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1. Introduction prediction of their growth is considered in Cross and Coniglio
The incomplete mixing of fluids of different temperatures, where
in the mixing zone, temperatures vary randomly both temporally
and spatially is known as thermal striping. Damage induced by the
phenomenon of thermal striping can occur in components of pres-
surised water reactors and fast reactors in nuclear industry. The ef-
fect of thermal striping on edge cracks in solids, has been modelled
in Jones (1997, 2003, 2005, 2006), Jones and Lewis (1994), Movchan
and Jones (2006). Stress intensity factors (SIF) for edge cracks in
thermoelastic solids and, in particular, their behaviour with varia-
tion of crack depth, has been determined by, amongst other meth-
ods, the weight function method (Bueckner, 1970).

The model of thermal striping for a half plane with an edge
crack (Movchan and Jones, 2006), was extended in Nieves et al.
(2011) to the case when the body contained several small defects
of arbitrary shape. An approximation of the Mode I SIF for the edge
crack was derived and, for the situation when these defects were
small circular voids, numerical examples were also given. These
calculations showed the effect on the SIF when the radii of these
voids and their distances from the crack was varied.

There are a number of situations in engineering where the pres-
ence of micro-cracks can influence the growth of macro defects e.g.
Tzimas and Papadimitrioua (2001), Lavrov et al. (2002) and Ke
et al. (2006). The fatigue of solids and initiation of cracks is an
important consideration in the welding of joints which are sub-
jected to cyclic thermal loads (Thevenet et al., 2008). Identification
of the conditions when cracks arise in welds with impurities and
ll rights reserved.

.
s).
(2008) and Otegui et al. (1989). Micro-cracking in composite mate-
rials exposed to cyclic temperature was investigated in Ju et al.
(2007), and it was found that high temperatures can increase the
likelihood of micro-cracks occurring within the composite.

The application of the asymptotic formula for the SIF in Nieves et al.
(2011) relies on the dipole matrices for each void (Movchan et al.,
2002). The complex potential approach of Muskhelishvili (1953) can
be used to construct these matrices, for voids of various shapes. It is
possible to construct the dipole matrix for a micro-crack of finite length
(Valentini et al., 1999). In Nieves et al. (2011), circular shaped voids and
their effect on the SIF were modelled. In Movchan and Jones (2006) the
variation of the SIF with crack depth has been investigated. Here, we
use the dipole matrix for a micro-crack to investigate the effect on
the SIF variation for an edge crack in a half plane.

The structure of the paper is as follows: in Section 2, we give the def-
inition of the current problem and discuss the results of Nieves et al.
(2011). The focus of Section 3 is the introduction of the model problems
used in the construction of the asymptotic approximation for the Mode
I SIF in a half plane with a single edge crack and micro-cracks. An
outline of the proof of this approximation is provided in Section 4. In
Section 5, we present numerical illustrations to show the effect of
two micro-cracks on the SIF for a single edge-cracked half plane under
thermal striping loading. Finally, in Section 6, we give some general
conclusions of the results presented here and in Nieves et al. (2011).

2. The asymptotic model of the SIF for the thermoelastic
problem

Here, we outline the existing asymptotic model for the thermal
striping problem in a half plane (Movchan and Jones, 2006). In
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Fig. 1. A half plane with an edge crack of finite length and micro-cracks xðjÞe .We
consider a symmetric Mode I loading configuration.
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particular we recall a theorem (Nieves et al., 2011) which shows
how the SIF maybe calculated from knowledge of the dipole matrix
for any void present.

Let R2
þ ¼ fx 2 R2jx2 > 0g be the upper half plane with boundary

‘ ¼ fx : x2 ¼ 0; x1 2 Rg. Inside this domain we have the edge crack
Ma ¼ Mþ

a [M�
a with M�

a ¼ fx 2 R2
þjx1 ¼ �0;0 6 x2 6 a; a > 0g. Situ-

ated away from the boundary of the edge-cracked half plane, at a
distance of Oð1Þ, we also have several micro-cracks xðjÞe ¼ fx :

x ¼ ejx �OðjÞjðcosðhjÞ; sinðhjÞÞT ; jx� OðjÞj 6 bj;�p < hj 6 pg. Here, e
is a small positive parameter, OðjÞ is the centre of the jth micro-crack
and ebj is the half crack length. We make the assumptions that the
minimum distance between each centre is Oð1Þ, and the geometry
of R2

