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Abstract 

This paper presents results of an experimental study carried out for developing a model to predict the low-cycle fatigue life of 
bolted connection. The test specimens are cantilever beams with one end fixed by a bolted connection and the other end free. 
Each cantilever beam is subjected to a mass at the free end. Different levels of cyclic loading are applied to the beam system by 
means of a vibration shaker. Moreover, a numerical analysis is performed to study the uncertainty of the experimental model and 
to predict the lifetime scatter of the bolted connection. Monte Carlo simulations are adopted to include uncertainties by 
generating samples of the different random variables. The effects of these variables on the fatigue life of the bolted connection 
are identified. 
© 2013 The Authors. Published by Elsevier Ltd. 
Selection and peer-review under responsibility of CETIM, Direction de l'Agence de Programme. 
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1. Introduction 

Steel portal frames with bolted connections present numerous advantages. For both aesthetic and economic 
reasons, the demand of bolted connections in steel building frames has increased in recent years. However, the 
bolted connection between a beam and a column in a steel portal frame structure still raises design questions 
especially when it is subjected to dynamic loadings. 

Beam-column connections in steel portal frames are proportioned and detailed to resist flexural, axial and 
shearing actions that result as a building sways through multiple inelastic displacement cycles during strong 
vibrations. However, such inelastic actions cause fatigue damage and if they continue long enough, the cumulative 
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effects may exhaust the ductile capacity leading to fracture [1]. This indicates the importance of studying the fatigue 
damage of the beam-column connection in steel portal frame structures. 

The bolted connection has been studied for many years to investigate and understand its behaviour under 
monotonic and cyclic loading. Experimental tests for predicting the resistance of the beam-column connection have 
been published with the aim of identifying the key parameters of resistance of the connection and verifying moment 
capacity prediction under monotonic static loading [2, 3]. 

However, a number of studies have been conducted on the behaviour of bolted connections subject to cyclic 
loading. Popov et al. [4] reported that the bolted connection has good hysteretic moment rotation behaviour. In 
addition, they concluded that the bolted connection exhibits excellent energy dissipation characteristics. Shi et al. [5] 
conducted a series of eight full-scale structural steel beam-to-column bolted connection specimens which was tested 
under cyclic loads. The test results indicated that bolted connections have adequate strength, rotational stiffness and 
ductility for use in steel portal frames. 

While the research on the behaviour of bolted connection under cyclic loading has been conducted, very little 
information on the Low Cycle Fatigue (LCF) behaviour is available. The LCF causes a progressive and cumulative 
damage in the stiffness of the bolted connections [6, 7]. Bolts can loosen over time because of micro-macro slip in 
the bolt-nut and the assembled plates [8, 9]. Moreover, because of the stress concentration, cracks may appear in 
welds and bolts which were characterised by the different stages of micro and macro crack propagation and final 
fracture [10, 11]. Korol et al. [12] found that excessive yielding of the bolted connection made more prone to LCF 
and result in severe damage. 

Krawinkler et al. [13] suggested developing mathematical models that permit the prediction of LCF life for 
random deformation histories. They modeled the Manson-Coffin equation using experimental results. LCF tests 
under constant displacement were performed and the linear damage accumulation theory (Miner’s rule) was applied 
to predict the fatigue life. 

Ballio et al. [14] conducted an experimental study of LCF behaviour of steel beam and column member. Two of 
the seven type specimens were bolted connections. The study showed that S-N (Stress - Number of cycles) curve 
fatigue model using Miner’s rule, could be used to predict the LCF behaviour of bolted connections. 

Xu et al. [15] verified the inelastic cyclic behaviour of bolted T-stub connections. They carried out a test program 
on 34 isolated bolted T-stubs focusing their attention mainly on the LCF models and on the influence of the loading 
history on the effectiveness of the application of the Miner’s rule. In recent years, a variety of connection tests were 
performed by Lee et al. [16, 17] to evaluate the LCF behaviour. These research studies have utilized different types 
of connections but analysis procedures were similar. 

Moreover, the fatigue process of structural elements under service loading is stochastic in nature. Life prediction 
and reliability evaluation is still a challenging problem for researchers in structural dynamics. Earlier developments 
of fatigue damage models reported in literature focus on deterministic nature of the process whereas in practice, 
damage accumulation according Yao et al. [18] is of stochastic nature. The stochasticity nature of the damage 
accumulation results from the randomness in fatigue resistance of material as well as that of the loading process. As 
a result of this, even under constant amplitude fatigue test at any given stress level, the fatigue life can shows 
stochastic behavior [19]. 

