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Summary

Eukaryotic cells respond to low-oxygen concentrations by upregulating hypoxic nuclear genes (hypoxic signaling). Although
it has been shown previously that the mitochondrial respiratory chain is required for hypoxic signaling, its underlying role
in this process has been unclear. Here, we find that yeast and rat liver mitochondria produce nitric oxide (NO) at dissolved
oxygen concentrations below 20 mM. This NO production is nitrite (NO2

2) dependent, requires an electron donor, and is car-
ried out by cytochrome c oxidase in a pH-dependent fashion. Mitochondrial NO production in yeast is influenced by the YHb
flavohemoglobin NO oxidoreductase, stimulates expression of the hypoxic nuclear gene CYC7, and is accompanied by an
increase in protein tyrosine nitration. These findings demonstrate an alternative role for the mitochondrial respiratory chain
under hypoxic or anoxic conditions and suggest that mitochondrially produced NO is involved in hypoxic signaling, possibly
via a pathway that involves protein tyrosine nitration.
Introduction

Several previous studies have implicated the respiratory chain in
hypoxic signaling in eukaryotes (Kwast et al., 1999; Poyton,
1999; Poyton et al., 2003; Chandel et al., 1998). It has been pro-
posed that the respiratory chain produces increased levels of
reactive oxygen species (ROS) when cells experience reduced
oxygen levels and that these ROS are involved in hypoxic signal-
ing. Support for this mitochondrial model for oxygen sensing
comes from studies with both yeast and mammalian cells. Stud-
ies with yeast have demonstrated that exposure to anoxia or
hypoxia leads to a transient increase in mitochondrially gener-
ated oxidative stress, enhanced levels of protein and DNA oxi-
dation (Dirmeier et al., 2002), and increased expression of
SOD1 resulting from increased superoxide levels. And studies
with mammalian cells have implicated ROS in stabilization of
HIF-1a, an important regulator of hypoxic genes (c.f., Kaelin,
2005).

Although yeast and mammalian cells experience transient
oxidative stress upon exposure to hypoxia, the relationship be-
tween this and hypoxic signaling is still poorly understood. On
the one hand, support for the involvement of oxidative stress
in hypoxic signaling in yeast comes from the finding that some
genes involved in the oxidative stress response are induced
by anoxia (Lai et al., 2005; ter Linde et al., 1999). On the other
hand, hypoxic yeast genes are not induced by exogenously
added oxidants (Causton et al., 2001; Gasch et al., 2000), sug-
gesting that ROS alone are not sufficient for hypoxic signaling
and that the mitochondrial respiratory chain may influence hyp-
oxic signaling via other mechanisms.

An important hint concerning an additional role for the mito-
chondrial respiratory chain in hypoxic signaling comes from re-
cent studies on the yeast flavohemoglobin YHb, a homolog of
mammalian cytohemoglobins. YHb is a NO oxidoreductase
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which plays an essential role in both oxidative and nitrosative
stress responses (Liu et al., 2000; Zhao et al., 1996) and which,
as such, regulates levels of peroxynitrite (ONOO2), a substrate
for protein tyrosine nitration (Radi, 2004). YHb is present in the
cytosol and mitochondrial matrix of normoxic cells but resides
exclusively in the promitochondrial matrix in anoxic cells
(Cassanova et al., 2005). The presence of YHb exclusively in
the promitochondria of anoxic cells is surprising considering
that these cells are grown in the absence of oxygen and have
greatly reduced levels of oxidative stress (Dirmeier et al.,
2002). Because YHb functions to consume NO, this observation
implies that NO is produced in anoxic yeast promitochondria.
These findings, together with earlier reports that promitochon-
dria retain low levels of mitochondrial respiratory proteins (Dag-
sgaard et al., 2001) and the ability to respire (David and Poyton,
2005), suggest that the mitochondrial respiratory chain func-
tions with an alternative electron acceptor at low-oxygen con-
centrations and that the product of this chain is NO. This hypoth-
esis is supported by mammalian cell studies which have
demonstrated that mitochondria produce elevated levels of
NO under hypoxia (Valdez et al., 2004; Schild et al., 2003) and
that some of this NO synthesis is not catalyzed by NO synthase
(NOS) (Lepore et al., 1999; Chen et al., 2002; Agvald et al., 2002).

In this study, we examined the involvement of mitochondria in
NO production and hypoxic signaling. We have found that both
yeast and rat liver mitochondria are capable of producing NO
from nitrite (NO2

2) when exposed to low-oxygen concentra-
tions. This reaction is dependent on the respiratory chain. We
have also identified cytochrome c oxidase as the mitochondrial
enzyme that functions to reduce NO2

2 to NO. In addition, we
have been able to demonstrate that yeast cells experience
a transient increase in protein tyrosine nitration when exposed
to anoxia and that mitochondrially generated NO can be linked
to the induction of CYC7, a hypoxic yeast gene.
OI 10.1016/j.cmet.2006.02.011 277

https://core.ac.uk/display/82293854?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:poyton@spot.colorado.edu


A R T I C L E
Figure 1. NO production by yeast

A) NO production by isolated yeast mitochondria.

Isolated mitochondria (400 mg protein/ml) from

strains JM43, DR11, and DR10 were preincubated

for 12 min at 28ºC in NO Assay Medium. Then,

NaNO2 was added to a final concentration of 1 mM

and NO production recorded with a NO electrode.

B) Dose-dependent NO production in isolated DR11

mitochondria. Different amounts of isolated mito-

chondrial protein were analyzed for their ability to

produce NO following the protocol described above

in (A). Inset, Initial rate of NO production versus mg

mitochondrial protein.

C) Effects of the NO scavenger PTIO and KCN on NO

production by isolated yeast mitochondria. NO pro-

duction from DR11 yeast mitochondria (400 mg pro-

tein/ml) was measured as described in (A). At the

times indicated by arrows, KCN or PTIO were added

to final concentrations of 1 mM and 10 mM, respec-

tively.

