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We generalize the Riesz potential of a compact domain in R
m by

introducing a renormalization of the rα−m-potential for α � 0. This
can be considered as generalization of the dual mixed volumes
of convex bodies as introduced by Lutwak. We then study the
points where the extreme values of the (renormalized) potentials
are attained. These points can be considered as a generalization
of the center of mass. We also show that only balls give extreme
values among bodied with the same volume.
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1. Introduction

Let Ω be a compact set in R
m (m � 2) which can be obtained as a closure of an open set. Consider

a potential of the form

Vα(x) =
∫
Ω

|x − y|α−m dμ(y),
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where μ is the standard Lebesgue measure of R
m . When α < m and x ∈ Ω it is a singular integral

that is well defined if α > 0. When 0 < α < m it is the Riesz potential of the characteristic function
χΩ of Ω . In particular, it is (a constant times) the Newton potential when α = 2 and m � 3.

We can apply the same renormalization process which was used to define energy functionals of

knots [15,16] to Vα(x) for α � 0 and x ∈ ◦
Ω , where

◦
Ω denotes the interior of Ω . Namely, if an integral∫

Ω
ω blows up on a subset X of Ω , we expand

∫
Ω\Nε(X)

ω in a series of 1
ε , where Nε(X) (ε > 0) is an

ε-tubular neighbourhood of X , and take the constant term [17]. In the case of Vα(x) (α � 0, x ∈ ◦
Ω),

we have X = {x} and the series has only one divergent term which depends only on α and m. Thus
we can obtain a 1-parameter family of potentials, which we denote by V (α)

Ω (α ∈ R), with V (α)
Ω = Vα

when α > 0 or x /∈ Ω .
In particular, when Ω is convex and x ∈ ◦

Ω , V (α)
Ω (x) can be expressed as

V (α)
Ω (x) = 1

α

∫
Sm−1

(
ρΩ−x(v)

)α
dσ(v) (α �= 0), (1.1)

where σ is the standard Lebesgue measure of Sm−1 and ρΩ−x : Sm−1 → R>0 is a radial function of

Ω−x = {y − x | y ∈ Ω} given by ρΩ−x (v) = sup{a � 0 | x + av ∈ Ω}. Thus V (α)
Ω (x) coincides with the

dual mixed volume Ṽα as introduced by Lutwak [9,10] up to multiplication by a constant.
We show basic properties and give boundary integral expressions using Stokes theorem, which

plays an important role in computing the derivatives and hence Laplacians.
Next we study points where the extreme values Mm(α)(Ω) of V (α)

Ω are attained. We will call such

points the rα−m-centers of Ω . To be precise, it is a point that gives the minimum value of V (α)
Ω when

α > m, the maximum value of V (α)
Ω when 0 < α < m, and the maximum value of V (α)

Ω in
◦
Ω when

α � 0. When α = m, as V (m)
Ω (x) is constantly equal to the volume of Ω , we define r0-center by a

point where the maximum value of the log potential is attained. We show that any compact set has
an rα−m-center for any α.

For example, the centroid or the center of mass xG of Ω is an r2-center by the following reason.
As xG is given by xG = ∫

Ω
y dμ(y)/

∫
Ω

1 dμ(y), or equivalently, by
∫
Ω

(xG − y)dμ(y) = 0, it can be

characterized as the unique critical point of the map V (m+2)
Ω : R

m � x �→ ∫
Ω

|x − y|2 dμ(y) ∈ R.
Another example is the “illuminating center” of a triangle, which was recently introduced by Kat-

suyuki Shibata [22]. It is a point that maximizes the total brightness of a triangular park obtained by
a light source on that point. In our language, it is an r−2-center. This is one of the motivations of our
research.

When Ω is convex, an rα−m-center coincides with the radial center of order α, which was introduced
for 0 < α � 1 in [13].

Furthermore, using the moving plane method from analysis, we introduce a region whose comple-
ment has no chance to have any rα−m-center, which we call the minimal unfolded region of Ω .

The rα−m-center is not necessarily unique. For example, a disconnected region has at least two
rα−m-centers for small α. We show that the rα−m-center is unique for any compact set if α � m + 1,
which includes the case of centroids, and for any convex sets if α � 1. The latter is a consequence of
a theorem in [13] when we use (1.1).

We also show that among bodies with the same volume, only balls can give maximum (or mini-
mum according to α) of the extreme value Mm(α) of V (α)

Ω for any α, and the same statement holds

for the integration of the potential V (α)
Ω on Ω if α > 0, i.e. when the renormalization is not needed.

Finally we study the asymptotic behavior of rα−m-centers as α goes to ±∞. We show that as α
goes to +∞ an rα−m-center approaches a point where the infimum of a map R

m � x �→ maxy∈Ω |y −
x| ∈ R is attained, which we call a min–max point. On the other hand, if a point where the supremum
of a map R

m � x �→ miny∈Ωc |y − x| ∈ R is attained, which we call a max–min point, is uniquely
determined, then the set of rα−m-centers converges to a singleton consisting of the max–min point
as α goes to −∞ with respect to the Hausdorff distance.
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Assumption and notation. We always assume that our Ω is a body, that is, a compact set which
is a closure of its interior, and that it has a piecewise C1 boundary ∂Ω . We may require additional
conditions, (∗∗) in Lemma 2.13 or (∗∗∗) in Lemma 2.15. Even with those, compact m-dimensional
submanifolds and polyhedra satisfy our conditions.

We assume that the dimension m is greater than or equal to 2 except in Example 3.5.

Throughout the paper,
◦
X and Xc denote the interior and complement of X . We denote the standard

Lebesgue measure of R
m by μ, and that of ∂Ω and other (m − 1)-dimensional spaces like Sm−1

by σ .

2. Renormalized rα−m-potential

2.1. Definition

Suppose α � 0 and x ∈ ◦
Ω . Fix a positive constant R with R < dist(x, ∂Ω). If we denote an m-ball

with center x and radius r > 0 by Br(x), we have

∫
B R (x)\Bε(x)

|x − y|α−m dμ(y) =
{

A(Sm−1) log R
ε if α = 0,

A(Sm−1)
α (Rα − εα) if α < 0,

where A(Sm−1) is the volume of the (n − 1)-dimensional unit sphere Sm−1:

A
(

Sm−1) = 2π
m
2

Γ (m
2 )

=
⎧⎨
⎩

2πk+1

k! if m − 1 = 2k + 1,

2k+1πk

(2k−1)(2k−3)···1 if m − 1 = 2k.

As Ω \ Bε(x) = (Ω \ B R(x)) ∪ (B R(x) \ Bε(x)) and Ω \ B R(x) is independent of ε, if we expand∫
Ω\Bε(x) |x − y|α−m dμ(y) in a series in 1

ε , we have only one divergent term which does not depend
on the point x and the set Ω . Thus we are lead to the following definition:

Definition 2.1. A compact set which is a closure of its interior is called a body [5]. We always assume
that Ω is a body in R

m with a piecewise C1 boundary ∂Ω in what follows.
(1) Define V (α)

Ω by the following.

(i) When α � 0 and x ∈ ◦
Ω , define V (α)

Ω (x) by

V (α)
Ω (x) = lim

ε→+0

( ∫
Ω\Bε(x)

|x − y|α−m dμ(y) − A(Sm−1)

−α
· 1

ε−α

)
(2.1)

for α < 0, and

V (0)
Ω (x) = lim

ε→+0

( ∫
Ω\Bε(x)

|x − y|−m dμ(y) − A
(

Sm−1) log
1

ε

)
(2.2)

for α = 0, and call them the renormalization of rα−m-potential of Ω .
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(ii) When α > 0 or x is not in Ω we put

V (α)
Ω (x) =

∫
Ω

|x − y|α−m dμ(y).

(2) Let −Ω denote the same space Ω with the reversed orientation. Define V (α)
−Ω(x) = −V (α)

Ω (x).

Let Ω j (1 � j � k) be a body with a piecewise C1 boundary so that
◦
Ω i ∩ ◦

Ω j= ∅ (i �= j). Then

define V (α)
∪ jΩ j

(x) = ∑
j V (α)

Ω j
(x).

Remark 2.2. In our study, if we put 1
a ra = log r (r > 0) when a = 0 in our formulae for general cases,

we obtain those for special cases, although log r = lima→0
1
a (ra − 1) in fact. Such examples can be

found in (2.1) and (2.2), (2.3) and (2.4), (2.7), (2.8) and (2.9), (2.10) and (2.11), (2.12) and (2.13), (2.21)
and (2.22), and Theorem 2.20.

