Cohen-Macaulayness of monomial ideals and symbolic powers of Stanley-Reisner ideals **

Nguyen Cong Minh ${ }^{\text {a }}$, Ngo Viet Trung ${ }^{\text {b,* }}$
${ }^{\text {a }}$ Department of Mathematics, University of Education, 136 Xuan Thuy, Hanoi, Vietnam
${ }^{\text {b }}$ Institute of Mathematics, 18 Hoang Quoc Viet, Hanoi, Vietnam

Received 13 December 2009; accepted 13 August 2010
Available online 25 October 2010
Communicated by Karen Smith

Abstract

We present criteria for the Cohen-Macaulayness of a monomial ideal in terms of its primary decomposition. These criteria allow us to use tools of graph theory and of linear programming to study the Cohen-Macaulayness of monomial ideals which are intersections of prime ideal powers. We can characterize the Cohen-Macaulayness of the second symbolic power or of all symbolic powers of a Stanley-Reisner ideal in terms of the simplicial complex. These characterizations show that the simplicial complex must be very compact if some symbolic power is Cohen-Macaulay. In particular, all symbolic powers are Cohen-Macaulay if and only if the simplicial complex is a matroid complex. We also prove that the CohenMacaulayness can pass from a symbolic power to another symbolic powers in different ways.

© 2010 Elsevier Inc. All rights reserved.
Keywords: Cohen-Macaulayness; Monomial ideal; Linear inequalities; Simplicial complex; Stanley-Reisner ideal; Symbolic power; Graph; Matroid complex

0. Introduction

The main aim of this paper is to characterize the Cohen-Macaulayness of symbolic powers of a squarefree monomial ideal in terms of the associated simplicial complex. This problem arises when we want to study the Cohen-Macaulayness of ordinary powers of a squarefree monomial

[^0]ideal. Recall that the m th symbolic power $I^{(m)}$ of an ideal I in a Noetherian ring is defined as the intersection of the primary components of I^{m} associated with the minimal primes. For a radical ideal in a polynomial ring over a field of characteristic zero, Nagata and Zariski showed that $I^{(m)}$ is the ideal of the polynomials that vanish to order m on the affine variety $V(I)$. The usual way for testing the Cohen-Macaulayness of a monomial ideal is to pass to the polarized ideal in order to apply Reisner's criterion for squarefree monomial ideals. To polarize an ideal we have to know the generators, which are not available for symbolic powers. So we need to find necessary and sufficient conditions for a monomial ideal to be Cohen-Macaulay in terms of its primary decomposition.

Recently Takayama [20] gave a formula for the local cohomology modules of an arbitrary monomial ideal by means of certain simplicial complexes associated with each degree of the multigrading. The formula is technically complicated and involves the generators of the ideal. In [12] we succeeded in using Takayama's formula to characterize the Cohen-Macaulayness of symbolic powers of two-dimensional squarefree monomial ideals. Inspired of [12] we shall show in Section 1 that Takayama's formula actually yields the following criteria for the CohenMacaulayness of a monomial ideal in terms of its primary decomposition.

Let I be a monomial ideal in the polynomial ring $S=k\left[x_{1}, \ldots, x_{n}\right]$, where k is a field of arbitrary characteristic. Let Δ be the simplicial complex on $[n]=\{1, \ldots, n\}$ such that \sqrt{I} is the Stanley-Reisner ideal

$$
I_{\Delta}=\bigcap_{F \in \mathcal{F}(\Delta)} P_{F}
$$

where $\mathcal{F}(\Delta)$ denotes the set of the facets of Δ and P_{F} is the prime ideal of S generated by the variables $x_{i}, i \notin F$. Assume that

$$
I=\bigcap_{G \in \mathcal{F}(\Delta)} I_{F},
$$

where I_{F} is the P_{F}-primary component of I.
For every point $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{N}^{n}$ we set $x^{\mathbf{a}}=x_{1}^{a_{1}} \cdots x_{n}^{a_{n}}$ and we denote by $\Delta_{\mathbf{a}}$ the simplicial complex on [n] with $\mathcal{F}\left(\Delta_{\mathbf{a}}\right)=\left\{F \in \mathcal{F}(\Delta) \mid x^{\mathbf{a}} \in I_{F}\right\}$. Moreover, for every simplicial complex Γ with $\mathcal{F}(\Gamma) \subseteq \mathcal{F}(\Delta)$ we set