Liu et al. [19] proposed a general methodology for stochastic fatigue life prediction under variable amplitude 
loading by combining a nonlinear fatigue damage accumulation rule and stochastic S-N curve representation 
technique. A deterministic damage accumulation rule proposed by Miner is used by Liu et al. [19]. This linear model 
defines damage as the ratio of the number of cycles of operation to the number of cycles to failure at any given stress 
level. Assuming no initial damage, the damage accumulation at single stress level is given as: n/N. 

An appropriate uncertainty modeling technique is required to account for stochasticity in both material properties 
and external loading, which should accurately represent the randomness of the input variables and their covariance 
structure [19]. 

This paper focuses on the LCF behaviour of bolted connections. The objective of this experimental study is to 
examine the effects of LCF on bolted connection behaviour and to develop a LCF life prediction model of bolted 
connection. In order to study the behaviour of bolted connection under the effect of cyclic loading, quasi static tests 
or slow cyclic tests were used for many years. In this study, dynamic tests with a vibration shaker are performed for 
considering dynamic effects of the excitation on the bolted connection behaviour. 
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A bolted connection is tested under cyclic loading conditions. A total of twelve experimental tests with three 
different levels of constant peak displacement loading are conducted. The damaged bolts for each test specimen are 
demonstrated. The results of the experimental tests are used to develop a LCF life prediction model of the tested 
bolted connection.  

The paper aim to study the uncertainty observed in the experimental results. To investigate the effect of the 
uncertainty, a simple stochastic approach which is called Monte Carlo Simulation method is adopted. The Monte 
Carlo simulation (MCS) is well adapted to include uncertainties in a deterministic finite element model by 
generating samples of the random parameter. A Monte Carlo simulation methodology is used to calculate the 
probabilistic life distribution of the beam. Finally, the probabilistic fatigue life prediction results of the Monte Carlo 
Simulations are compared with experimental data under variable loading. 

2. Manson-Coffin fatigue life model 

On the basis of the information from the S-N curve obtained experimentally, an analysis of the fatigue damage 
can be conducted. Generally, this curve can be divided into three domains [7]: oligocyclic domain, limited 
endurance domain and unlimited endurance domain, as shown in Fig. 1. 

 
Fig. 1. Typical S-N cuvre. 

The oligocyclic domain (LCF domain) corresponds to an applied constraint level (stress or strain) which is higher 
than the elastic limit of the constraint. The rupture occurs after a number of cycles less than 105 cycles, where each 
cycle produces significant damage. 

Meanwhile in the unlimited endurance domain, the constraint level is close to the constraint limit of the fatigue 
(SD). This limit of the fatigue is defined as the constraint value which will not produce damage even for an infinite 
number of cycles more than 107. The limited endurance domain is the domain intermediate between those two 
domains. In this domain, the rupture occurs in a number of cycles between 105 and 107 where the application of one 
cycle creates no harmful damage. 

In experimental LCF studies, the fatigue lives are usually expressed as a function of total or plastic strain (Strain - 
Number of cycles). If the strain at critical locations in a structural element could be measured, fatigue lives caused 
by cyclic loading might be predicted accurately, by using a Manson-Coffin fatigue model. 

However, for complex systems, it is almost impossible and impractical to make strain measurements at the 
critical locations of a connection. Instead, analogous models based on plastic connection rotation are used therein. A 
useful means of describing the LCF is expressed by Mander et al. [20] for a bolted connection. 

Thus using the well-known Manson-Coffin relationship [21], the plastic rotation may be related to the number of 
cycles Nf by the following equation: 

b
pf cN −−−−==== )( φΔ    (1) 
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where p is the plastic rotation. c and b are the parameters of fatigue which depend on both the typology and the 
mechanical properties of the considered steel element. 

The above-mentioned fatigue life relationship for this class of semi-rigid connection has been developed based on 
an analogy with the standard metal fatigue life relationships proposed by Manson-Coffin. This large fatigue based 
rotation capacity would generally well exceed the expected demands for most steel structural systems. 

In order to incorporate LCF in a numerical model, a fatigue damage index must be implemented. Miner’s rule is 
commonly employed to assess damage and failure in structural components under arbitrary loading histories [15]. It 
describes also the phenomena of the cumulative linearity of fatigue damage if another application stress or strain is 
employed. Some global parameter such as plastic rotation can be used rather than strains or stress for applying 
Miner’s rule [16]. In the case of connection subjected to many cycles of rotation, Miner’s rule is expressed by the 
following equation: 

====
i fi

i
n N

n
D     (2) 

where ni is the number of applied cycles for a given rotation level i and Nfi is the number of cycles to failure for the 
same rotation level i. Values of Dn greater than or equal to 1.0 indicate a low-cycle fatigue fracture of the member. 