The renormalization in the case when m = 2 and α = −2 was given by Auckly and Sadun with
more generality in [1], where they studied surface energy.

We remark that when α = m we have V (m)
Ω (x) = Vol(Ω) for any x. But when we are concerned

with rα−m-centers, it is natural to use the log potential for V (m)
Ω .

2.2. Basic properties

Proposition 2.3. (1) The map V (α)
Ω inherits symmetry from Ω , i.e. if g is an isometry of R

m then V (α)
g·Ω(g · x) =

V (α)
Ω (x).

(2) Under a homothety R
m � x �→ kx ∈ R

m (k > 0),

V (α)

kΩ
(kx) =

⎧⎪⎪⎨
⎪⎪⎩

kα V (α)
Ω (x) if α �= 0,

V (0)
Ω (x) + A(Sm−1) log k if α = 0 and x ∈ ◦

Ω ,

V (0)
Ω (x) if α = 0 and x /∈ Ω .

Proof. (2) follows directly from the definition, or from Theorem 2.8. �
Lemma 2.4. Let X and Y be subsets of R

m. Define

X − Y = (
X \ (X ∩ Y )

) ∪ −(
Y \ (X ∩ Y )

)
,

where the second term is equipped with the reverse orientation (Fig. 1).

If x ∈ ◦
Ω1 ∩ ◦

Ω2 or x ∈ Ωc
1 ∩ Ωc

2 then

V (α)
Ω1−Ω2

(x) = V (α)
Ω1

(x) − V (α)
Ω2

(x)

for any α.

Proof. This is because

Ω1 − Ω2 = (
Ω1 \ Bε(x)

) − (
Ω2 \ Bε(x)

)
for sufficiently small ε when x ∈ ◦

Ω1 ∩ ◦
Ω2. �
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Fig. 1. X − Y . The dark (light) part with positive (resp. negative) orientation.

We give elementary statements on the renormalization process of V (α)
Ω .

Proposition 2.5. Suppose x ∈ ◦
Ω .

(1) We have

V (α)
Ω (x) =

∫
Ω−Bε(x)

|x − y|α−m dμ(y) − A(Sm−1)

−α
· 1

ε−α
(α �= 0), (2.3)

V (0)
Ω (x) =

∫
Ω−Bε(x)

|x − y|−m dμ(y) − A
(

Sm−1) log
1

ε
(α = 0) (2.4)

for any ε > 0. In particular, (2.1) and (2.2) hold even without taking the limit if ε < dist(x, ∂Ω).
(2) If α < 0 we have

V (α)
Ω (x) = −

∫
Ωc

|x − y|α−m dμ(y) (α < 0). (2.5)

Thus the renormalization can be obtained by taking the complement of the domain when α < 0.

We remark that (2.4) is equivalent to

V (0)
Ω (x) = A

(
Sm−1) log R −

∫
B R (x)−Ω

|x − y|−m dμ(y) (2.6)

for any R > 0.

Proof. First note that the (renormalized) potential of a ball at the center is given by

V (α)
Br(x)(x) =

{
A(Sm−1)

α · rα (α �= 0),

A(Sm−1) log r (α = 0).
(2.7)

(1) By Lemma 2.4 we have

V (α)
Ω (x) = V (α)

Ω−Bε(x)(x) + V (α)
Bε(x)(x),

which implies (2.3) and (2.4).
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(2) Suppose α < 0 and x ∈ ◦
Ω . Direct calculation shows

∫
Rm\Bε(x)

|x − y|α−m dμ(y) = − A(Sm−1)

α
· εα = −V (α)

Bε(x)(x),

and therefore we have

V (α)
Ω (x) =

∫
Ω−Bε(x)

|x − y|α−m dμ(y) −
∫

Rm−Bε(x)

|x − y|α−m dμ(y)

= −
∫
Ωc

|x − y|α−m dμ(y). �

Corollary 2.6. Suppose Ω1 ⊂ Ω2 . If α > 0 or x ∈ ◦
Ω1 or x ∈ Ωc

2 then V (α)
Ω1

(x) � V (α)
Ω2

(x).

Lemma 2.7. Let V (α)
Ω | ◦

Ω
and V (α)

Ω |Ωc denote the restrictions of V (α)
Ω to the interior and the complement of Ω

respectively.

(1) If α > 0 then V (α)
Ω > 0 on R

m.

(2) V (α)
Ω |Ωc > 0 for any α. If α < m then lim|x|→+∞ V (α)

Ω (x) = 0.

(3) If α < 0 then V (α)
Ω | ◦

Ω
< 0.

Proof. (3) follows from the formula (2.5). �
2.3. Boundary integral expressions and derivatives

Theorem 2.8. If x /∈ ∂Ω then V (α)
Ω (x) can be expressed by the boundary integral on ∂Ω as

V (α)
Ω (x) = 1

α

∫
∂Ω

|x − y|α−m(y − x) · n dσ(y) (α �= 0), (2.8)

V (0)
Ω (x) =

∫
∂Ω

log |x − y|
|x − y|m (y − x) · n dσ(y) (α = 0), (2.9)

where n is a unit outer normal vector to ∂Ω at y and σ denotes the standard Lebesgue measure of ∂Ω .

Especially, when m = 2, V (α)
Ω (x) (α �= 0) can be expressed by the contour integral along ∂Ω by

V (α)
Ω (x) = 1

α2

∮
∂Ω

(∇y|x − y|α) · n ds (α �= 0)

= 1

α

∮
∂Ω

|x − y|α−2((y1 − x1)dy2 − (y2 − x2)dy1
)

(2.10)

where s is the arc-length of ∂Ω , and V (0)
Ω (x) by
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V (0)
Ω (x) =

∮
∂Ω

log |x − y|(∇y log |x − y|) · n ds

=
∮

∂Ω

log |x − y|
|x − y|2

(
(y1 − x1)dy2 − (y2 − x2)dy1

)
. (2.11)

The author thanks Kazuhiro Kurata for informing him of the first formula of (2.11).
We remark that the 1-form in (2.11) can be expressed as − log |x − y| �m

dy
x−y if we consider x and

y as points in C.

Proof. Put r = |x − y|.
(1-i) Suppose α < 0 and x ∈ ◦

Ω . Note that

divy

(
1

α
rα−m(y − x)

)
= rα−m. (2.12)

Therefore, for enough small ε > 0,

∫
Ω\Bε(x)

rα−m dμ(y) = 1

α

∫
∂Ω

rα−m(y − x) · n dσ(y) − 1

α

∫
∂ Bε(x)

rα−m(y − x) · n dσ(y)

= 1

α

∫
∂Ω

rα−m(y − x) · n dσ(y) − A(Sm−1) εα

α
.

Then the formula (2.3) implies (2.8).
(1-ii) The case when x /∈ Ω or when α > 0 can be proved in the same way if we forget the

renormalization term.
(2) The case when α = 0 can be proved in the same way using

divy
((

r−mlog r
)
(y − x)

) = r−m (2.13)

and (2.4). �
Proposition 2.9. (1) If x = (x1, . . . , xm) /∈ ∂Ω then

∂V (α)
Ω

∂x j
(x) can be expressed by the boundary integral on ∂Ω

as

∂V (α)
Ω

∂x j
(x) = −

∫
∂Ω

|x − y|α−me j · n dσ(y) (2.14)

for any j (1 � j � m) and for any α, where n is a unit outer normal vector to ∂Ω at y, e j is the j-th unit
vector of R

m, and σ denotes the standard Lebesgue measure of ∂Ω .
(2) If α > 1 then (2.14) holds and becomes continuous on entire R

m. Therefore V (α)
Ω is of class C1 on R

m if
α > 1.

Proof. (1) Put r = |x − y|. Note that

∂rα−m

∂x
= −∂rα−m

∂ y
= −divy

(
rα−me j

)
.

j j
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(i) Assume x /∈ Ω . Then

∂V (α)
Ω

∂x j
(x) =

∫
Ω

∂ rα−m

∂x j
dμ(y) = −

∫
Ω

divy
(
rα−me j

)
dμ(y) = −

∫
∂Ω

rα−me j · n dσ(y)

as is required.