$$
L_{\Gamma}(I):=\left\{\mathbf{a} \in \mathbb{N}^{n} \mid x^{\mathbf{a}} \in \bigcap_{F \in \mathcal{F}(\Delta) \backslash \mathcal{F}(\Gamma)} I_{F} \backslash \bigcup_{G \in \mathcal{F}(\Gamma)} I_{G}\right\}
$$

Theorem 1.6. Assume that I is an unmixed monomial ideal. Then the following conditions are equivalent:
(i) I is a Cohen-Macaulay ideal,
(ii) $\Delta_{\mathbf{a}}$ is a Cohen-Macaulay complex for all $\mathbf{a} \in \mathbb{N}^{n}$,
(iii) $L_{\Gamma}(I)=\emptyset$ for every non-Cohen-Macaulay complex Γ with $\mathcal{F}(\Gamma) \subseteq \mathcal{F}(\Delta)$.

Here we call a simplicial complex Γ Cohen-Macaulay if $\tilde{H}_{j}\left(\mathrm{lk}_{\Gamma} F, k\right)=0$ for all $F \in \Gamma$, $j<\operatorname{dimlk}_{\Gamma} F$. We can easily deduce from Theorem 1.6 (ii) previous results on the CohenMacaulayness of squarefree monomial ideals such as Reisner's criterion that I_{Δ} is Cohen-

Macaulay if and only if Δ is Cohen-Macaulay [14] and Eisenbud's observation that \sqrt{I} is Cohen-Macaulay if I is Cohen-Macaulay [7].

Theorem 1.6(iii) is especially useful when I is the intersection of prime ideal powers, that is, all primary components I_{F} are of the form P_{F}^{m} for some positive integers m. In this case, $x^{\mathbf{a}} \in I_{F}$ if and only if $\sum_{i \notin F} a_{i} \leqslant m$. Hence, $L_{\Gamma}(I)$ is the set of solutions in \mathbb{N}^{n} of a system of linear inequalities. So we only need to test the inconsistency of systems of linear inequalities associated with the non-Cohen-Macaulay complexes Γ with $\mathcal{F}(\Gamma) \subseteq \mathcal{F}(\Delta)$. Using standard techniques of linear programming we may express their inconsistency in terms of the exponents of the primary components of I. This approach was used before to study tetrahedral curves in [4].

In Sections 2 and 3 we will use the above criteria to study the Cohen-Macaulayness of symbolic powers of the Stanley-Reisner ideal I_{Δ} of a simplicial complex Δ. We will see that the Cohen-Macaulayness of $I_{\Delta}^{(2)}$ or of $I_{\Delta}^{(m)}$ for all $m \geqslant 1$ can be characterized completely in terms of Δ and that there are large classes of Stanley-Reisner ideals with Cohen-Macaulay symbolic powers.

For every subset $V \subseteq[n]$ we denote by Δ_{V} the subcomplex of Δ whose facets are the facets of Δ with at least $|V|-1$ vertices in V.

Theorem 2.1. $I_{\Delta}^{(2)}$ is a Cohen-Macaulay ideal if and only if Δ is Cohen-Macaulay and Δ_{V} is Cohen-Macaulay for all subsets $V \subseteq[n]$ with $2 \leqslant|V| \leqslant \operatorname{dim} \Delta+1$.

The condition of this theorem implies that the simplicial complex Δ is very compact in the sense that its vertices are almost directly connected to each other. In fact, we can show that the graph of the one-dimensional faces of Δ must have diameter $\leqslant 2$. If Δ is a graph, we recover the result of [12] that $I_{\Delta}^{(2)}$ is Cohen-Macaulay if and only if the diameter of the graph is $\leqslant 2$. Moreover, we also introduce a large class of simplicial complexes which generalizes matroid and shifted complexes and for which $I_{\Delta}^{(2)}$ is Cohen-Macaulay.