3. Experimental program 

3.1. Test specimens, properties and details 

This investigation examines the behaviour of bolted connections. The system under consideration is a 0.75 m 
long straight beam with an I cross section. The beam is restrained at one end by a bolted connection and free at the 
other as shown in Fig. 2. The beam and column sections are IPE 80 and HEB 100, respectively. 
 

 

Fig. 2. Cantilever beam test set-up details (in mm) 

The nominal values of yield strength (fy) and the ultimate values of tensile strength (fu) of the sections are 
respectively (260 MPa) and (450 MPa). The elastic modulus for the sections is (E = 210 GPa). The sections were 
manufactured according to the requirements of NF EN 10025 with steel grade S275. The beam selected for the 
investigation in this study is a half-length of the IPE beam used in a two story frame. This frame was constructed at 
the Structural Dynamics Laboratory of Ecole Centrale de Lyon to examine the behavior of the frame with bolted 
connections. The portal frame model had a width of 1.6 m and a height of 2.42 m. The beams of the portal frame 
were a 1.4 m long straight beam with an I cross section. The beam to column connections were bolted connections 
as shown in Fig. 3. The two-story steel portal frame were conducted to verify the validity of a model developed by 
Saranik et al. [22] and to prove the efficacy of their nonlinear dynamic analysis techniques. The model developed by 
Saranik et al. depends on parameters of Manson-Coffin for the prediction of the lifetime and resistance of the two 
story frame under repeated loading. 

A total of twelve connection tests are performed. Four standard bolts (M10-1.25 × 35 mm Grade 6.8 DIN 975 
carbon steel) are used for each connection of the beam as illustrated in Fig. 3. The general layout of the bolted 
connection is shown in Fig. 4, with the thickness (tp = 10 mm) and dimensions (dp = 120 mm × bp = 76 mm) of the 
end plate. The diameter of the hole for M10 bolts is 11 mm. The end plate material is S275 steel grade and the 
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elastic modulus for the plate material is (E = 210 GPa). Sketches of the test specimen are shown in Figs. 2 and 3. 
To evaluate the initial stiffness, the equations of Eurocode 3 are used [23]. Based on the parameters of the 

connection (see Fig. 3), the initial stiffness is (k = 5.6 × 105 N.m/rad). 
 

 

Fig. 3. (a) details of the bolted connection (in mm); (b) section I-I. 

3.2. Experimental setup 

A typical test set up consisted of a beam, which is connected to a stub-column by means of a bolted connection. 
The stub-column section is attached to a shaker. The basic configuration of a typical test set up, a test specimen, and 
the instrumentations are shown in Fig. 4. Two beams are used for the tests to maintain the balance of the shaker 
system when the harmonic excitation is applied. 

 

 

Fig. 4. Vibration Shaker System. 

In order to reveal the effect of the moment on the connection, an additional mass of 15 kg is added at the 
extremity of one of the beams. Since this experiment represents the beam-column connection model on a small 
scale, the excitation parameter for the S-N curve is set as the rotation at the connection. 

The cantilever beam system is excited with an electromagnetic shaker. The beam is supported by a vibration 
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shaker and excited with a sinusoidal excitation (see Fig. 4). 
The experiment is performed by applying a vertical harmonic excitation and by measuring ± ü1 and ± ü2 as the 

responses in the base and at the extremity of the beam respectively. In order to vibrate the beam at the first vibration 
mode, the excitation frequency is equal to the first natural frequency of the beam system. 

3.3. Equipment and instrumentations 

The test assembly is instrumented with two accelerometers to measure the specimen’s response. The 
accelerometers, with sensitivities around (100 mV/g), are mounted on the beam using a super glue and a duct tape. 
They collect the response at the free end of the beam and at the base. 

The instrumentations are connected to an oscilloscope to observe the measured accelerations. They are also 
connected to a data acquisition system to record the measured data. Moreover, a hammer-shock is used to determine 
the natural frequency of the cantilever beam system. Fig. 5 illustrates the layout of instrumentation on the test 
specimens. 

 
 

²  

Fig. 5. The specimen with the vibration testing shaker. 