D) Effect of the NO2
2 concentration on the NO pro-

duction by isolated yeast mitochondria. NO produc-

tion from 400 mg mitochondrial protein/ml was mea-

sured as described in (A) in the presence of different

concentrations of added NO2
2 (the external concen-

tration). The internal concentration of NO2
2 was

measured as described in Experimental Procedures.
Results

NO production in yeast
To determine if yeast cells are capable of endogenous NO syn-
thesis we assayed three isogenic yeast strains: JM43, which is
YHB1+ and r+ (respiration-proficient); DR11, which is yhb12

and r+ ; and DR10, which is yhb12 and ro (respiration-deficient)
(Zhao et al., 1996). From Figure S1 it is clear that yeast cells are
capable of NO production and that the rate of NO production by
DR11 cells is substantially higher than the rates in NO produc-
tion in JM43 or DR10 cells (Figure S1). These findings indicate
that YHb suppresses endogenous NO production and that NO
production is reduced in the absence of mitochondrial respira-
tion. This latter finding, together with our recent findings that
some YHb resides in the mitochondrial matrix (Cassanova
et al., 2005), led us to ask if NO is produced in yeast mitochon-
dria. We first asked if yeast mitochondria possess a NOS.
Although several studies have reported the existence of a mito-
chondrial NOS (mtNOS) in mammals, there is currently no con-
sensus concerning the identity of this protein (Brookes, 2004;
Ghafourifar and Cadenas, 2005; Lacza et al., 2005). It has
been characterized by various research groups as either neuro-
nal (NOS1), inducible (NOS2), or endothelial (NOS3). To address
whether yeast mitochondria have a NOS, we performed three
types of analysis. First, we searched the yeast genome (www.
yeastgenome.org) and yeast mitochondrial proteome for pro-
teins related to any known NOS, using BLASTP. This analysis
failed to reveal substantial sequence matches with homology
to genes that encode the three mammalian NOS isoforms or
the gene for AtNOS1, a putative NOS (Guo et al., 2003). Second,
we subjected yeast mitochondria to immunoblot analysis using
antibodies raised to the three mammalian NOS isoforms. From
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Figure S2 it is clear that we could not detect crossreacting ma-
terial to any NOS isoform in yeast mitochondria. As expected, all
three NOS isoforms are detected in the control, which consisted
of cell extracts from embryonic mouse fibroblasts (Figure S2).
Third, we assessed the ability of yeast mitochondrial lysates to
produce NO by providing the NOS substrate (L-Arginine) and
cofactors (NADPH, FAD, FMN, calmodulin, and calcium). This
experiment also failed to reveal the presence of NOS in yeast mi-
tochondria (data not shown). In contrast, we easily detected
NOS activity in our positive rat brain control tissue. Together,
these findings make it very unlikely that yeast mitochondria pro-
duce NO via a classical NOS.

NO2
2-dependent production of NO

by yeast mitochondria
Our finding that the enhanced NO production seen in DR11 is
not observed in DR10 (Figure S1) suggested a role for the mito-
chondrial respiratory chain in NO production. To address this
we asked if yeast mitochondria produce NO when provided
with either nitrate (NO3) or NO2

2. Given that YHb is located in mi-
tochondria and is an effective consumer of NO we first used mi-
tochondria from DR11. These were compared to mitochondria
from JM43, which possesses wild-type YHb and a functional re-
spiratory chain, and DR10, which lacks YHb and a respiratory
chain. These studies revealed no NO production from NO3 un-
der any conditions. Initially, we also failed to detect NO produc-
tion from NO2

2, until we discovered that NO was produced only
after a 10–12 min lag following introduction of mitochondria into
the reaction chamber. In the experiment shown in Figure 1A, mi-
tochondria were placed in NO assay medium and incubated for
12 min. Then NO2

2 was added to the reaction vessel and NO
production followed. We could detect NO production by DR11
CELL METABOLISM : APRIL 2006
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Mitochondrial nitric oxide synthesis
Figure 2. NO production by yeast mitochondria is

inhibited by oxygen and catalyzed by cytochrome c

oxidase

A) NO production by isolated DR11 mitochondria in

the presence of different levels of dissolved oxygen.

NO production from 400 mg protein/ml was mea-

sured as described in Figure 1A. Dissolved oxygen

concentration was measured concomitantly with

a Strathkelvin oxygen electrode. DOC = dissolved

oxygen concentration.

B) NO production by isolated DR11 mitochondria in

normoxic and anoxic conditions. NO production

was measured as described in Figure 1D except

that the assay buffer was pre-bubbled with either

air or nitrogen, as indicated.

C) Ascorbate/TMPD supports NO2
2-dependent NO

synthesis only in the presence of mitochondria. NO

production was measured with an NO electrode in

the assay medium (minus succinate) described in

Figure 1A. At the time indicated by arrows, TMPD

(0.5 mM final concentration), ascorbate (0.5 mM final

concentration), 400 mg/ml mitochondria, or NaNO2

(1mM final concentration) were added to the reaction

chamber.

D) Effects of cytochrome c and KCN on cytochrome

c oxidase catalyzed NO2
2-dependent NO produc-

tion. One hundred and twenty-six micrograms of pu-

rified cytochrome c oxidase were added to the NO

electrode chamber pre-bubbled with nitrogen for

5 min at 28ºC in a medium containing: 650 mM Man-

nitol, 10 mM K2HPO4 (pH 6.5), 0.1 mM EDTA, 10 mM

KCl, 2 mM cytochrome c, 1.25 mM TMPD, and 0.01%

Triton X 100. NaNO2 was added to the chamber

(1 mM final concentration), and NO production was

followed with NO electrode.