In particular, using tools from linear programming we can show that the Cohen-Macaulayness of all symbolic powers characterizes matroid complexes.

Theorem 3.5. $I_{\Delta}^{(m)}$ is Cohen-Macaulay for all $m \geqslant 1$ if and only if Δ is a matroid complex.
This characterization is also proved independently by Varbaro [21], who uses a completely different technique. Theorem 3.5 adds a new algebraic feature to matroids, and we may hope that it could be used to obtain combinatorial information. As an immediate consequence we obtain the result of [12] that for a graph $\Delta, I_{\Delta}^{(m)}$ is Cohen-Macaulay for all $m \geqslant 1$ if and only if every pair of disjoint edges of Δ is contained in a rectangle. Moreover, we can also easily deduce one of the main results of [15] that for a flag complex $\Delta, I_{\Delta}^{(m)}$ is Cohen-Macaulay for all $m \geqslant 1$ if and only if the graph of the minimal nonfaces of Δ is a union of disjoint complete graphs.

It was showed in [12] and [15] that if Δ is a graph or a flag complex and if $I_{\Delta}^{(t)}$ is CohenMacaulay for some $t \geqslant 3$, then $I_{\Delta}^{(m)}$ is Cohen-Macaulay for all $m \geqslant 1$. So one may ask the following general questions:

- Is $I_{\Delta}^{(m)}$ Cohen-Macaulay if $I_{\Delta}^{(m+1)}$ is Cohen-Macaulay?
- Does there exist a number t depending on $\operatorname{dim} \Delta$ such that if $I_{\Delta}^{(t)}$ is Cohen-Macaulay, then $I_{\Delta}^{(m)}$ is Cohen-Macaulay for all $m \geqslant 1$?

We don't know any definite answer to both questions. However, in Section 4 of this paper we can prove the following positive results on the preservation of Cohen-Macaulayness of symbolic powers.

Theorem 4.3. $I_{\Delta}^{(m)}$ is Cohen-Macaulay if $I_{\Delta}^{(t)}$ is Cohen-Macaulay for some $t \geqslant(m-1)^{2}+1$.
This result has the interesting consequence that $I_{\Delta}^{(2)}$ is Cohen-Macaulay if $I_{\Delta}^{(t)}$ is CohenMacaulay for some $t \geqslant 3$ or $I_{\Delta}^{(3)}$ is Cohen-Macaulay if $I_{\Delta}^{(t)}$ is Cohen-Macaulay for some $t \geqslant 5$. Note that we already know by [7] that I_{Δ} is Cohen-Macaulay if $I_{\Delta}^{(t)}$ is Cohen-Macaulay for some $t \geqslant 2$.

Theorem 4.5. Let $d=\operatorname{dim} \Delta$. If $I_{\Delta}^{(t)}$ is Cohen-Macaulay for some $t \geqslant(n-d)^{n+1}$, then $I_{\Delta}^{(m)}$ is Cohen-Macaulay for all $m \geqslant 1$.

It remains to determine the smallest number t_{0} such that if $I_{\Delta}^{(t)}$ is Cohen-Macaulay for some $t \geqslant t_{0}$, then $I_{\Delta}^{(m)}$ is Cohen-Macaulay for all $m \geqslant 1$. By [12] and [15] we know that $t_{0}=3$ if $\operatorname{dim} \Delta=1$ or if Δ is a flag complex.

One may also raise similar questions on the Cohen-Macaulayness of ordinary powers of the Stanley-Reisner ideal I_{Δ}. Since I_{Δ}^{m} is Cohen-Macaulay if and only if $I_{\Delta}^{(m)}=I_{\Delta}^{m}$ and $I_{\Delta}^{(m)}$ is Cohen-Macaulay, we have to study further the problem when $I_{\Delta}^{(m)}=I_{\Delta}^{m}$ in terms of Δ. The case $\operatorname{dim} \Delta=1$ has been solved in [12]. We don't address this problem here because it is of different nature than the Cohen-Macaulayness of $I_{\Delta}^{(m)}[5,6]$.