(ii) Assume x ∈ ◦
Ω . Put x0 = x and fix it. Take a positive number ε0 with ε0 < dist(x0, ∂Ω). Suppose

x′ ∈ B ε0
2

(x0). Then

V (α)
Ω

(
x′) − V (α)

Bε0 (x0)

(
x′) =

∫
Ω\Bε0 (x0)

∣∣x′ − y
∣∣α−m

dμ(y).

Therefore,

∂V (α)
Ω

∂x j

(
x′) −

∂V (α)
Bε0 (x0)

∂x j

(
x′) =

∫
Ω\Bε0 (x0)

∂

∂x j

∣∣x′ − y
∣∣α−m

dμ(y)

= −
∫

Ω\Bε0 (x0)

divy
(∣∣x′ − y

∣∣α−m
e j

)
dμ(y)

= −
∫

∂Ω

∣∣x′ − y
∣∣α−m

e j · n dσ(y) +
∫

∂ Bε0 (x0)

∣∣x′ − y
∣∣α−m

e j · n dσ(y),

where σ is the standard Lebesgue measure of ∂Ω and ∂ Bε0 (x0).
If we put x′ = x0, since

∂V (α)
Bε0 (x0)

∂x j
(x0) = 0 and

∫
∂ Bε0 (x0)

|x0 − y|α−me j · n dσ(y) = 0

by the symmetry, we obtain (2.14).
(2) Suppose α > 1. Since α − m > −(m − 1) = −dim ∂Ω , the right hand side of (2.14) is well

defined even if the point x is on the boundary ∂Ω , and is continuous on R
m . �

Remark 2.10. There are two more proofs of the above proposition.
(i) Put Ω−he j = {y − he j | y ∈ Ω}. Then (see Fig. 2)

∂V (α)
Ω

∂x j
(x) = lim

h→0

V (α)
Ω (x + he j) − V (α)

Ω (x)

h
= lim

h→0

V (α)
Ω−he j

(x) − V (α)
Ω (x)

h

= − lim
h→0

1

h

∫
Ω−Ω−he j

|x − y|α−m dμ(y) = −
∫

∂Ω

|x − y|α−me j · n dσ(y).

(ii) The proposition can also be proved by the boundary integral formulae in Theorem 2.8, Stokes’
theorem, and Lemma 2.4.
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Fig. 2. Ω − Ω−he1 (h > 0). The right (left) strip with positive (resp. negative) orientation.

Corollary 2.11. If α > 2 then the second derivative
∂2 V (α)

Ω

∂x j
2 is given by

∂2 V (α)
Ω

∂x j
2

(x) = −(α − m)

∫
∂Ω

|x − y|α−m−2(x j − y j)e j · n dσ(y) (2.15)

= (α − m)

∫
Ω

|x − y|α−m−4((α − m − 2)(x j − y j)
2 + |x − y|2)dμ(y) (2.16)

= (α − m)

∫
Ω

|x − y|α−m−4
(

(α − m − 1)(x j − y j)
2 +

∑
i �= j

(xi − yi)
2
)

dμ(y), (2.17)

and is continuous on R
m.

Furthermore, for any α, (2.15) holds on (∂Ω)c and (2.16) and (2.17) hold on Ωc .

Proof. Put r = |x − y|.
The absolute value of the integrand of (2.15) is bounded above by rα−m−2 · r = rα−m−1. If α > 2

then α − m − 1 > −m + 1 = −dim(∂Ω), and therefore the right hand side of (2.15) is well defined
even if a point x belongs to ∂Ω .

The absolute value of the integrand of (2.17) is bounded above by (|α − m − 1| + 1) rα−m−2. If
α > 2 then α − m − 2 > −m, and therefore (2.17) is well defined.

The equality of the right hand side of (2.15) and (2.16) is obvious. �
2.4. Continuity and asymptotic behavior

The same geometric argument as in Remark 2.10(i) implies the continuity of V (α)
Ω .

Proposition 2.12. When α > 0 the map V (α)
Ω : R

m → R is continuous. When α � 0, the restrictions of V (α)
Ω

to
◦
Ω and Ωc are continuous.

We remark that when 0 < α < m the continuity is nothing but that of the Riesz potential, and that
when α � 0 it follows from the boundary integral expression in Theorem 2.8.

Lemma 2.13. Suppose a point z on the boundary ∂Ω satisfies Poincaré’s condition outside, namely,
(∗∗) There are positive constants ε and θ such that Bε(z) ∩ Ωc contains a cone of revolution with vertex z

and cone angle θ .
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(1) If α � 0 then V (α)
Ω | ◦

Ω
(x) goes to −∞ uniformly as x ∈ ◦

Ω approaches z.

(2) Assume that ∂Ω satisfies Poincaré’s condition inside. If α � 0 then V (α)
Ω |Ωc (x) goes to +∞ uniformly as

x ∈ Ωc approaches z.

Proof. We only prove (1) in what follows as (2) can be proved in the same way.
We may assume ε � 1

2 . Let C be the volume of a subset of the unit sphere Sm−1 which is inside a

cone of revolution with vertex the origin and cone angle θ . Suppose x ∈ ◦
Ω satisfies |x − z| < δ, where

δ � 1
2 .

(i) Assume α < 0. Since δ + r � 1 if 0 < r < 1
2 , the formula (2.5) implies

V (α)
Ω (x) � −

ε∫
0

(δ + r)α−m · Crm−1 dr � −C

ε∫
0

(δ + r)−m · rm−1 dr = −C

1+ ε
δ∫

1

(t − 1)m−1

tm
dt,

which implies lim|x−z|→+0 V (α)
Ω (x) = −∞ as limR→+∞

∫ R
1

(t−1)m−1

tm dt = +∞.
(ii) Assume α = 0. Put R = max{1,d}, where d is the diameter of Ω . Then B R(x) contains both Ω

and the cone in Ωc of the condition (∗∗). Therefore, the formula (2.6) implies lim|x−z|→+0 V (0)
Ω (x) =

−∞ by a similar argument as above.
The uniformness follows from the fact that the right hand sides of the above estimates do not

depend on x. �
Corollary 2.14. If α � 0 then V (α)

Ω cannot be extended to a continuous function on R
m.

Lemma 2.15. Suppose α � 1. Assume Ω satisfies the following condition:
(∗∗∗) For any boundary point z there is a direction v ∈ Sm−1 such that Ω around that point can be

obtained as a space under a graph in direction v of a piecewise C1 function on an (m − 1)-dimensional hyper-
plane.

Then the directional derivative of V (α)
Ω in v at a boundary point z satisfies

lim
h→0

∂ V (α)
Ω

∂v
(z + hv) = −∞.

First observe that the formula (2.14) implies that the lemma above holds when ∂Ω contains
Bm−1

R (0)×{0} for some R > 0 with outer normal vector em and the point z approaches ∂Ω as z = hem

(h → 0). The proof of a general case is just a technicality.

Proof. We may assume, after a motion of R
m , that z = 0 and v = em , namely, there are positive

constants ρ and b and a piecewise C1 function f such that

(
Bm−1

ρ (0) × (−b,b)
) ∩ Ω

= {
(x1, . . . , xm)

∣∣ xm � f (x1, . . . , xm−1), (x1, . . . , xm−1) ∈ Bm−1
ρ (0)

}
.

Let C ′ > 0 be the minimum of em · n on (Bm−1
ρ (0) × [−b,b]) ∩ ∂Ω . Let π : R

m → R
m−1 be

the projection in the direction of em . There is a positive constant C such that for any point y in
(Bm−1

ρ (0) × (−b,b)) ∩ ∂Ω there holds |y| < C |π(y)|. For any ε > 0 if 0 < |h| < ε then for any y ∈ ∂Ω

with π(y) ∈ Bm−1
ρ (0) \ Bm−1

ε (0) we have |hem−y|
|y| � |h|+|y|

|y| < 2. Then if 0 < |h| < ε then
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∫
(Bm−1

ρ (0)×(−b,b))∩∂Ω

|hem − y|α−mem · n dσ(y)

>

∫
((Bm−1

ρ (0)\Bm−1
ε (0))×(−b,b))∩∂Ω

|hem − y|α−mem · n dσ(y)

> 2α−m
∫

((Bm−1
ρ (0)\Bm−1

ε (0))×(−b,b))∩∂Ω

|y|α−mem · n dσ(y)

� 2α−mCα−mC ′
∫

Bm−1
ρ (0)\Bm−1

ε (0)

∣∣y′∣∣α−m
dμm−1

(
y′)

= 2α−mCα−mC ′ A
(

Sm−2) ρ∫
ε

rα−m · rm−2 dr,

where μm−1 is the standard Lebesgue measure of R
m−1. As α − 2 � −1 the right hand side above

blows up to +∞ as ε goes down to +0, and therefore,

∂V (α)
Ω

∂xm
(hem) = −

∫
∂Ω

|hem − y|α−mem · n dσ(y)

goes to −∞ as h approaches 0. �
Let us consider the continuity of V (α)

Ω (x) with respect to α.