E) Dose-dependent NO synthesis by purified cyto-

chrome c oxidase. Aliquots containing different

amounts of purified cytochrome c oxidase were as-

sayed for NO2
2-dependent NO synthesis produc-

tion, as described above in (D). Inset, Initial rate of

NO production versus mg cytochrome c oxidase

protein.
nalized NO2
2, which is within the

s found in yeast cells (see below).

pendent NO production
n of DR11 mitochondria in a closed
ndent NO production suggested

that the preincubation period functions to reduce oxygen levels
in the assay buffer. To address this we measured the oxygen
concentration in the vessel during the preincubation period (Fig-
ure 2A) and found that NO production began when the oxygen
concentration fell below a dissolved oxygen concentration of
2% (20 mM O2 under our assay conditions) and was maximal
when oxygen was absent. This finding implies that oxygen af-
fects NO2

2-dependent NO formation in mitochondria. To further
explore this finding we compared the length of the lag period for
mitochondria that had been placed in assay buffer pre-bubbled
with air or nitrogen. Pre-bubbling with air had little effect (Fig-
ure 2B) while pre-bubbling with nitrogen completely removed
the lag in NO production, providing direct support for the
mitochondria but not by mitochondria from JM43 or DR10. This
suggests that the respiratory chain is required for NO production
and that mitochondrial YHb is effective in consuming the NO
that is produced in JM43 mitochondria. From the results shown
in Figure 1B it is clear that the rate of NO production is depen-
dent on the amount of mitochondrial protein assayed. As a
control for NO production we used the NO scavenger PTIO
(2-Phenyl-4,4,5,5-tetramethylimidazoline-3-oxide-1-oxyl), which
immediately reduced the level of NO produced under our assay
conditions (Figure 1C). KCN inhibited continued NO production,
supporting the conclusion that NO production requires a func-
tional respiratory chain.

To determine the relationships between NO2
2 concentration

and NO production, we performed assays at different external
NO2

2 concentrations (Figure 1D). We also measured the amount
of external NO2

2 that is taken up by mitochondria. The latter
revealed that only 10% of the external NO2

2 is internalized. Re-
sults from this analysis reveal that NO production occurs over
a wide range of NO2

2 concentrations and can be detected
CELL METABOLISM : APRIL 2006
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range of NO2

2 concentration

Oxygen effects on NO2
2-de

Our finding that preincubatio
vessel precedes NO2

2-depe
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A R T I C L E
conclusion that NO2
--dependent NO production in mitochondria

is inhibited by oxygen.

Involvement of the respiratory chain
Having determined that the preincubation lag functions to re-
duce the oxygen concentration in the reaction vessel, we mod-
ified our assays to include a 5 min pre-bubbling with nitrogen
prior to the addition of NO2

2. Using these assay conditions, we
were able to establish that NO production by yeast mitochondria
requires an electron acceptor (NO2

2 but not NO3) and an elec-
tron donor (succinate, malate, pyruvate) (Table 1). This NO2

2-
dependent NO production is inhibited by cyanide and antimycin
A (Table 1) and is not present in DR10, which lacks YHb and is
respiration deficient (Figure 1A). The finding that KCN prevents
NO production when added at the beginning of the experiment
(Table 1) and abruptly inhibits NO production when added later
(Figure 1C) indicates that the respiratory chain is involved in NO
production throughout the entire course of the experiment.

We have also found that the nonphysiological electron donors
ascorbate/TMPD support a high level of NO production (Table 1)
both in the presence and absence of antimycin A, a complex III
inhibitor. From Figure 2C it is clear that the NO synthesis sup-
ported by ascorbate/TMPD requires mitochondria because
there is no NO synthesis in their absence. This indicates that
the high rates of NO production supported by ascorbate/
TMPD are enzymatic and are not attributable to the nonenzy-
matic reduction of NO2

2 to NO. While the TCA cycle interme-
diates succinate, malate, or pyruvate feed electrons into the
beginning of the respiratory chain, the electron donor pair ascor-
bate/TMPD feeds electrons into cytochrome c and then cyto-
chrome c oxidase at the end of the chain. This finding, together
with our observation that ascorbate/TMPD supports NO pro-
duction under conditions where complex III is inhibited, clearly
suggests that the terminal region of the respiratory chain is suf-
ficient for NO synthesis.

NO production in intact yeast mitochondria is also affected by
ADP (Table 1). There are at least two plausible explanations for
this. First, ADP may increase the rate of NO production simply
by dissipating the proton gradient across the inner mitochon-
drial membrane. This would result in an increased rate of elec-
tron flow through the respiratory chain. Alternatively, ADP could
be converted to ATP, which may itself affect NO production. We
addressed the first possibility by substituting the uncoupler dini-
trophenol for ADP and the second possibility by substituting
ATP for ADP. From Table 1 it is clear that ADP can be replaced
by either dinitrophenol or ATP but not GTP or GDP. These re-
sults suggest that ADP increases the rate of NO production
both by increasing the rate of electron transport and by its
conversion to ATP. Finally, it is important to note that the NOS
inhibitor, g-nitro-L-Arginine-Methyl Ester (L-NAME), has no ef-
fect on NO2

2-dependent NO production in these mitochondria
(Table 1). This rules out a role for NOS in NO2

2-dependent NO
production.

Cytochrome c oxidase catalyzes NO2
2-dependent

NO production
The finding that added ascorbate/TMPD supports a high rate of
NO2

2-dependent NO formation in the presence of antimycin A
suggested that cytochrome c and cytochrome c oxidase alone
can function in reducing NO2

2 to NO in hypoxic/anoxic yeast mi-
tochondria. To test this directly we asked if purified yeast cyto-
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chrome c oxidase has NO2
2 reductase activity, when assayed in

the absence of oxygen. Isolated yeast cytochrome c oxidase, in
assay medium containing cytochrome c and TMPD, was placed
in the NO electrode reaction chamber and bubbled with nitrogen
for 5 min to remove oxygen. NO2

2 was then added and NO pro-
duction was measured. Cytochrome c and cytochrome c oxi-
dase were added in equimolar amounts and TMPD was added
in excess in order to keep the cytochrome c that is in the reaction
buffer or bound to cytochrome c oxidase reduced (Cooper,
1990). It is clear from Figure 2D that isolated cytochrome c oxi-
dase supports a robust rate of NO production and that its ability
to produce NO is dependent on cytochrome c and is inhibited by
cyanide, and air (data not shown). The rate of NO production by
cytochrome c oxidase increases with increasing concentrations
of enzyme (Figure 2E). In addition, this reaction is affected by pH
(Table 2). Using buffers with pH values that correspond to the in-
tracellular pH of yeast cells grown in the presence or absence of
air (Campbellburk et al., 1987; Gonzalez et al., 2000; Valli et al.,
2005), we find that NO production by cytochrome c oxidase in-
creases between pH 7 and pH 6. We also find that we are better