þ n ð[N
j¼1x

ðjÞ
e [MaÞ is symmetric with respect to the line x1 ¼ 0

(see Fig. 1).
The scaled variable nj ¼ e�1ðx� OðjÞÞ is also used so that we can

consider problems posed outside of the scaled cracks xðjÞ ¼ fnj :

enj þ OðjÞ 2 xðjÞe g � R2.
Let k and l be the Lamé elastic moduli. Using Hooke’s matrix

C ¼
kþ 2l k 0

k kþ 2l 0
0 0 2l

0
B@

1
CA

and the linear matrix function

DðnÞ ¼ n1 0 2�1=2n2

0 n2 2�1=2n1

 !
; ð2:1Þ

we can define the Lamé operator of two-dimensional elasticity as

LðrxÞ :¼ DðrxÞCDðrxÞT

and the corresponding differential operator of tractions
rðnÞðrxÞ ¼ ðrðnÞ1 ðrxÞ;rðnÞ2 ðrxÞÞT by

rðnÞðrxÞ :¼ DðnÞCDðrxÞT ; ð2:2Þ

where n ¼ ðn1;n2ÞT is the unit normal to the boundary under
consideration.

By C we denote the fundamental solution of �LðrxÞ:

Cðx; yÞ ¼ q
�j log jx� yj2 þ 2ðx1�y1Þ2

jx�yj2
2ðx1�y1Þðx2�y2Þ

jx�yj2

2ðx1�y1Þðx2�y2Þ
jx�yj2

�j log jx� yj2 þ 2ðx2�y2Þ2

jx�yj2

0
B@

1
CA;

where

q ¼ kþ l
8plðkþ 2lÞ ; j ¼ 3� 4m; m ¼ k

2ðkþ lÞ : ð2:3Þ

Let ue;t and T be solutions of the uncoupled thermoelastic problem:
LðrxÞue;tðxÞ ¼ crxTðx; tÞ; x 2 R2
þ n ð[N

j¼1x
ðjÞ
e [MaÞ;

rðnÞðrxÞue;tðxÞ ¼ cnTðx; tÞ; x 2 @ðR2
þ n ð[N

j¼1x
ðjÞ
e [MaÞÞ;

ue;tðxÞ ! 0 as jxj ! 1;

9>>=
>>;

ð2:4Þ

,DxTðx; tÞ ¼ @T
@t ðx; tÞ; x 2 R2

þ nMa; t > 0;
Tðx; tÞ ¼ uðtÞ; x2 ¼ 0; x1 2 R; t > 0;
rxTðx; tÞ ! 0 as x2 !1; t > 0;

9>=
>; ð2:5Þ

where 0 is the zero vector in R2;, is the thermal diffusivity,
c ¼ að3kþ 2lÞ, and a is the linear thermal expansion coefficient
of the material occupying R2

þ n ð[N
j¼1x

ðjÞ
e [MaÞ. In (2.4) t is treated

as a parameter.
In Nieves et al. (2011), asymptotic approximations are obtained

for the SIF Ke;tðaÞ and ue;t for the problem (2.4) and (2.5), under the
assumptions that:

(i) xðjÞe ; j ¼ 1; . . . ;N, were voids, which are defined as the limit
case of soft inclusions whose thermal diffusivity is the same
as the diffusivity of the ambient medium,

(ii) u is periodic in time and that T satisfies the conditions of
ideal contact across the crack Ma.

As the main result of Nieves et al. (2011), we have:

Theorem. The formal asymptotic approximation of the Mode I SIF
Ke;tðaÞ associated with the problems (2.4) and (2.5) is given by

Ke;tðaÞ � KtðaÞ þ e2 PN
k¼1
ðDðrxÞT wðxÞÞT jx¼OðkÞM

ðkÞAðkÞ
t ; ð2:6Þ

where

AðkÞ
t ¼

cTðOðkÞ; tÞ
2ðkþ lÞ

1
1
0

0
B@

1
CA� DðrxÞT VtðxÞjx¼OðkÞ ;

Vt is the solution of the unperturbed problem (2.4) and (2.5) (without
defects) in the half plane with the edge crack having SIF Kt ;w is the
weight function in this domain and MðjÞ is the dipole matrix for the
scaled defect.