Proposition 2.16. Fix a compact set Ω and a point x ∈ R
m.

(1) The map R � α �→ V (α)
Ω (x) ∈ R is continuous on R+ for any x. It is further continuous on R \ {0} if x ∈ ◦

Ω ,
and on R if x /∈ Ω .

(2) If x ∈ ◦
Ω then limα→±0 V (α)

Ω (x) = ±∞.

Proof. Put ΦΩ(α) = V (α)
Ω (x).

(1) Suppose α > 0. Let ε be a positive number. Then (2.7) implies that there is r > 0 such that
ΦΩ∩Br (x)(α

′) < ε for any α′ with α
2 � α′ . On the other hand, as Ω \ (Ω ∩ Br(x))◦ is compact and

dist(x,Ω \ (Ω ∩ Br(x))◦) � r, there is δ > 0 (δ � α
2 ) such that if |α′ −α| < δ then |ΦΩ\(Ω∩Br (x))◦ (α′) −

ΦΩ\(Ω∩Br (x))◦ (α)| < ε and hence

∣∣ΦΩ

(
α′) − ΦΩ(α)

∣∣ �
∣∣ΦΩ\(Ω∩Br(x))◦

(
α′) − ΦΩ\(Ω∩Br(x))◦(α)

∣∣ + ΦBr(x)
(
α′) + ΦBr(x)(α) � 3ε,

which implies the first statement.
The second statement follows from (2.8), and the last one is obvious.

(2) Suppose x ∈ ◦
Ω . Let r be a positive number with r < dist(x, ∂Ω) and d be the diameter of Ω .

Then Br(x) ⊂ Ω ⊂ Bd(x).
By Corollary 2.6 and the formula (2.7), if α > 0 then

V (α)
Ω (x) � V (α)

Br(x)(x) = A(Sm−1)rα

,

α
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which implies limα→+0 ΦΩ(α) = +∞, and if α < 0 then

V (α)
Ω (x) � V (α)

Bd(x)(x) = A(Sm−1)dα

α
,

which implies limα→−0 ΦΩ(α) = −∞. �
The asymptotic behavior of V (α)

Ω as α goes to ±∞ will be studied in Lemma 3.16.

2.5. Laplacian

Theorem 2.17. Let Ω be a body in R
m with a piecewise C1 boundary. If α > 2 or x /∈ ∂Ω and α �= 2 then

�V (α)
Ω (x) = (α − 2)(α − m)V (α−2)

Ω (x). (2.18)

Proof. First note that

�x|x − y|α−m = (α − 2)(α − m)|x − y|α−m−2. (2.19)

If α > 2 then (2.18) follows from (2.16) or from (2.19).
Suppose x /∈ ∂Ω . By formula (2.15), we have

�V (α)
Ω (x) = −(α − m)

∫
∂Ω

|x − y|α−m−2(x − y) · n dσ(y). (2.20)

On the other hand, if α − 2 �= 0 then by Theorem 2.8 we have

V (α−2)
Ω (x) = 1

α − 2

∫
∂Ω

|x − y|α−m−2(y − x) · n dσ(y). �

We remark that when α = 2 and m � 3, i.e. when V (α)
Ω is (a constant times) the Newton potential,

we have �V (2)
Ω (x) = 0 if x ∈ Ωc and �V (2)

Ω (x) = −(m − 2)A(Sm−1) if x ∈ ◦
Ω .

Corollary 2.18. Let Ω be a body in R
m with a piecewise C1 boundary.

(1) If α > m then �V (α)
Ω > 0 on R

m.

(2) If α = m then �V (m)
Ω = 0 on R

m.

(3) If 2 < α < m (m � 3) then �V (α)
Ω < 0 on R

m.

(4) If m � 3 and α = 2 then �V (2)
Ω < 0 on

◦
Ω .

(5) If α < 2 then �V (α)
Ω > 0 on Ωc and �V (α)

Ω < 0 on
◦
Ω .

The author thanks Kazuhiro Kurata for informing him that �V (0)
Ω < 0 on

◦
Ω when m = 2.

Proof. The formula (2.18) and Lemma 2.7 imply (1), (3), and (5). The statement (2) follows from
V (m)

Ω (x) = Vol(Ω) (∀x). The statement (4) follows from the remark above. �
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2.6. Convex geometric formulae and duality by an inversion in a sphere

Let us recall some terminologies from convex geometry.
A set M in R

m is called star-shaped at 0 if for any point p in M \ {0} the line segment 0p is
contained in M .

Suppose M is star-shaped at 0. The radial function of M is a map ρM from Sm−1 to R�0 defined by

ρM(v) = sup{a � 0 | av ∈ M} (ρM(v) is also denoted by ρ(M, v)). When
◦

M� 0 the dual mixed volume
of M of order α (α ∈ R) is given by

Ṽα(M) =
∫

Sm−1

(
ρM(v)

)α
dσ(v).

When α = m, Ṽm(M) = m Vol(M). It was originally introduced for convex bodies in [9,10] (see also
[5,21]).

We show that V (α)
Ω (x) (α �= 0, x ∈ ◦

Ω) coincides with the dual mixed volume of Ω−x of order α up
to multiplication by a constant.

Lemma 2.19. Let Ω be a body in R
m with a piecewise C1 boundary. Suppose x ∈ ◦

Ω and Ω is star-shaped at x.
Let ρΩ−x be a radial function of Ω−x = {y − x | y ∈ Ω}. Then

V (α)
Ω (x) = 1

α

∫
Sm−1

(
ρΩ−x(v)

)α
dσ(v) (α �= 0), (2.21)

V (0)
Ω (x) =

∫
Sm−1

log
(
ρΩ−x(v)

)
dσ(v) (α = 0). (2.22)

Proof. Note that Ω can be expressed as

Ω = {
x + r(v)v

∣∣ 0 � r(v) � ρΩ−x(v), v ∈ Sm−1}.
Remark that rα−m dμ = rα−1 dr dσ(v).
If α < 0 then (2.5) implies

V (α)
Ω (x) = −

∫
Sm−1

∞∫
ρΩ−x (v)

rα−1 dr dσ(v) = 1

α

∫
Sm−1

(
ρΩ−x(v)

)α
dσ(v).

If α = 0 then (2.4) implies that if we use a sufficiently small ε > 0 we have

V (α)
Ω (x) =

∫
Sm−1

ρΩ−x (v)∫
ε

dr

r
dσ(v) − A

(
Sm−1) log

1

ε
=

∫
Sm−1

log
(
ρΩ−x(v)

)
dσ(v).

The case when α > 0 is obvious. �
Theorem 2.20. Let Ω be a body in R

m with a piecewise C1 boundary. Let �x,v (x ∈ R
m, v ∈ Sm−1) denote

a half line {x + tv | t > 0}, and pi be a point where �x,v intersects ∂Ω transversally, which we denote by
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pi ∈ �x,v �∩ ∂Ω . Define the signature at pi by sgn(pi) = +1 if �x,v cuts across ∂Ω from the inside to the
outside of Ω as t increases and sgn(pi) = −1 otherwise. Then if α > 0 or x /∈ ∂Ω we have

V (α)
Ω (x) = 1

α

∫
Sm−1

∑
pi∈�x,v �∩ ∂Ω

sgn(pi)|pi − x|α dσ(v) (α �= 0),

V (0)
Ω (x) =

∫
Sm−1

∑
pi∈�x,v�∩ ∂Ω

sgn(pi) log |pi − x|dσ(v) (α = 0).

This can be proved by cutting Ω into several pieces so that the intersection of every piece and
any half line starting from x is connected (possibly empty).

Corollary 2.21. Suppose x is a point with x /∈ ∂Ω . Let Ix be an inversion in a unit sphere with center x. Let Ω�
x

be the closure of the complement of Ix(Ω): Ω�
x = (Ix(Ω))c .

(1) If x ∈ ◦
Ω then V (α)

Ω (x) = −V (−α)

Ω�
x

(x) for any α.