Table 1. Characterization of yeast mitochondrial NO2
2-dependent NO production

Assay medium Rate of NO production (%)a

NO Assay Mediumb 100 6 8

—NO2
2 0 6 5

—NO2
2 + 1mM NO3

2 0 6 4

—Mitochondria 0 6 3

—Succinate 0 6 5

+ 10 mM L-NAME 100 6 7

—Succinate, + 2.5 mM Malate/pyruvate 210 6 11

—Succinate + 5 mM NADH 0 6 5

+ 1 mM KCN 0 64

+ 20 mg/ml Antimycin A 0 6 5

—Succinate, + 0.5 mM ascorbate/TMPD 820 6 30

—Succinate, + 0.5 mM ascorbate/TMPD +

20 mg/ml Antimycin A

790 6 25

—ADP 12 6 2

—ADP + 0.03 mM ATP 94 6 2

—ADP + 0.03 mM GDP 2 6 1

—ADP + 0.03 mM GTP 3 6 1

—ADP + 0.2 mM Dinitrophenol 137 6 5

NO production by intact yeast mitochondria (0.7 mg of mitochondrial protein) was

determined with an NO electrode using a closed chamber in NO Assay Medium,

as described in Experimental Procedures. Mitochondria were preincubated in

the closed chamber for 12 min at 28ºC, prior the addition of NaNO2. Values are

given 6 standard error of mean.
a 100% is equivalent to12 mM NO 3 1023/min.
b NO Assay Medium: 30 mM ADP, 6 mM succinate, 650 mM Mannitol, 10 mM

K2HPO4 (pH 6.5), 0.1 mM EDTA and 10 mM KCl.

Table 2. Effect of NO2
2 concentration and pH on NO synthesis by purified

yeast COX

NO2
2 concentration (mM)

NO Rate (mM 3 1023 /min)

pH 6 pH 6.5 pH 7

0.02 1.3 6 0.7 — —

0.1 14 6 0.8 1.1 6 0.6 —

1 221 6 0.9 17 6 0.9 1.0 6 0.5

Assays of yeast cytochrome c oxidase (63 mg of protein) were performed in 650 mM

Mannitol, 10 mM K2HPO4, 0.1 mM EDTA, 10 mM KCl, 2 mM cytochrome c, 1.25 mM

TMPD, and 0.01% Triton X 100, pre-bubbled with nitrogen for 5 min at 28ºC.

NaNO2 was then added (final concentration 1 mM) and NO synthesis measured

in a closed chamber as described in Experimental Procedures. Values are 6 SEM.
CELL METABOLISM : APRIL 2006



Mitochondrial nitric oxide synthesis
Figure 3. NO production by rat liver mitochondria

A) NO2
2-dependent NO synthesis by rat liver mito-

chondria in normoxic or anoxic conditions. NO pro-

duction was measured as described in Figure 1A, us-

ing isolated rat liver mitochondria (400 mg protein/ml),

prebubbled with either air or N2, as indicated.

B) Dose-dependent NO synthesis in isolated liver mi-

tochondria. Aliquots containing different amounts of

liver mitochondrial protein were pre-bubbled with ni-

trogen for 5 min at 28ºC in NO Assay Medium.

NaNO2 was then added to a final concentration of

1 mM and NO production followed. Inset, Initial rate

of NO production versus mg mitochondrial protein.

C) Effect of the inhibitors of complex III and TMPD on

the production of NO by rat liver mitochondria. NO

production was measured as described in (A) above,

using isolated rat liver mitochondria (400 mg protein/

ml). At the times indicated by arrows, Antimycin A,

Myxothiazol, or acorbate/TMPD were added to final

concentrations of 20 mg/ml, 4 mM, or 0.5 mM/0.5

mM, respectively.

D) TMPD-dependent activity is not affected by the

inhibitors of complex III. Rat liver mitochondria (400

mg protein/ml) were pre-bubbled with nitrogen at

28ºC for 5 min in NO Assay Medium (minus succi-

nate, plus 0.5 mM/0.5mM ascorbate/TMPD).

NaNO2 was then added to a final concentration of

1 mM and NO production followed with a NO elec-

trode. At the times indicated with arrows, Antimycin

A and Myxothiazol were added to final concentra-

tions of 20 mg/ml and 4 mM, respectively.
able to measure this activity with lower NO2
2 concentrations at

pH 6.0 than at a pH of 6.5 or 7.0. This finding is interesting for
two reasons. First, because the intracellular pH of yeast and
other cells drops when cells are exposed to anoxia or hypoxia.
This finding suggests that the ability of cytochrome c oxidase
to function as a NO2

2 reductase in anoxic cells or mitochondria
is mediated by changes in intracellular pH. And second, it is
well accepted that the rate of electron transport from heme a
to heme a3 in the binuclear reaction center of cytochrome c ox-
idase, with oxygen as substrate, is proton coupled. It increases
with decreasing pH because this enzyme also functions as a pro-
ton pump when present in the inner mitochondrial membrane
(Cooper, 1990). Our findings suggest that this also occurs
when NO2

2 is the electron acceptor.