In order to apply this theory to the current settings, we replace
(i), above, with the assumption that the conditions of ideal contact
across the micro-cracks xðjÞe are also satisfied.

The SIF Ke;t is obtained using the weight function method (Bue-
ckner, 1970). That is, for a loaded edge crack in a free elastic half
plane R2

þ, the Mode I SIF KI is given by

KIðaÞ ¼ 2
Z a

0
ðrðnÞðrxÞuðxÞ �wðxÞÞjx1¼0þ dx2;

where w is the weight function for the half plane with edge crack, u
is the displacement field produced by this loading and x1 ¼ 0þ de-
notes the trace of the integrand being taken on the right-hand side
of the crack where the normal to this surface is n ¼ ð�1;0ÞT .

3. Model fields

Here we give model problems that were used in Nieves et al.
(2011), to derive the asymptotic approximation for the Mode I SIF Ke;t .

3.1. Solution of the uncoupled thermoelastic problem in the half plane
with the edge crack

By VtðxÞwe mean the solution of the unperturbed problem (2.4)
(without the micro-cracks xðjÞe ), with T as the solution of (2.5). The
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SIF for the edge crack Ma corresponding to the field Vt will be
denoted by KtðaÞ.

Consider a half plane containing an edge crack, which is sub-
jected to a sinusoidal thermal striping load, when

uðtÞ ¼ T0eixt ; ð3:1Þ

where T0 is a constant and x is the angular frequency. Then, the
temperature field T admits the form

Tðx; tÞ ¼ T0e�ðiþ1Þ
ffiffiffi
x
2,

p
x2þixt:

The vector function Vt can be represented by

VtðxÞ ¼ utðxÞ þ UtðxÞ;

where the solution utðxÞ ¼ ðuð1Þt ðxÞ;u
ð2Þ
t ðxÞÞ

T satisfies half plane
problem (2.4) (without edge crack) and has the components

uð1Þt ðxÞ ¼ 0;

uð2Þt ðxÞ ¼ �
T0

2

ffiffiffiffiffiffi
2,
x

r
c

kþ 2l
ð1� iÞe�ðiþ1Þ

ffiffiffi
x
2,

p
x2þixt :

The vector function UtðxÞ then solves

LðrxÞUtðxÞ ¼ 0; x 2 R2
þ nMa;

rðnÞðrxÞUtðxÞ ¼ 0; x 2 ‘;

rðnÞðrxÞUtðxÞ ¼
2lc

kþ 2l
Tðx; tÞn; x 2 M�

a ;

UtðxÞ ! 0 as jxj ! 1:

In the examples of Section 5, we use the crack tip asymptotics (Fett
and Munz, 1997) for Ut where the SIF for this problem is given by

KtðaÞ ¼ �
4lc

kþ 2l

Z a

0
w1ð0þ; x2ÞTðx; tÞjx1¼0þdx2: ð3:2Þ
3.2. Regular part of Neumann’s tensor in a half plane with an edge
crack

Let H be the regular part of the Neumann’s tensor in R2
þ nMa

which is a solution of

LðrxÞHðx; yÞ ¼ O2; x 2 R2
þ nMa;

rðnÞðrxÞHðx; yÞ ¼ rðnÞðrxÞCðx; yÞ; x 2 ‘ [Mþ
a [M�

a ;

Hðx; yÞ ¼ Oðj log jxjjÞ as jxj ! 1

for a fixed y 2 R2
þ nMa, and the components of H are bounded near

the crack tip. Here I2 and O2 are the 2� 2 identity and null matrices,
respectively.

