since in
the range Rab < 0.4 there is essentially no difference between the diffusion models and the geometric model, in developing
qualitative models of the formation of sediment ocean deltas, due to its relative simplicity, the geometric model should be
favored.

Further work will look toward developing the enthalpy approach to situations outside of the scope of the similarity
solution and toward building a description of delta growth that takes into consideration additional features such as sea-
level rise and bio-geochemical processes. A model with this capability will be invaluable in developing our understanding
for costal restorations associated with the Gulf of Mexico.

Finally we note that in the current work a closed form solution for the similarity solution has only been found for
the special cases of θ = 0, and θ → ∞. Further analysis work will explore the possibility of finding solutions for finite
and positive values of θ ; perhaps by exploiting recent developments in the application of Lie symmetry methods to Stefan
problems [20].
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