For unexplained terminology we refer the readers to the books [2,17] and [19].
Finally, the authors would like to thank the referee for suggesting Corollary 2.7 and other corrections.

1. Criteria for Cohen-Macaulay monomial ideals

From now on let I be a monomial ideal in the polynomial ring $S=k\left[x_{1}, \ldots, x_{n}\right]$. Note that S / I is an \mathbb{N}^{n}-graded algebra. For every degree $\mathbf{a} \in \mathbb{Z}^{n}$ we denote by $H_{\mathfrak{m}}^{i}(S / I)_{\mathbf{a}}$ the a-component of the i th local cohomology module $H_{\mathfrak{m}}^{i}(S / I)$ of S / I with respect to the maximal homogeneous ideal \mathfrak{m} of S. Inspired of a result of Hochster in the squarefree case [8, Theorem 4.1], Takayama found the following combinatorial formula for $\operatorname{dim}_{k} H_{\mathfrak{m}}^{i}(S / I)_{\mathbf{a}}$ [20, Theorem 2.2].

For every $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{Z}^{n}$ we set $G_{\mathbf{a}}=\left\{i \mid a_{i}<0\right\}$ and we denote by $\Delta_{\mathbf{a}}(I)$ the simplicial complex of all sets of the form $F \backslash G_{\mathbf{a}}$, where F is a subset of $[n]$ containing $G_{\mathbf{a}}$ such that for every minimal generator $x^{\mathbf{b}}$ of I there exists an index $i \notin F$ such that $a_{i}<b_{i}$. Let $\Delta(I)$ denote the simplicial complex such that \sqrt{I} is the Stanley-Reisner ideal of $\Delta(I)$. For simplicity we set $\Delta_{\mathbf{a}}=\Delta_{\mathbf{a}}(I)$ and $\Delta=\Delta(I)$.

For $j=1, \ldots, n$, let $\rho_{j}(I)$ denote the maximum of the j th coordinates of all vectors $\mathbf{b} \in \mathbb{N}^{n}$ such that $x^{\mathbf{b}}$ is a minimal generator of I.

Theorem 1.1 (Takayama's formula).

$$
\operatorname{dim}_{k} H_{\mathfrak{m}}^{i}(S / I)_{\mathbf{a}}= \begin{cases}\operatorname{dim}_{k} \tilde{H}_{i-\left|G_{\mathbf{a}}\right|-1}\left(\Delta_{\mathbf{a}}, k\right) & \text { if } G_{\mathbf{a}} \in \Delta \text { and } a_{j}<\rho_{j}(I) \text { for } j=1, \ldots, n, \\ 0 & \text { else. }\end{cases}
$$

It is known that S / I is Cohen-Macaulay if and only if $H_{\mathfrak{m}}^{i}(S / I)=0$ for $i<d$, where $d=$ $\operatorname{dim} S / I$. Therefore, we can derive from this formula criteria for the Cohen-Macaulayness of I. The problem here is to find conditions by means of the primary decomposition of I. The idea for that comes from [12, Section 1].

First, we have to describe the simplicial complexes $\Delta_{\mathbf{a}}$ in a more simple way. For every subset F of $[n]$ let $S_{F}=S\left[x_{i}^{-1} \mid i \in F\right]$.

Lemma 1.2. $\Delta_{\mathbf{a}}$ is the simplicial complex of all sets of the form $F \backslash G_{\mathbf{a}}$, where F is a subset of $[n]$ containing $G_{\mathbf{a}}$ such that $x^{\mathbf{a}} \notin I S_{F}$.

Proof. We have $a_{i}<b_{i}$ for some $i \notin F$ iff $x^{\mathbf{a}}$ is not divided by $x^{\mathbf{b}}$ in S_{F}. This condition is satisfied for every minimal generator $x^{\mathbf{b}}$ of I iff $x^{\mathbf{a}} \notin I S_{F}$.

This lemma can be also proved by looking at the ath multigraded component of the Čech complex of S / I.