3.3. Dipole fields for the scaled cracks xðjÞ; j ¼ 1; . . . ;N

Let WðjÞ be a 2� 3 matrix satisfying

Lðrnj
ÞWðjÞðnjÞ ¼ O2�3; nj 2 R2 nxðjÞ;

rðnÞðrnj
ÞWðjÞðnjÞ ¼ DðnÞC; nj 2 @xðjÞ; ð3:3Þ

WðjÞðnjÞ ¼ Oðjnjj
�1Þ as jnjj ! 1; ð3:4Þ

with O2�3 being the 2� 3 null matrix. Here, (3.4) is a consequence
of the balance conditionsZ
@xðjÞ

rðnÞðrnj
ÞWðjÞðnjÞdSnj

¼ O2�3;
Z
@xðjÞ

nj1r
ðnÞ
2 ðrnj

ÞWðj;pÞðnjÞ � nj2r
ðnÞ
1 ðrnj

ÞWðj;pÞðnjÞ
n o

dSnj
¼ 0; p ¼ 1;2;3:

The columns Wðj;iÞ; j ¼ 1;2;3 have the interpretation as the dipole
fields for the crack xðjÞ.

3.3.1. The dipole matrix for a finite crack
The dipole matrix for the crack xðjÞ with scaled half length bj

and at angle of hj with the horizontal axis, is denoted by
MðjÞ ¼ ½MðjÞ

ik �
3
i;k¼1. From Valentini et al. (1999), this matrix has the

representation:

MðjÞ ¼ �
b2

j pðkþ 2lÞ
4l

Nj þHj þ Rj Nj �Hj Kj

Nj �Hj Nj þHj � Rj Kj

Kj Kj 2Hj

0
B@

1
CA;
ð3:5Þ

where

Hj¼
2l2

kþl
; Nj¼2ðkþlÞ; Rj¼�4lcosð2hjÞ; Kj¼�2

ffiffiffi
2
p

lsinð2hjÞ:

It is clear that (3.5) is symmetric and in Movchan et al. (2002) it
is shown that this matrix is negative definite and characterises the
increment in energy in the infinite plane when perturbed by a
crack at the origin. It can also be used to describe the far-field
behaviour of the matrix WðjÞ in (3.4):

Lemma 1. For jnjj 	 1, the matrix WðjÞ admits the asymptotic
representation
WðjÞðnjÞ ¼ �ðDðrnj

ÞTCðnj;0ÞÞ
TMðjÞ þ Oðjnjj

�2Þ:
3.4. The weight function for a half plane with an edge crack

In accordance with Bueckner (1970) and Nieves et al. (2011),
when evaluating the SIF Ke;tðaÞ, we use the weight function
w ¼ ðw1;w2ÞT for the edge-cracked half plane which satisfies

LðrxÞwðxÞ ¼ 0; x 2 R2
þ nMa;

rðnÞðrxÞwðxÞ ¼ 0; x 2 ‘ [Mþ
a [M�

a ; ð3:6Þ

wðxÞ ! 0 as jxj ! 1; ð3:7Þ

wðxÞ ¼ Oðjx� aj�1=2Þ ; as jx� aj ! 0;

where a is the position of the crack tip. Since we consider a sym-
metric Mode I configuration, we only require the first component
of w. An approximation of this component on the crack Ma (see
Hartranft and Sih, 1973) is given by

w1ð0þ; x2Þ ¼
ð1þ f x2=að ÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � x2
2

q ffiffiffiffi
a
p

r
; ð3:8Þ

where

f ðyÞ ¼ ð1� y2Þð0:2945� 0:3912y2 þ 0:7685y4 � 0:9942y6

þ 0:5094y8Þ:
3.5. Neumann’s tensor for the half plane

The Neumann’s tensor G for the half plane is a solution of

LðrxÞGðx; yÞ þ dðx� yÞI2 ¼ O2; x 2 R2
þ;

rðnÞðrxÞGðx; yÞ ¼ O2; for x2 ¼ 0;



Table 1
Material properties of stainless steel at � 500
C.