A torque wrench is used to tighten the 4 bolts for each bolted connection to the same level for all tests, ensuring 
consistency in the boundary conditions. The bolts are tightened to the required tightening torque (T = 39 N.m). The 
tightening torque can be calculated, using the friction coefficients between threads and between bearing surfaces, by 
the following equation [24, 25]: 

)..( 2125830160 μρμ mN dPFT ++++++++====     (3) 

where FN is the clamping force. P is the thread pitch, d2 is the pitch diameter of bolt and m is the effective contact 
radius between the nut and joint surface. 1 and 2 are friction coefficients. 

Properties related to the tightening characteristics such as the nut factors m and the friction coefficients 1 and 1 

depend on the conditions of threads tolerance and manufacture, surface roughness and lubrication. The tightening 
characteristics can be obtained or estimated by the experiments representing those conditions in the actual bolted 
connection. 

3.4. Test procedure 

Each test commence with the assembly of the joint. The specimen is placed in position in the testing machine and 
the bolts are then assembled as shown in Fig. 5. Each bolt is then tightened to the required torque. During the test, 
manual control is exercised over: (1) the excitation frequency, in order to follow the natural frequency; (2) the 



360   M. Saranik et al.  /  Procedia Engineering   66  ( 2013 )  354 – 368 

excitation amplitude, in order to keep the amplitude of the acceleration ü2 always constant. 
Due to repeated excitation, a loosening phenomenon reduces the clamping force of the bolts and subsequently the 

cyclic loading can cause sliding in the assembled elements, which can change the stress distribution and gradually 
produce fatigue damage. For the first result, the S-N curve can be obtained by relating the number of cycles to 
rupture and the level of the applied rotation. Meanwhile, the value of the applied rotation can be calculated through 
the information of ü1 and ü2. 

Each specimen is tested until the ultimate connection failure occurred. Then, the time at failure will be recorded 
and the level of rotation used for this test as well. These results will be used to determine the coordinates of a point 
in the S-N curve. 

4. Dynamic analysis of the system 

In this part, the equation of motion of the beam system is developed using the Virtual Work Method. The system 
has only one degree of freedom, and its motion can be represented by only one coordinate. It is the vertical 
displacement  of the mass M at the end, which is defined as positive in the upward direction. The velocity  and the 
acceleration  will also be positive upwards at that point. The inertia, stiffness and the forces acting are shown in 
Fig. 6-a. The total work done by the forces (cf. Fig. 6-b) acting on the corresponding virtual displacements is, by the 
principle of virtual work, equal to zero: 

)()()()(
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ηδηηδη
ηδ

tMdx
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    (4) 

where m = A is the mass of the beam in (kg/m), A is the area of the cross section and  is the density of the material 
of which the beam is made. l is the effective length of the beam. M1 is the moment at the base and it can be 
calculated by the following equation: 
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Fig. 6. (a) A cantilever beam model of the test system (b) Deflected shape: Application of the Virtual Work principle. 

By dividing Eq. (4) by the virtual displacement, and simplifying, the equation of motion can be given by the 
following equation: 
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It is seen that the above process has lumped the two mass (M) and (ml) into a single effective mass of (
). Similarly, the stiffness has changed to ( ). The equation of motion can be written as follows:    

0====++++ )()( tMtK ee ηη     (7) 

Based on the method above, the natural frequency of the system is: 
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4.1. Vibration of the system with a base excitation 

The system discussed in Section 4, and illustrated in Fig. 6-a, was excited by applying a motion to the base, 
which was previously assumed semi-fixed. This important case is illustrated in Fig. 7. A translational system is 
shown, but a rotational system is also possible. Lumping may be required to reduce the system to this simplified 
form. 

In Fig. 7, the absolute acceleration and the absolute displacement of the base are ü1 and u1, the displacement and 
the acceleration of the mass relative to the base are  and . ü2 and u2 are the absolute acceleration and the absolute 
displacement of the mass in space. 

In the free body diagram, there are three forces acting on the mass as discussed previously, the equation of 
motion can be written as follows: 

0
2

1 ====++++++++++++

u

eee tuMtCtK ))(()()( ηηη     (9) 

The same equation can be written as follows: 

1uMtMtCtK eeee −−−−====++++++++ )()()( ηηη     (10) 

 

Fig. 7. Base-excited cantilever beam system with bolted connection. 

It should be noted that  is a relative, not an absolute, coordinate, and that the inertia force acting on (m) is 
(Meü2), not (Me ). From Eq. (10), the force applied to the system is seen to be equal to (F = −Meü1). This force is a 
sinusoidal one (F = −F0 sin( t)) where  is the frequency of the excitation signal generated by the shaker.  