Using the above characterization of $\Delta_{\mathbf{a}}$ we can easily show that $\Delta_{\mathbf{a}}$ is a subcomplex of Δ. In fact, Δ is the simplicial complex of all subsets $F \subseteq[n]$ such that $\prod_{i \in F} x_{i} \notin \sqrt{I}$. But this condition means $I S_{F} \neq S_{F}$. If $G \in \Delta_{\mathbf{a}}$, then $x^{\mathbf{a}} \notin I S_{G}$, which implies $I S_{G} \neq S_{G}$, hence $G \in \Delta$. This shows that $\Delta_{\mathbf{a}} \subseteq \Delta$.

Example 1.3. $\Delta_{\mathbf{0}}=\Delta$ because for all faces F of Δ we have $x^{0}=1 \notin I S_{F}$.
For every subset F of $[n]$ let P_{F} denote the prime ideal of S generated by the variables x_{i}, $i \notin F$. Then the minimal primes of I are the ideals $P_{F}, F \in \mathcal{F}(\Delta)$. Let I_{F} denote the P_{F}-primary component of I. If I has no embedded components, we have

$$
I=\bigcap_{F \in \mathcal{F}(\Delta)} I_{F}
$$

Using this primary decomposition of I we obtain the following formula for the dimension of $\Delta_{\mathbf{a}}$.
Lemma 1.4. Assume that I is unmixed. Then $\Delta_{\mathbf{a}}(I)$ is pure and

$$
\operatorname{dim} \Delta_{\mathbf{a}}=\operatorname{dim} \Delta-\left|G_{\mathbf{a}}\right|
$$

Proof. The assumption means that I has no embedded components and Δ is pure. Let H be an arbitrary facet of $\Delta_{\mathbf{a}}$. By Lemma $1.2, x^{\mathbf{a}} \notin I S_{H \cup G_{\mathbf{a}}}$. We have

$$
I S_{H \cup G_{\mathrm{a}}}=\bigcap_{F \in \mathcal{F}(\Delta)} I_{F} S_{H \cup G_{\mathrm{a}}}=\bigcap_{F \in \mathcal{F}(\Delta), H \cup G_{\mathrm{a}} \subseteq F} I_{F} S_{H \cup G_{\mathrm{a}}}
$$

because $P_{F} S_{H \cup G_{\mathbf{a}}}=S_{H \cup G_{\mathbf{a}}}$ if $H \cup G_{\mathbf{a}} \nsubseteq F$. Therefore, there exists $F \in \mathcal{F}(\Delta)$ with $H \cup G_{\mathbf{a}} \subseteq F$ such that $x^{\mathbf{a}} \notin I_{F} S_{H \cup G_{\mathbf{a}}}$. Since $I_{F} S_{H \cup G_{\mathbf{a}}} \cap S_{F}=I S_{F}$, this implies $x^{\mathbf{a}} \notin I S_{F}$, hence $F \backslash G_{\mathbf{a}} \in \Delta_{\mathbf{a}}$ by Lemma 1.2. So we must have $H=F \backslash G_{\mathbf{a}}$. Thus,

$$
\operatorname{dim} H=|F|-\left|G_{\mathbf{a}}\right|-1=\operatorname{dim} \Delta-\left|G_{\mathbf{a}}\right|
$$

This shows that $\Delta_{\mathbf{a}}$ is pure and $\operatorname{dim} \Delta_{\mathbf{a}}=\operatorname{dim} \Delta-\left|G_{\mathbf{a}}\right|$.

If $\mathbf{a} \in \mathbb{N}^{n}$, then $G_{\mathbf{a}}=\emptyset$. Hence Lemma 1.4 implies $\mathcal{F}\left(\Delta_{\mathbf{a}}\right) \subseteq \mathcal{F}(\Delta)$. We can easily check which facet of $\mathcal{F}(\Delta)$ belongs to $\mathcal{F}\left(\Delta_{\mathbf{a}}\right)$ and we can determine all points $\mathbf{a} \in \mathbb{N}^{n}$ such that $\Delta_{\mathbf{a}}$ equals to a given subcomplex Γ of Δ with $\mathcal{F}(\Gamma) \subseteq \mathcal{F}(\Delta)$. For that we introduce the set of lattice points

$$
L_{\Gamma}(I):=\left\{\mathbf{a} \in \mathbb{N}^{n} \mid x^{\mathbf{a}} \in \bigcap_{F \in \mathcal{F}(\Delta) \backslash \mathcal{F}(\Gamma)} I_{F} \backslash \bigcup_{G \in \mathcal{F}(\Gamma)} I_{G}\right\} .
$$