Thermal conductivity 20.3 W=ð
C m)
Specific heat 570 J=ð
C kg)
Youngs modulus 163 GPa
Poisson’s ratio 0.3
Coefficient of linear expansion 2:0� 10�5=ð
CÞ
Mass density 7760 kg/ m3
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where y 2 R2
þ, and G has the logarithmic growth at infinity. This

tensor can be written as

Gðx; yÞ ¼ Cðx; yÞ � Hðx; yÞ; ð3:9Þ

where Hðx; yÞ ¼ ½Hijðx; yÞ�2i;j¼1 is the regular part, and its components
are (see Sheremet, 2002):

H11ðx; yÞ ¼ �2q � jþ 2l2

ðkþ lÞ2

" #
log jx� yj þ ðx1 � y1Þ

2

jx� yj2

(

� 2l
kþ l

ðx2 þ y2Þ
2

jx� yj2
� 2x2y2

jx� yj2
þ 4x2y2ðx2 þ y2Þ

2

jx� yj4

)
;

H21ðx; yÞ ¼ 2q �j
ðx1 � y1Þðx2 � y2Þ

jx� yj2
þ 4x2y2ðx2 þ y2Þðx1 � y1Þ

jx� yj4

(

þ2lðkþ 2lÞ
ðkþ lÞ2

arctan
x2 þ y2

x1 � y1

� �)
;

H12ðx; yÞ ¼ 2q �j
ðx1 � y1Þðx2 � y2Þ

jx� yj2
� 4x2y2ðx2 þ y2Þðx1 � y1Þ

jx� yj4

(

�2lðkþ 2lÞ
ðkþ lÞ2

arctan
x2 þ y2

x1 � y1

� �)
;

H22ðx; yÞ ¼ �2q � jþ 2l2

ðkþ lÞ2

" #
log jx� yj þ j

x2
2 þ y2

2

jx� yj2

(

þ 4x2y2

jx� yj2
ðx2 þ y2Þ

2

jx� yj2
þ l

kþ l

" #)
;

ð3:10Þ
where y ¼ ðy1;�y2Þ

T is the image point which lies outside R2
þ.

4. Asymptotic algorithm for K e;t

4.1. The thermoelastic field in R2
þ nð[N

j¼1x
ðjÞ
e [MaÞ

The method of obtaining the approximation for Ke;t , relies on
the approximation of the thermoelastic field ue;t contained in the
next lemma:

Lemma 2. The formal asymptotic approximation of the displacement
field ue;t of the thermoelastic problem (2.4) and (2.5) is given by

ue;tðxÞ � VtðxÞ þ e
XN

k¼1

fWðkÞðnkÞ

� eðDðrzÞTHðx; zÞTÞT jz¼OðkÞM
ðkÞgAðkÞ

t ; ð4:1Þ

where

AðkÞ
t ¼

cTðOðkÞ; tÞ
2ðkþ lÞ

1
1
0

0
B@

1
CA� DðrxÞT VtðxÞjx¼OðkÞ : ð4:2Þ

The detailed proof of this can be found in Section 4 of Nieves
et al., 2011.
4.2. The SIF Ke;t

The formal argument leading to (2.6) uses the weight function
method and begins with identifying those terms in (4.1) which
contribute to the approximation of the SIF Ke;t for the edge crack
in the half plane with micro-cracks, i.e. we look for asymptotics
of Oð

ffiffiffi
r
p
Þ as we allow x! a. In this case, the only fields in (4.1)

which produce this asymptotic behaviour are

VtðxÞ and PðkÞðxÞ ¼ �ðDðrzÞTHðx; zÞTÞT jz¼OðkÞM
ðkÞAðkÞ

t ;

k ¼ 1; . . . ;N:
The field Vt produces the unperturbed SIF KtðaÞ for the edge crack in
the half plane, and let the SIF produced by PðiÞ be KðiÞðaÞ. Allowing
x! a in (4.1) and using the crack tip asymptotics of these fields
(Fett and Munz, 1997), we obtain

Ke;tðaÞr1=2

4l
ffiffiffiffiffiffiffi
2p
p Uðx=jxjÞ � r1=2

4l
ffiffiffiffiffiffiffi
2p
p KtðaÞ þ e2

XN

i¼1

KðiÞðaÞ
 !