NO2
2-dependent NO production by rat

liver mitochondria
To examine whether mitochondria from higher organisms ex-
hibit NO2

2-dependent NO production under the conditions
used for yeast mitochondria, we assayed isolated rat liver mito-
chondria. As with yeast mitochondria, a lag is observed prior to
NO synthesis unless the assay buffer is pre-bubbled with nitro-
gen (Figure 3A). The rate of NO synthesis increases in a dose-
dependent fashion with increasing mitochondrial protein (Fig-
ure 3B). This activity, like that in yeast mitochondria, requires
NO2

2 (but not nitrate), an electron donor, and ADP. It can be sup-
CELL METABOLISM : APRIL 2006
ported either by physiological electron donors (succinate, ma-
late, pyruvate, NADH) or by ascorbate/TMPD (Table 3) and is
inhibited by antimycin A, myxothiazol, KCN, and carbon monox-
ide. NO2

2-dependent NO synthesis in rat liver mitochondria is
supported by wide-range external NO2

2 concentrations and
can be observed with as little as 100 mM added NO2

2 (data
not shown). As with yeast mitochondria only 10% of the added
NO2

2 is internalized by rat liver mitochondria. NO2
2-dependent

NO synthesis in rat liver mitochondria is not inhibited by
L-NAME, which supports the conclusion that none of the NO
synthesis observed is attributable to a mtNOS. This is not
surprising because our assay conditions lack L-Arginine and
calcium and have a pH that is too acidic for NOS activity (Conte,
2003).

Our results confirm those of a previous study, which also re-
ported that rat liver mitochondria are capable of recycling
NO2

2 to NO under anoxic conditions (Nohl et al., 2000). In con-
trast to our findings above with yeast mitochondria, this later
study concluded that complex III of the respiratory chain func-
tioned as the NO2

2 reductase. To examine this possibility, we
looked at the effects of the two complex III inhibitors, antimycin
and myxothiazol, on NO production in rat liver mitochondria,
provided with either succinate or TMPD as a source of electrons.
Both inhibitors prevent the production of NO from NO2

2 when
succinate is used as a source of electrons but not when TMPD
is used as a source of electrons (Figure 3C). However,
281



A R T I C L E
ascorbate/TMPD supports the resumption of NO2
2-dependent

NO synthesis, after blocking succinate-driven electron transport
with either inhibitor. In addition, neither myxothiazol nor antimy-
cin A inhibit TMPD-driven NO production (Figure 3D). Because
TMPD feeds electrons into the respiratory chain downstream
of complex III (at the level of cytochrome c), these data support
the conclusion that the terminal portion of the respiratory chain
(i.e., cytochrome c and cytochrome c oxidase) is sufficient for
the reduction of NO2

2 to NO in rat liver mitochondria, as we
have found in yeast mitochondria. This conclusion is further sub-
stantiated by our finding that carbon monoxide, which specifi-
cally inhibits cytochrome c oxidase, blocks the reduction of
NO2

2 to NO in rat liver mitochondria (Table 3).

NO affects expression of CYC7
Previously, we have demonstrated that induction of the hypoxic
nuclear gene CYC7 in yeast cells requires cytochrome c oxidase
and the respiratory chain (Kwast et al., 1999). We have also
shown that cyanide blocks the induction of CYC7 after cells
are anoxic (Kwast et al., 1999). This suggested that cytochrome
c oxidase functions with an alternative electron acceptor in the
absence of oxygen and that the product of this reaction func-
tions as a ‘‘signal’’ that is required for the induction of CYC7.
Given the above finding that cytochrome c oxidase can use
NO2

2 as an alternative electron acceptor to produce NO under
anoxic conditions we next asked if NO is a ‘‘signal’’ involved in
the hypoxic induction of this gene. To address this we per-
formed three types of experiments. First, we asked if YHb influ-
ences the kinetics of induction of CYC7. From Figure 4A it can be
seen that the expression of CYC7 in JM43 does not increase un-

Table 3. Characterization of rat liver mitochondrial NO2
2-dependent NO

production

Assay medium

Rate of NO

production (%)a

NO Assay Mediumb 100 6 8

—NO2
2 0 6 9

—NO2
2 + 1 mM NO3

2 0 6 8

—Mitochondria 0 6 7

—Succinate 0 6 6

+10 mM L-NAME 100 6 9

—Succinate, + 2.5 mM Malate/pyruvate 260 613

—Succinate + 5 mM NADH 0 6 6

—ADP 50 6 6

—Succinate + 0.5 mM ascorbate/TMPD 700 6 80

+ CO (bubbled 10 min) 0 6 7

+ 1 mM KCN 0 6 5

—Succinate + 0.5 mM ascorbate/TMPD + CO 2 6 5

—Succinate + 0.5 mM ascorbate/TMPD + 1 mM KCN 3 6 5

—Succinate + 20 mg/ml Antimycin A 15 6 6

—Succinate + 4 mM Myxothiazol 0 6 5

—Succinate + 0.5 mM ascorbate/TMPD + 20 mg/ml

Antimycin A

650 6 70

—Succinate + 0.5 mM ascorbate/TMPD + 4 mM

Myxothiazol

680 6 50

NO production by intact rat liver mitochondria (0.7 mg of mitochondria protein) was

determined with an NO electrode using a closed chamber in NO Assay Medium, as

described in Experimental Procedures. Mitochondria were preincubated in the

closed chamber for 12 min at 28ºC prior the addition of NaNO2. Values are given 6

standard error of mean.
a 100 % is equivalent to12 mM NO 3 1023/min.
b NO Assay Medium is 0.7 mg of mitochondria, 30 mM ADP, 6 mM succinate,

650 mM Mannitol, 10 mM K2HPO4 (pH 6.5), 0.1 mM EDTA, and 10 mM KCl.
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til 8 hr after the shift. In contrast, expression of CYC7 in DR11 in-
creases between 2 and 4 hr after a shift, reaching a maximum at
8 hr, and then declines. This clearly demonstrates that the kinet-
ics of induction of this gene are different in JM43 and DR11. Sec-
ond, we compared the level of expression of CYC7 in JM43,
DR11, and DR10 cells grown to steady state under anoxic con-
ditions. The level of CYC7 expressed during steady-state anoxic
growth is much higher in DR11 than it is in either JM43 or DR10
(Figure 4B). Together, these findings indicate that the absence
of YHb affects both the kinetics of hypoxic induction and the
level of expression of CYC7 in anoxic cells. They also suggest
that the enhanced level of CYC7 expression seen in DR11 re-
quires both the absence of YHb and the presence of a functional
respiratory chain. The simplest explanation for these observa-
tions is that the enhanced level of nitrosative stress experienced
by cells lacking YHb influences the expression of CYC7. To ex-
amine this more directly, we asked if an exogenously supplied
NO donor, diethylenetriamine NO adduct (DETA-NO), affects
the expression of CYC7 when added to aerobic DR11 cells.
This experiment revealed that low concentrations of DETA-NO
increase the expression of CYC7. Normoxic cells treated with
0.5 mM DETA-NO show a 7-fold increase in CYC7 expression
(Figure 4C). When considered together, these findings indicate
that NO plays a role in the expression of CYC7 and suggest
that mitochondrially generated NO functions early in a hypoxic
signaling pathway.