(2) If x /∈ Ω then V (α)
Ω (x) = V (−α)

Ix(Ω)(x) for any α.

When x = 0, Ω�
0 is called the star duality of Ω in [12].

Proof. Suppose �x,v �∩ ∂Ω = {p1, . . . , pk}. Then as

�x,v �∩ ∂
(

Ix(Ω)
) = �x,v �∩ ∂Ω�

x = {
Ix(p1), . . . , Ix(pk)

}
,∣∣Ix(pi) − x

∣∣ = |pi − x|−1,

− sgnIx(Ω)

(
Ix(pi)

) = sgnΩ�
x

(
Ix(pi)

) = sgn(pi),

corollary follows from the theorem above. �
2.7. Log potential

In the study of rα−m-centers in the next section, it is natural to use the log potential

V log
Ω (x) =

∫
Ω

log
1

|x − y| dμ(y) = −
∫
Ω

log |x − y|dμ(y)

as r0-potential for the case when α = m since

∂V log
Ω

∂x j
(x) = −

∫
Ω

|x − y|−2(x j − y j)dμ(y)

can be considered as

− lim
α→m

∫
|x − y|α−m−2(x j − y j)dμ(y) = − lim

α→m

1

α − m
· ∂V (α)

Ω

∂x j
(x).
Ω
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The argument so far in the paper for V (α)
Ω works roughly as well for V log

Ω . It is a continuous
function on R

m . Since

divy

(
1

m

(
log r − 1

m

)
(y − x)

)
= log r,

the log potential can also be expressed by the boundary integral as

V log
Ω (x) = − 1

m

∫
∂Ω

(
log r − 1

m

)
(y − x) · n dσ(y).

The same argument as in Proposition 2.9 works to obtain

∂V log
Ω

∂x j
(x) = −

∫
∂Ω

log
1

|x − y|e j · n dσ(y).

It implies

∂2 V log
Ω

∂x j
2

(x) =
∫

∂Ω

|x − y|−2(x j − y j)e j · n dσ(y),

�V log
Ω (x) =

∫
∂Ω

|x − y|−2(x − y) · n dσ(y),

and so, if m > 2,

�V log
Ω (x) = −(m − 2)V (m−2)

Ω (x) < 0.

When m = 2, as �x log |x − y| = 0 (|x − y| �= 0), �V log
Ω (x) = �V log

Dε(x)(x) = −2π if x ∈ ◦
Ω (ε <

dist(x, ∂Ω)) and �V log
Ω (x) = 0 if x ∈ Ωc .

3. The rα−m-centers

3.1. Definition and examples

Definition 3.1. Let Mm(α)(Ω) denote the minimum value of V (α)
Ω when α > m, the maximum value of

V log
Ω when α = m, the maximum value of V (α)

Ω when 0 < α < m, and the maximum value of V (α)
Ω | ◦

Ω
when α � 0.

Define the rα−m-center of Ω , denoted by Cα−m(Ω), by a point where Mm(α)(Ω) is attained.

Remark that when α = m it is meaningless to use V (m)
Ω as it is constantly equal to Vol(Ω).

Example 3.1. Let x = (x1, . . . , xm) be an r2-center of Ω . Then, as x is a critical point of V (m+2)
Ω , it

satisfies

0 = ∂

∂xi

∫ m∑
k=1

(xk − yk)
2 dy1 · · ·dym = 2

∫
(xi − yi)dy1 · · ·dym.
Ω Ω
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Fig. 3. Illuminating center of a triangle.

Therefore, x is given by

xi =
∫
Ω

yi dy1 · · ·dym∫
Ω

1 dy1 · · ·dym
,

which implies that the r2-center coincides with the centroid (center of mass).

Example 3.2. In [22] Katsuyuki Shibata introduced the (planar) illuminating center of a triangle Ω by

a point in
◦
Ω that gives the maximum value of a map

Ω \ (
Ω ∩ Nε(∂Ω)

) � x �→
∫

Ω\Bε(x)

|x − y|−2 dμ(y) ∈ R

for any sufficiently small ε > 0, where Nε(∂Ω) is the ε-tubular neighbourhood of ∂Ω . In our lan-
guage, the planar illuminating center is an r−2-center.

Shibata gave the characterization of the planar illuminating center of a triangle as follows [22]. Let
L be the illuminating center of a triangle �ABC . Let X, Y and Z be the intersection points of the
edges BC, C A and AB with the line AL, BL, and C L respectively (Fig. 3). Then there hold

� ALB
� ALC

= |B X |
|C X | ,

� C L A
� C LB

= |A Z |
|B Z | , and

� BLC
� BL A

= |C Y |
|AY | .

We remark that the last equation of the formulae above can be obtained from the former two by
Ceva’s theorem.

We remark that the idea of the illuminating center can be considered as 2-dimensional analogue
of that of the radial center of order 1 for convex bodies in R

3 explained in [8].

Example 3.3. Let Ω be a convex set with non-empty interior. A point x ∈ ◦
Ω is called the radial center

of order α (α �= 0) if it gives the extreme value of the dual mixed volume of order α of Ω−x = {y − x |
y ∈ Ω}, Vα(Ω−x) = ∫

Sm−1 (ρΩ−x)
α dσ(v), where ρΩ−x is the radial function of Ω−x . It was introduced

in [13] for 0 < α � 1 and studied in [7] for any α (α �= 0).
The formula (2.21) in Lemma 2.19 implies that if Ω is convex then an rα−m-center (α �= 0) coin-

cides with the radial center of order α.

Remark 3.2. Since V (−m)
Ω (x) = −Vol(Ω�

x ) by Corollary 2.21, where Ω�
x is the closure of the comple-

ment of the image of Ω by an inversion in a unit sphere with center x, the r−2m-center is a point so
that Ω�

x has the smallest volume.
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Fig. 4. Folding a convex set like origami.

3.2. The minimal unfolded regions

Let us introduce a region whose complement has no chance to have any rα−m-center. Let us first
explain in the case when Ω is a convex set in a plan. Let Ω1 be a subset of Ω cut out of Ω by a
line L. Fold Ω like origami in L ∩Ω . Suppose Ω1 can be folded upon Ω \Ω1 (Fig. 4). Then our centers
cannot be in Ω1 \ (Ω1 ∩ L) as we will see later.

Definition 3.3. Let Ω be a compact set in R
m with piecewise C1 boundary. For a unit vector v in

Sm−1 and a real number b, put Mv = supx∈� x · v , Ω+
v,b = Ω ∩ {x ∈ R

m | x · v > b}, and Reflv,b to be a
reflection of R

m in a hyperplane {x ∈ R
m | x · v = b}. Put

lv = inf
{

a
∣∣ a � Mv , Reflv,b

(
Ω+

v,b

) ⊂ Ω (a � ∀b � Mv)
}
.

The set Ω+
v,lv

is called the maximal cap in direction v . Define the minimal unfolded region of Ω by

U f (Ω) =
⋂

v∈Sm−1

{
x ∈ R

m
∣∣ x · v � lv

}
.

Since the minimal unfolded region contains the centroid, it is a non-empty set. As the convex hull
of Ω is given by

⋂
v∈Sm−1 {x | x · v � Mv}, the minimal unfolded region is contained in the convex hull.

It is compact and convex. Remark that the minimal unfolded region of Ω is not necessarily contained
in Ω (Fig. 5).

Example 3.4.

(1) If Ω is convex and symmetric in a q-dimensional hyperplane H (q < m) then the minimal un-
folded region is included in H . Especially, the minimal unfolded region of an m-ball consists of
the center.

(2) The minimal unfolded region of a non-obtuse triangle is surrounded by a quadrilateral, two of the
edges of which are perpendicular bisectors and the other two are angle bisectors. Therefore, two
of the vertices of the quadrilateral coincide with the incenter I and the circumcenter C (Fig. 6).

Problem 3.4.

(1) Is the minimal unfolded region of the convex hull of Ω contained in that of Ω?
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Fig. 5. A minimal unfolded region (inner triangle) of a non-convex set (union of three discs).

Fig. 6. A minimal unfolded region of a non-obtuse triangle. Bold lines are angle bisectors, dotted lines are perpendicular bisec-
tors.

(2) Suppose Ω is convex. Is the following true:

diam
(
U f (Ω)

)
� 1

2
diam(Ω) � inf

x∈U f (Ω)
sup

y∈∂Ω

|x − y|?