Uðx=jxjÞ;

with r ¼ jx� aj and U is a function of the polar angle associated
with the crack tip. The above implies that

Ke;tðaÞ � KtðaÞ þ e2
XN

i¼1

KðiÞðaÞ: ð4:3Þ

The SIF KtðaÞ is given in (3.2) and in Nieves et al. (2011), using argu-
ments of linear superposition, it has been shown that:

XN

i¼1

KðiÞðaÞ ¼ 2
XN

i¼1

Z a

0
w1ð0þ; x2Þr11½ðDðrzÞT Gðx; zÞTÞT jz¼OðiÞ

�MðiÞAðiÞ
t �jx1¼0þdx2; ð4:4Þ

where for a vector field u ¼ ðu1;u2ÞT ,

rijðuÞ ¼ kðr � uÞdij þ lðui;j þ uj;iÞ

and dij is the Kronecker delta. By applying the Betti formula, with w
and G in R2

þ nMa (Nieves et al., 2011), it is possible to show that
(4.4) is equal to

XN

i¼1

KðiÞðaÞ ¼
XN

i¼1

ðDðrxÞT wðxÞÞT jx¼OðiÞM
ðiÞAðiÞ

t :

Substituting this in (4.3) gives (2.6).

5. The case of two micro-cracks

In Nieves et al. (2011), examples are presented which show the
effect on the maximum amplitude of the stress intensity factor
KtðaÞ, for the edge crack in a stainless steel half plane, when small
circular voids are present in the body. In particular, the interaction
between the edge crack and small voids with different radii and at
various distances from the crack were examined. Good agreement
between the results based on the asymptotic approximation for the
SIF and those given by finite element analysis was found. Here, we
will present a similar example for the case of interaction between
the edge crack and micro-cracks. We demonstrate how the orien-
tation of the micro-cracks influences the maximum SIF.

5.1. Description of the geometry for two micro-cracks

Following Nieves et al. (2011), in this example we model an
elastic half plane, containing an edge crack and micro-cracks, using
the material properties of stainless steel. These properties are
given in Table 1.

We consider two micro-cracks xð�Þe , in the edge-cracked half
plane, with centres Oð�Þ ¼ ð�3 mm;5 mmÞT and length 3 mm. The
angle between the axis of the crack xðþÞe and the x1-axis is denoted



Fig. 5. The difference between the amplitude of the perturbed and unperturbed SIF
against edge crack depth and the angle of orientation of the micro-cracks with
length 3 mm and centres Oð�Þ ¼ ð�3 mm;5 mmÞT . Here, the small parameter
e ¼ 0:5. Shaded regions indicate areas of lower amplitude of the SIF relative to
the amplitude of the unperturbed SIF, whereas the unshaded regions represent a
higher amplitude of the SIF.

Fig. 3. A surface plot of the amplitude of the SIF Ke;t against edge crack depth and
the normalised angle of orientation of the micro-cracks with length 3 mm and
centres Oð�Þ ¼ ð�3mm;5mmÞT , for the case when e ¼ 0:5.

Fig. 4. A plot of the amplitude of the unperturbed SIF Kt against edge crack depth.

Fig. 2. A half plane containing an edge crack and two micro-cracks xð�Þe with length
3mm and centres Oð�Þ ¼ ð�3mm;5mmÞT . The micro-cracks xð�Þe are at angles of �h
with the x1-axis.
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by h (see Fig. 2). We note that this diagram corresponds to an ad-
vance of the pre-existing crack, the question of crack initiation is
not addressed here.

The small parameter e ¼ 0:5 is defined as the ratio of the com-
mon micro-crack half length to the minimum distance from the
centres of these defects to the x1 and x2 axes. In (3.1) we set
T0 ¼ 100
C and x ¼ 2p.

Combining (3.2) and (4.4) in (4.3) we have

Ke;tðaÞ � �
4lc

kþ 2l

Z a

0
w1ð0þ; x2ÞTðx; tÞjx1¼0þdx2

þ 2e2
X
�

Z a

0
w1ð0þ; x2Þr11½ðDðrzÞT Gðx; zÞT ÞT jz¼Oð�ÞM

ð�ÞAð�Þ
t �jx1¼0þdx2;

ð5:1Þ

where the approximation to the weight function (3.8) along the line
of the crack is used here, the constant vector Að�Þ

t has the represen-
tation (4.2), the dipole matrix Mð�Þ for a finite crack appears in
(3.5), the components of G are given by (3.9) and (3.10).