Protein tyrosine nitration increases in hypoxic cells
The above studies have focused primarily on DR11, a strain that
is null for YHb. In order to ask if YHb+ cells experience nitrosative
stress when exposed to anoxia we subjected JM43 cells to
a shift from normoxia to anoxia and examined the levels of pro-
tein tyrosine nitration at different times after the shift. From
Figure 4D it is obvious that the level of protein tyrosine nitration
of specific protein bands increases immediately after the shift
and reaches a peak at 3 hr. Interestingly, this transient increase
in protein tyrosine nitration parallels the transient increase in ox-
idative stress, measured as protein carbonylation (Dirmeier
et al., 2002); both reach a peak at 3 hr after the shift. Because
peroxy NO2

2 functions in protein tyrosine nitration and is formed
from superoxide and NO, these findings strongly suggest that
levels of both superoxide and NO increase upon exposing these
cells to anoxia. Given that YHb in JM43 is present in both the mi-
tochondrial matrix and cytosol (Cassanova et al., 2005), these
findings also imply that the level of mitochondrial YHb present
at the time of the shift is insufficient to counter NO production
when the respiratory chain goes anoxic. Moreover, the ability
of YHb to consume NO in both the presence or absence of ox-
ygen (Liu et al., 2000) and to localize between the mitochondrial
matrix and cytosol in an oxygen-dependent manner (Cassanova
et al., 2005) strongly suggests that YHb functions to coordinate
intracellular NO levels with environmental oxygen levels.

Discussion

Mitochondrial NO synthesis
The results presented here indicate that mitochondria from
yeast and rat liver are capable of NO2-dependent NO synthesis
and that this occurs independently of a mtNOS. NO2

2-depen-
dent NO synthesis requires the respiratory chain and appears
when the oxygen concentration drops below w20 mM. The
CELL METABOLISM : APRIL 2006
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Figure 4. NO and the expression of CYC7 in

S. cerevisiae

A) Effects of YHb on the hypoxic induction of CYC7.

JM43 and DR11 cells were maintained in steady-

state normoxic growth in the fermentor for six gener-

ations prior to changing the sparge gas from air to

97.5% N2, 2.5% CO2. Cells were harvested at the

times indicated, their RNA extracted, separated by

agarose electrophoresis, blotted, and hybridized with

a CYC7 probe. The transcript levels are expressed

relative to the level at 12 hr. Values are 6 SEM.

B) Expression of CYC7 in cells grown to steady state

under anoxic conditions. JM43, DR11, and DR10

were grown in 97.5% N2, 2.5% CO2 in the fermentor

for six generations, harvested, and analyzed for the

expression of the CYC7 and ACT1. Values are 6 SEM.

C) Induction of CYC7 by DETA-NO. Expression of

CYC7 and ACT1 in the presence of the NO donor,

DETA-NO. DR11 yeast cell were examined and quan-

tified by Northern blot hybridization as indicated in Ex-

perimental Procedures.

D) Protein tyrosine nitration in whole-cell extracts from

JM43 after a shift to anoxia. Left Panel, JM43 cells

were grown in the conditions indicated in (A). Cells

were harvested at the times indicated, and 5 mg of pro-

tein of the whole-cell lysate were prepared and ana-

lyzed by SDS-PAGE electrophoresis and immunoblot-

ting as described in Experimental Procedures. Right

Panel, quantification of protein tyrosine nitration after

a shift to anoxia. Values are 6 SEM.

E) A model for the role of cytochrome c oxidase and

the mitochondrial respiratory chain in hypoxic gene in-

duction. In the presence of air, cytochrome c oxidase

uses oxygen as an electron acceptor and produces

water. When oxygen is limiting, it uses NO2
2 as an

electron acceptor and produces NO. Under low-oxy-

gen conditions, the respiratory chain becomes re-

duced and the electrons that accumulate are released

as superoxide (O2
.2) by cytochrome bc1. This super-

oxide combines with NO to produce peroxynitrite

(ONOO2), which promotes protein tyrosine nitration

of specific proteins that may be involved in a signaling

pathway to the nucleus.
NO2
2-dependent NO synthesis that we observe is catalyzed by

cytochrome c oxidase and is observable at effective internal mi-
tochondrial NO2

2 concentrations as low as 20 mM, which is
within the physiological range. These findings are interesting in
the context of several other studies that have addressed the ef-
fects of hypoxia on mitochondrial NO synthesis. For example, it
has been reported that NO production in rat liver and heart mi-
tochondria increases under hypoxic conditions (Valdez et al.,
2004; Schild et al., 2003) and that some of this activity is not
inhibited by the NOS inhibitor L-NAME. In addition, a NOS-
independent pathway in ischemic heart has been linked to
NO2

2-dependent NO production (Tiravanti et al., 2004). This lat-
ter finding is especially interesting because nitroglycerin, which
is used to treat ischemia, is metabolized to NO2

2 and then NO
under hypoxic conditions (Agvald et al., 2002), and because
NO2

2 is produced from nitroglycerin in mitochondria (Chen
et al., 2002). Finally, mitochondria from a variety of eukaryotes
are capable of reducing NO2

2 to NO when incubated at low-
oxygen concentrations (Kozlov et al., 1999; Nohl et al., 2000;
Planchet et al., 2005; Tiravanti et al., 2004; Tischner et al.,
2004). This activity is not attributable to mtNOS.
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Cytochrome c oxidase as a NO2
2 reductase

It has been reported that under some conditions, mammalian
cytochrome c oxidase can convert NO2