The damping coefficient can be calculated by the following equation: 
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ξω02 ee MC ====     (11) 

where  is the damping ratio and a value of 3% is adopted in the study. 
The frequency response function of the system given in Eq. (10) can be written as: 
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This complex-valued frequency response function can further be written as a magnitude as: 
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where | 0| is the maximum relative displacement and |F0 | is the maximum force. 

5. Fatigue damage analysis of the system 

In this numerical simulation, harmonic excitation is applied in order to determine the lifetime of the system when 
fatigue damage reaches the critical value 1. The parameters of the system are given in Table 1. 

A direct integration can be carried out, considering the stiffness degradation of the connection due to the fatigue 
damage. Since the excitation parameters which create the fatigue damage are the plastic rotation at the connection, 
the calculation of the plastic rotation for each cycle can be performed. 

On the basis of the information of the S-N curve, the plastic rotation obtained for a cycle can be used to calculate 
the fatigue damage for one cycle. For the next cycles, the new value of the connection stiffness is applied as a 
function of the previous fatigue damage. Then the iteration loops are constructed as illustrated in Fig. 8. 

 

     Table 1. Parameters of cantilever beam system with bolted connection. 

Parameter Value 

Effective length of the beam l 0.92 m 

Section area of beam A 7.64× 10 4 m2 

Inertia of beam Ib 80.1× 10 8 m4 

Effective mass of the system Me 17.4 kg 

Young’s modulus E 2.1 × 1011 N/m2 

Density  7800 kg/m3 

Stiffness of bolted connection k 5.6 × 105 Nm/rad 

Damping ratio  3% 

 
 
The equation of motion with stiffness degradation is: 

1u-M(D(t))C eeee ====++++++++ ηηη     (14) 
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Fig. 8. Flowchart of the simulation of a structure’s lifetime 

Accordingly, the magnitude of the frequency response function for the system can be determined by the 
following equation: 

2
e

2
e

2
e )(C)M(D(t))(K

1
D(t))( ,

++++−−−−
====     (15) 

In this simulation, the method of calculating the lifetime takes into account the degradation of stiffness. The 
simulations are performed for three excitation forces at a frequency that is equal to the first natural frequency of the 
system fn. Due to connection stiffness degradation, the first natural frequency can decrease from initial value fn = 31 
Hz to a final value . 

6. Monte Carlo Simulation Methodology 

In literature several methods have been developed to take into account uncertainties in the response of complex 
mechanical systems such as Monte-Carlo simulation methodology. Then, a credible prediction of responses can be 
obtained. 

In this study, a Monte-Carlo simulation methodology is used to calculate the probabilistic fatigue life distribution 
of the system. The flowchart presented in Fig. 8 is used to calculate the fatigue damage and the fatigue life. 

Various uncertainties from material properties, structure geometry, applied loading and mechanical properties are 
included in the proposed calculation and used to study the uncertainty effects in fatigue life predictions. The basic 
deterministic parameters used in all cases are given in Table 1. 

For a chosen random variable Y, the random input values for MCS are generated as follows [7]: 

)(
~

ζδYYY ++++==== 1     (16) 

where  is a Gaussian random variable,  and Y are respectively the mean value and the variation coefficient of the 
random variable Y . 

Table 2 presents the values of variation coefficients of parameters considered in MCS calculations. 
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Table 2. Variation coefficients of parameters. 

Parameter Value 

Maximum applied displacement u01 5% 

Stiffness of bolted connection k 5% 

Young’s modulus E  3% 

Effective mass of the system Me 1% 

Damping ratio  5% 

 
For Monte Carlo simulations, the number of samples is taken equal to 1000. Finally, a comparison of the 

predicted fatigue lives of the beam system can be obtained via experimental measures and via Monte-Carlo 
simulations. 

7. Results and discussion 

The experimental results demonstrated that two failure modes can be found in bolted connections subject to 
cyclic loading: self-loosening and fatigue failure which can be identified by a crack or a fracture of the bolt. Self-
loosening happens at beginning and a backing off of the nut is observed. This phenomenon is a gradual loss of the 
clamping force in bolted connections under cyclic external loading. It can result in a decrease in the structural 
stiffness or the separation of clamped members. The self-loosening process of a bolted joint consists of two distinct 
stages. The first one occurs when there is no relative rotation between the nut and the bolt, and it is very difficult to 
observe with visual inspection. The second one is characterized by the backing off of the nut which is observed 
clearly in these tests. 