3.3. Existence of rα−m-centers

Theorem 3.5. Any body in R
m with a piecewise C1 boundary that satisfies (∗∗) in Lemma 2.13 has an rα−m-

center in the minimal unfolded region for any α.

To be precise, the condition (∗∗) is needed for the existence of the center when α � 0.

Proof. (1) First we show that there exists an rα−m-center in the convex hull.
(i) Suppose α > m. Let Ω ′ be a convex hull of Ω . Since V (α)

Ω is continuous on R
m and Ω ′ is

compact, there is a point x0 where the minimum value of V (α)
Ω in Ω ′ is attained. We show that x0 is

an rα−m-center of Ω .
Let x be a point in (Ω ′)c . Let x′ be a point on ∂Ω ′ so that dist(x, ∂Ω ′) = |x − x′|. (The map x �→ x′

is called the metric projection [14].) Then Ω ′ is contained in a half-space whose boundary is the
hyperplane orthogonal to a line through x and x′ . (This hyperplane is a support hyperplane of Ω ′
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Fig. 7.

at x′ .) Therefore for any point y in Ω we have |x − y| > |x′ − y| and hence V (α)
Ω (x) > V (α)

Ω (x′) �
V (α)

Ω (x0).
(ii) The same argument works for the Riesz potential (0 < α < m) and the log potential (α = m).
(iii) Suppose α � 0. Put b = sup

x∈ ◦
Ω

V (α)
Ω (x). As V (α)

Ω | ◦
Ω

is continuous by Proposition 2.12,

Lemma 2.13 (1) implies that (V (α)
Ω | ◦

Ω
)−1([b − 1,b]) is a compact set in R

m . Then b is attained there.

(2) Next we show that an rα−m-center cannot be in the complement of the minimal unfolded re-
gion by the moving plane method [6] using the radial symmetry of partial derivatives of the potential.
The basic idea is due to Kazuhiro Kurata (personal communication to the author). Let us use notation
in Definition 3.3 in what follows.

Let x be a critical point of V (α)
Ω when α > 0 or V (α)

Ω | ◦
Ω

when α � 0. Assume x is not in the minimal

unfolded region of Ω is Then there is a direction v ∈ Sm−1 so that lv < x · v � Mv .
Put c0 = x · v , Ω1 = Ω+

v,c0
∪ I v,c0 (Ω

+
v,c0

), and Ω2 = Ω \ Ω1. Then the set Ω can be decomposed
into two parts, Ω = Ω1 ∪ Ω2, which is “disjoint union” up to the boundaries (Fig. 7).

Remark that the slice of Ω with a hyperplane {z ∈ R
m | z · v = b} grows as b decreases from Mv

until lv , namely, Ω+
v,lv

is convex in the direction of v . Therefore, Ω2 has a non-empty interior as
lv < c0 � Mv .

Let us first assume that either x /∈ ∂Ω or α > 1. Then Proposition 2.9 implies that V (α)
Ω is partially

differentiable at x. We may assume, after a rotation of R
m , that the direction v is equal to e1. Then

∂V (α)
Ω

∂x1
(x) = ∂V (α)

Ω1

∂x1
(x) + ∂V (α)

Ω2

∂x1
(x).

The first term of the right hand side vanishes because of the symmetry. The second term of the right
hand side is given by

∂V (α)
Ω2

∂x1
(x) =

∫
Ω2

(α − m)|x − y|α−m−2(x1 − y1)dμ(y).

The right hand side above is well defined if x /∈ Ω2 or α > 1 since the absolute value of the integrand
is bounded above by |α − m||x − y|α−m−1. Note that if x /∈ ∂Ω then x /∈ Ω2.

Since x1 − y1 > 0 on
◦
Ω2, which is a non-empty set,

∂V (α)
Ω2

∂x1
(x), and hence

∂V (α)
Ω

∂x1
(x), cannot be equal

to 0, which is a contradiction.
We are now left with the case when 0 < α � 1 and x ∈ ∂Ω . Take a small neighbourhood U of

x which is contained in {x′ ∈ R
m | x′ · v >

lv +c0
2 }. Then the above argument implies that there is a
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negative constant b such that if x′ ∈ U ∩ (∂Ω)c then
∂V (α)

Ω2
∂x1

(x′) < b. Therefore, x cannot be a maximum

point of V (α)
Ω , which is a contradiction. �

Corollary 3.6. (1) The rα−m-center of an m-ball is the center for any α.
(2) If Ω is a convex set in a plane and has two lines of symmetry then its rα−m-center is the intersection

point of the two lines for any α.

3.4. Extremeness of balls

We introduce two kinds of extremeness of balls, one applies for any α whereas the other for
α > 0, i.e. the case when the renormalization is not needed, but not for any α.

Recall that Mm(α) denotes min V (α)
Ω (x) (α > m), max V log

Ω (x) (α = m), max V (α)
Ω (x) (0 < α < m),

and max V (α)
Ω | ◦

Ω
(x) (α � 0).

Proposition 3.7 (Sakata). Suppose Ω has the same volume as a ball B. Then we have Mm(α)(Ω) � Mm(α)(B)

if α > m and Mm(α)(Ω) � Mm(α)(B) if α � m, where the equalities hold if and only if Ω is a ball.

The case when m = 2 and α > 0 is given in [20].

Proof. The idea is due to [19] (see also [4]).
Assume α � 0. Suppose Ω is not a ball. By definition, the rα−m-center of Ω lies in the interior

of Ω . We may assume that the rα−m-centers of Ω and B both coincide with the origin, 0. Put Ω1 =
Ω \ (Ω ∩ B) and B1 = B \ (Ω ∩ B). Lemma 2.4 implies that

Mm(α)(Ω) − Mm(α)(B) = V (α)
Ω (0) − V (α)

B (0) = V (α)
Ω−B(0) =

∫
Ω1

rα−m dμ(y) −
∫
B1

rα−m dμ(y),

where r = |y|. As |y| > |y′| for y ∈ ◦
Ω1 and y′ ∈ ◦

B1, α − m < 0, and Vol(Ω1) = Vol(B1) �= 0, we have∫
Ω1

rα−m dμ(y) <

∫
B1

rα−m dμ(y),

which implies Mm(α)(Ω) < Mm(α)(B).
The case when α > 0 can be proved in the same way. �
Define the rα−m-energy of Ω by

E(α)(Ω) =
∫
Ω

V (α)
Ω (x)dμ(x) =

∫
Ω×Ω

|x − y|α−m dμ(x)dμ(y) (3.1)

for α > 0.
Following Blaschke [2], T. Carleman [3] used Steiner’s symmetrization to show that if f (t) (t > 0)

is a positive function with f ′(t) < 0 so that f (|x − y|) is locally integrable in R
m × R

m then

E f (Ω) =
∫

Ω×Ω

f
(|x − y|)dμ(x)dμ(y)

attains the maximum only at balls if the volume of Ω is fixed (see also [11]).
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As a corollary it implies

Proposition 3.8. Among bodies with the same volume, balls attain the maximum of E(α)(Ω) when 0 < α < m
and the minimum when α > m.

The case of gravitational potential (m = 3, α = 2) was given in [3].

Proof. The first statement can be obtained by putting f (t) = 1/tm−α .
On the other hand, the second statement can be obtained as follows. Suppose Ω has diameter d.

Choose a positive function f (t) so that f (t) = 2dα−m − tα−m for 0 < t � d and f (t) ∼ t−(m+1) for
t � 2d. Then it follows that E(α)(Ω) � E(α)(B) if B is a ball with the same volume as Ω , where the
equality holds if only if Ω is a ball. �

Remark 3.9. The energy defined by (3.1) diverges when α � −1 since V (α)
Ω (x) (x ∈ ◦

Ω , α < 0) can be
estimated as O ((dist(x, ∂Ω))α) near ∂Ω . To have a well-defined energy we need one more renor-
malization process explained in the introduction. Namely, we expand

∫
Ω\(Ω∩Nε(∂Ω))

V (α)
Ω (x)dμ(x) in

a series in 1
ε and subtract the divergent terms. The detail is studied in [18] in the case when m = 2

and α = −2. This renormalized energy can be generalized to Seifert surfaces of knots; thus making a
functional on the space of knots, which turns out to be invariant under Möbius transformations, and
can be considered as a renormalization of the average of the square of the linking numbers of the
knot and random circles.

We remark that the proposition above does not hold in general for α � 0. For example, when
m = 2 and α = −2, discs attain the minimum, not the maximum [18].