2 to NO as a NO2
2 re-

ductase (Paitian et al., 1985) and that a heme a3–nitrosyl com-
plex is formed at the binuclear reaction center in bovine heart
cytochrome c oxidase when incubated in the presence of ex-
cess NO2

2 and a reducing agent (Brudvig et al., 1980). At pH
7.3, NO dissociates from this complex with a rate of 0.01s21

(Sarti et al., 2000), indicating that under these conditions bovine
heart cytochrome c oxidase can function as a slow NO2

2 reduc-
tase. Here, we have shown that purified yeast cytochrome c ox-
idase can also function as a NO2

2 reductase. It does so when
oxygen is limiting and the rate of the reductase reaction in-
creases with decreasing pH. This is interesting because the in-
tracellular pH of yeast cells decreases when cells are exposed
to anoxia (Campbellburk et al., 1987; Gonzalez et al., 2000).
Yeast cytochrome c oxidase can produce NO over a wide range
of NO2

2 concentrations. We have determined that the NO2
2

concentration in aerobic JM43 yeast cells ranges from 9.5 to
17.5 nmol of NO2

2 per g wet weight. Assuming that one g wet
weight is equivalent to 0.64 ml cell water (Sherman, 2002),
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this value corresponds to 15 to 27.5 mM NO2
2. This range of

NO2
2 concentrations partially overlaps the range of NO2

2 con-
centrations used by yeast cytochrome c oxidase and yeast mi-
tochondria.

Mitochondrially produced NO and hypoxic
gene induction
Although several previous studies have implicated the respira-
tory chain in the induction of hypoxic nuclear genes in both yeast
(Kwast et al., 1999; Poyton, 1999) and mammals (Poyton, 1999;
Poyton et al., 2003; Chandel et al., 1998) the molecular mecha-
nisms that underlie this are unclear. One possibility is that the re-
spiratory chain produces increased levels of ROS when cells are
exposed to anoxia or hypoxia and that these ROS are involved
(Figure 4E). Although this mechanism for hypoxic gene induction
in mammals has been controversial in the past (c.f., Agani et al.,
2000; Chandel et al., 1998, 2000; Enomoto et al., 2002; Srinivas
et al., 1999; Srinivas et al., 2001; Vaux et al., 2001), recent stud-
ies strengthen the conclusion that mammalian cells undergo ox-
idative stress when exposed to hypoxia and that mitochondrially
generated ROS function in hypoxic signaling by stabilizing HIF-
1a (Brunelle et al., 2005; Guzy et al., 2005; Mansfield et al.,
2005). However, it is not clear from these studies that ROS are
sufficient for HIF-1a stability. Indeed, it is unlikely that mito-
chondrially generated ROS are sufficient for the induction of
hypoxic genes in yeast because exogenous oxidants do not in-
duce their expression (Causton et al., 2001; Gasch et al., 2000).
This suggests that the respiratory chain participates in hypoxic
signaling in other ways.

Our findings that mitochondria produce NO under hypoxic or
anoxic conditions and that the level of protein tyrosine nitration
in yeast cells is increased in a protein-specific manner when
cells are shifted from normoxia to anoxia provide an alternative
model for mitochondrial participation in hypoxic signaling. In-
deed, they suggest a model (Figure 4E) in which mitochondrially
generated NO and superoxide combine to form peroxynitrite,
which then tyrosine nitrates protein components of a hypoxic
signaling pathway. Support for this mitochondrial model for hyp-
oxic signaling in yeast comes from our finding that NO induces
the expression of yeast CYC7, a hypoxic nuclear gene, that
CYC7 is induced earlier and at higher levels in yhb12 cells
than in YHB1+ cells, and that YHB1+ cells undergo a transient in-
crease in tyrosine protein nitration upon exposure to reduced
oxygen levels. This model also receives support from recent
mammalian cells studies, which have shown that cytochrome
c is required for the stabilization of HIF-1a in murine cell lines
exposed to hypoxia (Mansfield et al., 2005). Cytochrome c is a
substrate for cytochrome c oxidase and hence required for
NO2-dependent NO production. However, this model is con-
founded by previous attempts to evaluate the involvement of
NO in mammalian hypoxic signaling because these studies
have produced contradictory results. Some have reported that
NO inhibits hypoxia-induced HIF-1a stabilization (Hagen et al.,
2003; Huang et al., 1999; Liu et al., 1998; Sogawa et al., 1998)
while others have reported that NO serves to stabilize HIF-1a
in normoxic cells (Kimura et al., 2002; Metzen et al., 2003). It
has also been reported that NO and other respiratory inhibitors
lead to increased intracellular oxygen levels in hypoxic cells and
that this increase in intracellular oxygen levels suppresses
HIF-1a stabilization (Hagen et al., 2003), a conclusion that was
challenged recently (Brunelle et al., 2005). It is not yet known if
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peroxynitrite affects the stability of HIF-1a, possibly via protein
tyrosine nitration. In this regard, it is useful to note that
superoxide and peroxynitrite are capable of affecting protein
activity/stability under conditions where NO alone has no effect
(Hausladen and Fridovich, 1994).

Clearly, more work is required to test the validity of the above
model. Attempts to examine the role of mitochondrially pro-
duced NO and peroxynitrite as well as protein tyrosine nitration
in hypoxic signaling in yeast and mammalian cells are currently
underway.