For all tests, the maximum displacements 1 and 2 of the base and the tip mass are calculated from the recorded 
accelerations ü1 and ü2. Follows, the total joint rotation is given by: 

lT
21 ΔΔ

φ
−−−−

====     (17) 

Then, the elastic rotation due to beam deformation ( be) and the elastic rotation due to connection deformation 
( ce) are calculated as follows: 
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The plastic rotation of the connection ( cp) can be calculated as follows: 
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Fig. 9 presents the fatigue life (2Nf) versus the plastic rotation of the bolted connection using the proposed 
approach. The results of the twelve experiments, with three different levels of constant peak displacement loading, 
are also shown in Fig. 9. The range of the number of cycles to rupture of the S-N curve extends between 4 × 103 and 
1 × 105 cycles where each point in Fig. 9 corresponds to the level of plastic rotation. After fitting, the proposed LCF 
life prediction model of bolted connection can be defined as: 
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3000220 −−−−==== )(. pfN φΔ    (20) 

where the parameters of fatigue are c = 0.00022 and b = 3. This equation can be employed to determine the 
equivalent cycle numbers to failure for the bolted connection. 

Fig. 10 presents the experimental test results for the bolted connection and the results of numerical analyses 
performed by the proposed approach. This figure demonstrates the uncertainty in fatigue parameters identified 
experimentally. The probabilistic fatigue life prediction results of the Monte Carlo Simulations are compared with 
experimental data. After fitting, the parameters of fatigue for the probabilistic LCF life prediction model of bolted 
connection are c = 0.00035 and b = 2.91. 

 

Fig. 9. Number of cycles to failure versus rotation of the connection according experimental test results : Experimental LCF life model. 

      

Fig. 10. Experimental and probabilistic LCF life prediction model. 
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From numerical results, the first natural frequency reduction depending on number of cycles can be estimated as 
shown in Fig. 11 and accordingly the fatigue life dispersion can be observed. 

The MCS results demonstrate also the initial stiffness degradation of the bolted connection (see Fig. 12). This 
degradation is a direct result of the damage in the connection components. The uncertainty in the parameters of the 
bolted connection causes dispersion in mechanical and dynamic properties of the connection like the initial stiffness 
and the natural frequency. These uncertainties provide dispersion in the number of cycles to rupture for a bolted 
connection that can be estimated numerically by the proposed approach. 

Finally, the results presented in this study demonstrate that the numerical analysis proposed in this study can be 
used to estimate the uncertainty of an experimental LCF life prediction model and to predict the lifetime scatter of a 
bolted connection. Monte Carlo simulations can be adopted to include uncertainties by generating samples of the 
different random variables. Then, the effects of these variables on the fatigue life of the bolted connection can be 
evaluated. 

 

 

Fig. 11. Uncertainty in the degradation of the first natural frequency fn1 (Hz) versus the number of cycles under the second level of rotation 
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Fig. 12. Uncertainty in the degradation of the initial stiffness k (N.m/rad) versus the damage D under the second level of rotation. 

 

8. Conclusion 

In this paper, a LCF life prediction model of bolted connection was developed using 12 experimental tests. The 
experimental tests were performed on a cantilever beam with a tip mass. The beam system was excited by means of 
a vibration shaker. Two accelerometers were used to measure the vibration of the beam. These measurements were 
employed to compute the rotation of the beam system and the number of cycles to failure. 

The experimental results showed that due to repeated excitation, a loosening phenomenon can reduce the 
clamping force of the bolts and then the cyclic loading causes sliding in the assembled elements which change the 
stress distribution and gradually produce fatigue damage in the bolted connection. The process of fatigue failure can 
be characterized also by the initiation of a small crack in the threaded part of the bolt, by the crack propagation and 
by the final failure which occurs very rapidly once the advancing crack has reached a critical size. 

The information provided by the S-N curve and the proposed model can be used by engineers for the prediction 
of the lifetime of steel portal frames under repeated loadings. It is an effective tool for evaluating the number of 
cycles to failure for a considered rotation level. Additionally, the experimental data can facilitate the development 
and verification of design models for bolted connections. It can provide data on the fatigue damage characteristics of 
these connections. The effects of these variables on the fatigue life of the bolted connection were identified and the 
probabilistic life prediction model of the beam was identified by a Monte Carlo simulation methodology. The 
probabilistic fatigue life prediction results of the Monte Carlo Simulations are compared with experimental data 
under variable loading. 
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