3.5. Uniqueness of rα−m-centers

The rα−m-center is not necessarily unique, nor is it always continuous with respect to α. Let us
see it in a baby case when m = 1.

Example 3.5. Let Ω be a disjoint union of two intervals with the same lengths: Ω = [−R,−1]∪ [1, R],
where R > 1. Theorem 3.5 implies that any rα−1-center belongs to [− 1+R

2 , 1+R
2 ]. Observe that if α � 1

or if α < 1 and x �= ±1,±R then

d

dx
V (α)

Ω (x) = |x + R|α−1 − |x + 1|α−1 − |x − R|α−1 + |x − 1|α−1.

(1) Suppose α > 2. Then d2

dx2 V (α)
Ω (x) > 0 for any x. Therefore the origin is the unique rα−1-center.

(2) Suppose α = 2. Then V (2)
Ω is constant on [−1,1] and increases as |x| increases if |x| > 1. Therefore

any point in [−1,1] is an r1-center.
(3) Suppose α = 1. As d

dx V log
Ω (x) = log | (R+x)(x−1)

(R−x)(x+1)
|, which vanishes only when x = ±√

R , the r0-

centers are given by ±√
R .

(4) Suppose α < 2 (α �= 1). If 1 < α < 2 then d2

dx2 V (α)
Ω < 0 on [0,1) and d2

dx2 V (α)
Ω > 0 on (1, R). On

the other hand, if α < 1 then d2

dx2 V (α)
Ω > 0 on [0,1) and d2

dx2 V (α)
Ω < 0 on (1, R). In both cases,

there is a unique point x0 = x0(α) in (1, R) that satisfies d
dx V (α)

Ω (x0(α)) = 0. The rα−1-centers are

given by ±x0(α). We remark that Theorem 3.5 implies that x0(α) is in (1, R+1
2 ) for any α (α < 2,

α �= 1).
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Let us show that x0(α) is a smooth function of α on (−∞,1)∪(1,2). Define f : (1, R)×((−∞,1)∪
(1,2)) → R by

f (x,α) = d

dx
V (α)

Ω (x) = (x + R)α−1 − (x + 1)α−1 − (R − x)α−1 + (x − 1)α−1.

Then

fx(x,α) = (α − 1)
[
(x + R)α−2 + (R − x)α−2 − (x + 1)α−2 + (x − 1)α−2] �= 0

since α − 1 �= 0 and 1
(x−1)2−α > 1

(x+1)2−α when x > 1 and α < 2. As f (x,α) is a smooth function of x

and α, x0(α) is a smooth function of α.
Note that limα→2−0 x0(α) = 1 as limα→2−0 f (x,α) = 2x − 2, limα→1 x0(α) = √

R as

f (x,α) = (α − 1)

(
log

(R + x)(x − 1)

(R − x)(x + 1)
+ O (α − 1)

)
,

and limα→−∞ x0(α) = R+1
2 .

We give a sufficient condition for the uniqueness of the rα−m-centers.

3.5.1. Concavity of V (α)
� | ◦

Ω
(α � 1) for convex bodies

Lemma 3.10. Let Ω be a body in R
m with a piecewise C1 boundary. Suppose Ω is convex and α � 1. Then

V (α)
Ω is a strictly concave function on

◦
Ω .

Proof. This is a consequence of Lemma 2.19 and the following:

Theorem 3.11. (See [8].) If φ : R+ → R+ is concave and strictly increasing, then the map given by

R
m � x �→

∫
Sm−1

φ
(
ρΩ−x(v)

)
dσ(v) ∈ R

is strictly concave, where ρΩ−x is a radial function of Ω−x = {y − x | y ∈ Ω}.

We can take φ(t) = 1
α tα (α � 1, α �= 0) or φ(t) = log t (α = 0). �

Theorem 3.12. Any body in R
m with a piecewise C1 boundary has a unique rα−m-center in the interior if

α � 1.

Proof. First remark that the conditions (∗∗) in Lemma 2.13 and (∗∗∗) in Lemma 2.15 are satisfied if
Ω is convex. Therefore, Theorem 3.5 implies the existence of an rα−m-center, and Lemma 2.15 implies
that rα−m-center cannot be on ∂Ω when 0 < α � 1. The uniqueness of the maximum point follows
from the strong concavity. �
Remark 3.13. The statement in [7] that if Ω is convex then V (α)

Ω |Ω (or V (α)
Ω | ◦

Ω
for α � 0) is convex

for α > m and concave for α < m (α �= 0) does not appear to be correct, as the following counter
examples show. Nevertheless, we conjecture that Theorem 3.12 holds for any α.
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Fig. 8.
∂2 V (1.5)

Ω

∂x1
2 (t,0).

Fig. 9. V (1.5)
Ω (t,0).

Let Ω be an isosceles triangle given by

Ω =
{
(x1, x2)

∣∣∣ 0 � x1 � 1, 0 � |x2| � x1 tan

(
π

10

)}
.

(i) Suppose α = 1.5. The graph of the second derivative ∂2 V (1.5)
Ω /∂x1

2(t,0) produced by Maple

using the formula (2.15) is shown in Fig. 8. It indicates that V (1.5)
Ω is not concave near the vertex

(0,0). On the other hand, the graph of V (1.5)
Ω (t,0) also produced by Maple (Fig. 9) indicates that

V (1.5)
Ω has a unique maximum point by Corollary 3.6.

(ii) The case when α = 2.5 is illustrated in Figs. 10 and 11.
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Fig. 10.
∂2 V (2.5)

Ω

∂x1
2 (t,0).

Fig. 11. V (2.5)
Ω (t,0).

3.5.2. Convexity of V (α)
� (α � m + 1)

Lemma 3.14. Let Ω be a body in R
m with a piecewise C1 boundary. If α � m + 1 then

∂2 V (α)
Ω

∂x j
2 > 0 on R

m for

any j (1 � j � m).

This follows from the formula (2.17) as m � 2.

Theorem 3.15. Any body in R
m with a piecewise C1 boundary has a unique rα−m-center if α � m + 1.

Proof. Theorem 3.5 guarantees the existence of an rα−m-center.



J. O’Hara / Advances in Applied Mathematics 48 (2012) 365–392 389
Assume there are two rα−m-centers x and x′ . We may assume, by a rotation of R
m , that the line

through x and x′ is parallel to the x1-axis. As
∂V (α)

Ω

∂x1
(x) = ∂V (α)

Ω

∂x1
(x′) = 0, it contradicts

∂2 V (α)
Ω

∂x1
2 > 0. �

3.6. Asymptotic behavior of rα−m-centers as α goes to ±∞

In this section we describe the asymptotic behavior of rα−m-centers as α goes to ±∞. It is gen-
eralization of a theorem that an rα−2-center of a non-obtuse triangle approaches the circumcenter as
α goes to +∞ and the incenter as α goes to −∞, which was announced by Katsuyuki Shibata.1

Lemma 3.16. The asymptotic behavior of V (α)
Ω (x) as α goes to ±∞ is given by

lim
α→+∞(V (α)

Ω (x))
1
α = max

y∈Ω
|y − x|,

lim
α→−∞(−V (α)

Ω (x))−
1
α = 1

miny∈Ωc |y − x| (x ∈ ◦
Ω).

Proof. This is because when α > 0 we have

lim
α→+∞

(
V (α)

Ω (x)
) 1

α = lim
α→+∞

(∫
Ω

|y − x|α−m dμ(y)

) 1
α

= ess sup
y∈Ω

|y − x| = max
y∈Ω

|y − x|,

and when α < 0 and x ∈ ◦
Ω the formula (2.5) implies

lim
α→−∞

(−V (α)
Ω (x)

)− 1
α = lim

α′→∞

(∫
Ωc

(
1

|y − x|
)α′+m

dμ(y)

) 1
α′

= ess sup
y∈Ωc

1

|y − x|

= 1

miny∈Ωc |y − x| . �

Definition 3.17. (1) We call a point an r∞-center or a min–max point of Ω , denoted by C∞ , if the
infimum of the map R

m � x �→ maxy∈Ω |y − x| ∈ R is attained at the point. In other word, it is the
center of a ball with the smallest radius that contains Ω .