Experimental procedures

Yeast strains and growth media

The following yeast strains of S. cerevisiae were used: JM43 (Mat a his4-580

trp1-289 leu 2-3, 112 ura3-52 [r+]) (McEwen et al., 1986); DR11, a derivative

of JM43 containing a URA3 disrupted YHB1 gene; and DR10, a derviative of

JM43 r0 (Mat a his4-580 trp1-289 leu 2-3, 112 ura3-52 [r0]) containing a

URA3 disrupted YHB1 gene (Zhao, et al., 1996). Strains JM43, DR10, and

DR11 are isochromosomal except for the yhb null mutations carried in

DR10 and DR11. JM43 cells were grown in SSG-TEA media (supplemented

with Tween 80, ergosterol, amino acids, and uracil, as needed [Kwast et al.,

1999]). DR11 and DR10 cells were grown in SSG-TE (URA-) dropout media

(per liter: 3 g Difco Yeast Nitrogen Base, w/o amino acids, 10 g galactose,

0.8 g NH4SO4, 1 g KH2PO4, 0.5 g NaCl, 0.34 g MgSO4, 5 mg FeCl2, 2 g amino

acid dropout mix (-ura) and 0.4 g CaCl2) supplemented with 0.1% Tween 80

and 20 mg/ml ergosterol. Aerobic cultures and pre-cultures were grown in

a shaker (200 rpm) at 28ºC and harvested in logarithmic growth phase. For

shift experiments between normoxia and anoxia, a New Brunswick BioFlo

3000 fermentor was used as described (Poyton et al., 2004).

Preparation of whole-cell lysate, mitochondrial,

and cytosolic fractions

Coupled mitochondria (i.e., with P:O ratios near 2) were prepared from aero-

bic cultures as described (McKee and Poyton, 1984). After cell breakage and

centrifugation at 2000 3 g for 3 min, an aliquot of the supernatant was saved

as ‘‘whole-cell lysate.’’ The rest of the supernatant was decanted and centri-

fuged for 10 min at 12000 3 g to pellet the mitochondrial fraction, saving the

supernatant as the cytosolic fraction.

Isolation of rat liver mitochondria

Rat liver mitochondria were prepared from 3-month-old F344/NHSD rats ac-

cording to a published procedure (Pallotti and Lenaz, 2001).

Measurement of NO production

NO production was measured with a Clark-type NO electrode and an

ISO-NO mark II NO-meter (WPI, Sarasota, Florida). Except where noted all

solutions were NO2
2 free. Measurements were performed at 28ºC using a

final reaction volume of 2 ml in a thermostated chamber with a close-fitting

lid and fine holes for the electrode and a Hamilton syringe. Assays for NO pro-

duction by the mitochondrial respiratory chain or cytochrome c oxidase were

performed in NO Assay Medium (30 mM ADP, 6 mM succinate, 650 mM Man-

nitol, 10 mM K2HPO4 [pH 6.5], 0.1 mM EDTA, and 10 mM KCl).

SDS-PAGE

Mitochondrial and cytosolic fractions were separated on 10% polyacryl-

amide gels (resolving gel: 10% (w/v) 32:1 acrylamide: bisacrylamide, 0.1%

(w/v) SDS, 0.4 M Tris, pH 8.8; stacking gel: 3.5% (w/v) 32:1 acrylamide: bisa-

crylamide, 0.1% (w/v) SDS, 0.125 M Tris, pH 6.8. The cytosol and mitochon-

drial protein samples were prepared by adding 23 SDS loading buffer

(0.02 M NaPO4, pH 6.8, 4% recrystallized SDS, 40 mM dithiothreitol, 8%

glycerol) and then boiled for 3 min. The gel was run at 110 V until the dye front

reached the bottom of the gel.

Northern blot analysis

RNA isolation, electrophoresis, Northern blotting, and hybridization were

performed as indicated elsewhere (Poyton et al., 2004). The resulting images

were analyzed and quantified using ImageQuant 5.2 (Molecular Dynamics).
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Measurement of mitochondrial respiration

Rates of oxygen uptake by mitochondria were measured at 30ºC with

a Strathkelvin oxygen electrode system, as described previously with

some modifications (Poyton et al., 2004). The assay solution consisted of

2 ml of buffer containing 0.65 M Mannitol, 0.01M K2HPO4 (pH 6.5), 0.1 mM

EDTA, 0.01 M KCl, and 0.7 mg of mitochondrial protein.

Measurement of intracellular NO2
2 concentration in normoxic cells

Aerobic cultures were grown on a shaker (200 rpm) at 28ºC and harvested in

logarithmic growth phase. Cells were washed three times with cold distilled

water, weighed, and suspended in 2 volumes of cold water. The cells were

broken at 4ºC by sonication using a Branson Sonifier 250 with a microtip,

a duty cycle of 20%, and a power setting of 40 W. The lysate was centrifuged

20 min at 14000 3 g and an aliquot of the supernatant introduced via a Ham-

ilton syringe in the chamber of the NO-electrode filled with a solution of 0.1 M

H2SO4 and 0.1 M KI. The intracellular concentration of NO2
2 was calculated

from the amperometric detection of NO produced from the NO2
2 present in

the sample (Berkels et al., 2001).

Evaluation of NO2
2 uptake by mitochondria

Rat liver mitochondria or yeast mitochondria (1 mg) were incubated for

12 min at 28ºC in 2 ml of NO Assays Medium minus succinate and NaNO2.

After incubation, mitochondria were sedimented by centrifugation (13000 3 g,

10 min) and their volume measured. The pellet was washed with 2 ml of 650

mM Mannitol, 10 mM K2HPO4 (pH 6.5), 0.1 mM EDTA, 10 mM KCl, 30 mM

ADP and resuspended in 100 ul of 1% Triton X-100. NO2
2 concentration

was measured both in the supernatant and in the pellet as indicated in the

section above.

NO donor experiments

DR11 cells were grown in SSG-TE (URA-) drop out media as indicated above,

harvested in logarithmic phase, washed twice with ice cold water, sus-

pended in a medium containing 0.45% glucose, 40 mM K2HPO4 (pH 7.4)

and incubated for 4 hr in a shaker (200 rpm) with different concentrations

of DETA-NO. After incubation, the cells were harvested and mRNA extracted

as indicated above.

Data analysis
All experimental data shown were derived from atleast two or three indepen-

dent experiments.

Miscellaneous

Protein concentration was determined as described (Lowry et al., 1951),

using bovine serum albumin as a standard. Cytochrome c oxidase from

S. cerevisiae was prepared by Method 1 described previously (Poyton

et al., 1995).

Supplemental data

Supplemental data include two figures and experimental procedures and can

be found with this article online at http://www.cellmetabolism.org/cgi/

content/full/3/4/277/DC1/.
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