5.2. Numerical results

In this section, we analyse the amplitude of the SIF under sinu-
soidal striping for an edge crack in a half plane containing two mi-
cro-cracks. Fig. 3 shows the surface plot of the amplitude of the SIF
as a function of crack depth (a) and the angle of orientation of the
crack (h=p). This gives the amplitude of the SIF as we rotate the mi-
cro-cracks through 180
, at various edge crack depths in the region
0 6 a 6 10mm. For comparison, in Fig. 4, we also provide the plot
of the unperturbed amplitude of the SIF KtðaÞ. For edge crack
depths in the region 0 6 a 6 8mm one can see, by comparing Figs. 3
and 4, a visible perturbation in the amplitude of the SIF KtðaÞwhen
two micro-cracks are present in the body, with 0 6 h < p. For crack
depths greater than 8 mm, the effect of micro-cracks on the ampli-
tude of the SIF diminishes. In particular, when 0:7 6 h=p 6 0:8, at a
crack depth of approximately 1 mm, we have a noticeable increase
to the maximum of the unperturbed amplitude of the SIF. Also in
Fig. 3, at approximately the same crack depth and when
0:1 6 h=p 6 0:2, we have a saddle point.

In Fig. 5, we show the difference between the unperturbed
amplitude of the SIF KtðaÞ and the amplitude of the SIF Ke;tðaÞ as
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a function of crack depth and angle of orientation of the cracks. On
this figure, the shaded regions indicate a decrease in the
amplitude of the SIF relative to the amplitude of the SIF KtðaÞ
and unshaded regions represent an increase to the amplitude of
the SIF relative to the amplitude of SIF KtðaÞwhen the micro-cracks
are present.

It can be seen that in between approximately h ¼ 0:3p and
h ¼ 0:5p, the presence of micro-cracks ‘‘ahead of’’ the main edge
crack encourage potential crack growth since the amplitude of
the SIF is increased. Conversely, when the crack tip of the edge
crack is deeper into the half space than the micro-cracks, the
amplitude of the SIF is decreased, leading to less likelihood of po-
tential crack growth. Analogous behaviour was found in Nieves
et al. (2011) and Thomas et al. (2000) for circular voids. For other
orientations the behaviour is more complex with regions of en-
hanced and reduced potential for crack growth.

Similar complex behaviour, where micro-cracks ‘‘ahead of’’ the
main crack tip may reduce the potential for crack growth for
embedded main cracks has been observed in Tamuzs and Petrova
(1999) and Tamuzs et al. (1994).

6. Conclusions

In Nieves et al. (2011) the model of thermal striping of an elastic
half-plane containing an edge crack and small defects was ana-
lysed. Asymptotic formulae for the Mode I SIF for the edge crack
was obtained, and for a configuration involving a symmetric distri-
bution of small circular voids about the axis of the edge crack, the
behaviour of this stress intensity factor was investigated. In the
case of two circular holes, results showed that when positioned
ahead of the crack tip, these holes brought an increase to the value
of the stress intensity factor, indicating an increase for potential
crack growth. For edge cracks deeper than the circular holes, the
SIF for this crack decreased.

We have also investigated the behaviour of the SIF for the edge
crack when micro-cracks are located in the thermally striped half
plane. It was shown that compared to the case when circular holes
are located in the half plane, it is possible to find orientations of the
micro-cracks such that the potential for crack arrest increases
when the micro-cracks are located ahead of the crack. Similarly,
micro-cracks of a particular orientation may also cause the edge
crack to grow, when these micro-cracks are situated behind the
tip of the edge crack, and as noted above, examples of this behav-
iour can be found in Tamuzs et al. (1994) and Tamuzs and Petrova
(1999).

These numerical simulations, based on the asymptotic formula
for the Mode I SIF of the edge crack, also indicate that it is possible
to identify configurations of defects inside the half-plane which
can greatly reduce the potential for edge crack growth. The asymp-
totic formula for the SIF is applicable to a wide variety of shapes for
the internal defects, provided the dipole matrix for elastic defect is
known (Movchan et al., 2002; Nieves et al., 2011).
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