(2) We call a point an r−∞-center or a max–min point of Ω , denoted by C−∞ , if the supremum of

the map R
m � x �→ miny∈Ωc |y −x| ∈ R is attained at the point. It is a point in

◦
Ω where the maximum

of the map R
m � x �→ miny∈∂Ω |y − x| ∈ R is attained. In other words, it is a center of a ball with the

biggest radius that is contained in Ω .
(3) We call a point an asymptotic r−∞-center of Ω if it is the limit of a convergent sequence of

rαi−m-centers with αi → −∞ as i → +∞.

It is easy to see that both min–max and max–min points exist. Put

R0 = min
x∈Rm

max
y∈Ω

|y − x|, r0 = max
x∈Rm

min
y∈Ωc

|y − x|.

Lemma 3.18. A min–max point of a compact set Ω is unique, whereas a max–min point is not necessarily
unique.

1 At the 2010 Autumn Meetings of the Mathematical Society of Japan.
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Proof. The first statement is obvious, and the second can be indicated by a rectangle. �
Proposition 3.19. A min–max point is contained in the maximal unfolded region, and so is a max–min point
if it is unique.

Proof. Put Rx = maxy∈Ω |y − x|, rx = miny∈Ωc |y − x| for x ∈ R
m .

We use notation in subsection 3.2. Let x be a point in a maximal cap in direction v , Ω+
v,lv

. Since

Reflv,lv (Ω
+
v,lv

) ⊂ Ω , Rx is attained by y ∈ Ω \ Ω+
v,lv

, and since Reflv,x·v (Ω+
v,x·v ) ⊂ Ω , rx is attained by

y′ ∈ ∂Ω+
v,x·v ∩ ∂Ω . Suppose x2 = x1 + εv (x1, x2 ∈ Ω+

v,lv
, ε > 0). As an affine hyperplane {x | x · v = lv}

separates Ω \ Ω+
v,lv

and Ω+
v,lv

, Rx1 < Rx2 , which means that a point in Ω+
v,lv

cannot be a min–max

point. On the other hand, as Ω+
v,lv

is convex in the direction v , rx1 � rx2 , which means that a point in

Ω+
v,lv

cannot be a unique max–min point. �
Lemma 3.20. Put

ρ
sup
Ω−x

(v) = sup{a > 0 | x + av ∈ Ω}, ρ inf
Ω−x

(v) = inf
{

a > 0
∣∣ x + av ∈ Ωc

}
for x ∈ R

m, v ∈ Sm−1 and

Vmax = {
v ∈ Sm−1

∣∣ ρsup
Ω−C∞ (v) = R0

}
, Vmin(C−∞) = {

v ∈ Sm−1
∣∣ ρ inf

Ω−C−∞ (v) = r0
}
,

where C∞ is the unique min–max point and C−∞ a max–min point. Then

⋃
v∈Vmax

{
u ∈ Sm−1

∣∣ u · v � 0
} =

⋃
v∈Vmin(C−∞)

{
u ∈ Sm−1

∣∣ u · v � 0
} = Sm−1.

Proof. Let us show
⋃

v∈Vmax
{u ∈ Sm−1 | u · v � 0} = Sm−1. The proof for Vmin(C−∞) goes parallel.

Let B be a ball with center C∞ and radius R0, which contains Ω . If ∂ B touches ∂Ω only in
points in a compact subset of an open hemisphere of ∂ B , {C∞ + R0 v | v ∈ Sm−1, v · v0 > 0} for some
v0 ∈ Sm−1, we can move the ball B a little bit in the direction of v0 and make it smaller to have a
new ball containing Ω whose radius is smaller than R0, which is a contradiction. �

It follows that both Vmax and Vmin(C−∞) contain at least two points each. Therefore,

Corollary 3.21. Let M be a set of max–min points of Ω . Then it is a subset of the medial axis, which is the set

of points x in
◦
Ω that have at least two points on ∂Ω that give the distance between x and ∂Ω .

Lemma 3.22. For any ε > 0 there are real numbers α+
ε (α+

ε > m) and α−
ε (α−

ε < 0) such that if α > α+
ε

then an rα−m-center is contained in Bε(C∞) and that if α < α−
ε then an rα−m-center is contained in Nε(M)

which is an ε-neighbourhood of the set of max–min points M.

Proof. We only give the proof of the second statement, as that of the first goes parallel.
Assume there is no such α−

ε . Then there is a sequence of rα−m-centers {Cαi−m}i∈N (αi < 0) in
the complement of Nε(M) with αi → −∞ as i → +∞. As {Cαi−m}i∈N is contained in a compact
set Ω \ Nε(M), there is a convergent subsequence, which we denote by the same symbol {Cαi−m},
with the limit C ′ ∈ Ω \ Nε(M). We have rC ′ < r0 as C ′ /∈ M. There is a point p in ∂Ω with

|p − C ′| = rC ′ . Put δ = (r0 − rC ′ )/3 and b = Vol(Bδ(p) ∩ Ωc), then b > 0. Suppose x ∈ Bδ(C ′)∩ ◦
Ω .

Then if y ∈ Bδ(p) ∩ Ωc , |x − y| � rC ′ + 2δ = r0 − δ, and therefore the formula (2.5) implies that
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V (α)
Ω (x) � −(r0 − δ)α−mb for α < 0. On the other hand, since Ω ⊃ Br0(C−∞), Corollary 2.6 and the

formula (2.21) imply V (α)
Ω (C−∞) � 1

α rα
0 A(Sm−1). Since

−α

(
r0

r0 − δ

)−α

>
(r0 − δ)m A(Sm−1)

b

for sufficiently small α, V (α)
Ω (x) < V (α)

Ω (C−∞) for such α, which implies that a point x in Bδ(C ′)∩ ◦
Ω

cannot be an rα−m-center for sufficiently small α. This contradicts the assumption that C ′ is the limit
of rαi−m-centers with αi → −∞ as i → +∞. �

Recall that the Hausdorff distance dH (X, Y ) between subsets X and Y in R
m is given by

dH (X, Y ) = inf
{
ε > 0

∣∣ X ⊂ (Y )ε, Y ⊂ (X)ε
}
, (X)ε =

⋃
x∈X

Bε(x).

When X is a singleton, i.e. X = {x}, dH ({x}, Y ) = supy∈Y |x − y|.

Theorem 3.23.

(1) The rα−m-center converges to the r∞-center i.e. the min–max point as α goes to +∞.
(2) An asymptotic r−∞-center is an r−∞-center, i.e. the limit of any convergent sequence of rαi−m-centers

with αi → −∞ as i → +∞ is a max–min point. Especially, when the max–min point is unique, the sets
of rα−m-centers Cα−m converges to {C−∞} as α goes to −∞ with respect to Hausdorff distance.

Acknowledgments

The author would like to express his deep gratitude to Katsuyuki Shibata who informed him of the
illuminating center of a triangle, and to his colleague Kazuhiro Kurata for many helpful suggestions
in the case when m = 2 and α = 0, and for informing the author of the moving plane method. The
author also thanks the referee deeply for careful reading and many invaluable suggestions.

References

[1] D. Auckly, L. Sadun, A family of Möbius invariant 2-knot energies, in: Geometric Topology, Athens, GA, 1993, in: Stud. Adv.
Math., Amer. Math. Soc., 1997.

[2] W. Blaschke, Eine isoperimetrische Eigenschaft des Kreises, Math. Z. 1 (1918) 52–57.
[3] T. Carleman, Über eine isoperimetrische Aufgabe und ihre physikalischen Anwendungen, Math. Z. 3 (1919) 1–7.
[4] F. Gao, D. Hug, R. Schneider, Intrinsic volumes and polar sets in spherical space, Math. Notae 41 (2003) 159–176.
[5] R.J. Gardner, Geometric Tomography, Cambridge University Press, New York, 1995.
[6] B. Gidas, W.M. Ni, L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys. 68 (1979)

209–243.
[7] I. Herburt, On the uniqueness of gravitational centre, Math. Phys. Anal. Geom. 10 (2007) 251–259.
[8] I. Herburt, M. Moszynska, Z. Peradzynski, Remarks on radial centres of convex bodies, Math. Phys. Anal. Geom. 8 (2005)

157–172.
[9] E. Lutwak, Dual mixed volumes, Pacific J. Math. 58 (1975) 531–538.

[10] E. Lutwak, Intersection bodies and dual mixed volumes, Adv. Math. 71 (1988) 232–261.
[11] F. Morgan, A round ball uniquely minimizes gravitational potential energy, Proc. Amer. Math. Soc. 133 (2005) 2733–2735.
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