Lemma 1.5. Assume that I is unmixed. For $\mathbf{a} \in \mathbb{N}^{n}$ we have
(i) $\mathcal{F}\left(\Delta_{\mathbf{a}}\right)=\left\{F \in \mathcal{F}(\Delta) \mid x^{\mathbf{a}} \notin I_{F}\right\}$,
(ii) $\Delta_{\mathbf{a}}=\Gamma$ if and only if $\mathbf{a} \in L_{\Gamma}(I)$.

Proof. For $F, G \in \mathcal{F}(\Delta)$ we have $I_{G} S_{F}=S_{F}$ if $G \neq F$. Therefore,

$$
I S_{F} \cap S=\bigcap_{G \in \mathcal{F}(\Delta)} I_{G} S_{F} \cap S=I_{F} S_{F} \cap S=I_{F}
$$

From this it follows that $x^{\mathbf{a}} \in I S_{F}$ iff $x^{\mathbf{a}} \in I_{F}$. By Lemma 1.2, $F \in \mathcal{F}\left(\Delta_{\mathbf{a}}\right)$ iff $x^{\mathbf{a}} \notin I_{F}$, which immediately yields the assertions.

With regard to Lemma 1.5 we may consider the following two criteria for the CohenMacaulayness of I as by means of the primary decomposition of I.

For any face F of a simplicial complex Γ we denote by $\mathrm{lk}_{\Gamma} F$ the subcomplex of all faces $G \in \Gamma$ such that $F \cap G=\emptyset$ and $F \cup G \in \Gamma$. We call Γ a Cohen-Macaulay complex (over k) if $\tilde{H}_{j}\left(\mathrm{lk}_{\Gamma} F, k\right)=0$ for all $F \in \Gamma, j<\operatorname{dimlk}_{\Gamma} F$.

Theorem 1.6. Assume that I is an unmixed monomial ideal. Then the following conditions are equivalent:
(i) I is a Cohen-Macaulay ideal,
(ii) $\Delta_{\mathbf{a}}$ is a Cohen-Macaulay complex for all $\mathbf{a} \in \mathbb{N}^{n}$,
(iii) $L_{\Gamma}(I)=\emptyset$ for every non-Cohen-Macaulay complex Γ with $\mathcal{F}(\Gamma) \subseteq \mathcal{F}(\Delta)$.

Proof. (i) \Rightarrow (ii): Let $F \in \Delta_{\mathbf{a}}$ be arbitrary. We will first represent $\mathrm{lk}_{\Delta_{\mathbf{a}}} F$ in a suitable form in order to apply Takayama's formula. Let $G \in \Delta_{\mathbf{a}}$ such that $F \cap G=\emptyset$. By Lemma 1.2, $F \cup G \in \Delta_{\mathbf{a}}$ iff $x^{\mathbf{a}} \notin I S_{F \cup G}$. Let $\mathbf{b} \in \mathbb{Z}^{n}$ such that $b_{i}=-1$ for $i \in F$ and $b_{i}=a_{i}$ for $i \notin F$. Then $F=G_{\mathbf{b}}$, and $x^{\mathbf{a}} \notin I S_{F \cup G}$ iff $x^{\mathbf{b}} \notin I S_{F \cup G}$. By Lemma 1.2, $G \in \Delta_{\mathbf{b}}$ iff $x^{\mathbf{b}} \notin I S_{F \cup G}$. Therefore, $F \cup G \in \Delta_{\mathbf{a}}$ iff $G \in \Delta_{\mathbf{b}}$. So we obtain $\mathrm{lk}_{\Delta_{\mathbf{a}}} F=\Delta_{\mathbf{b}}$. By the proof of [20, Theorem 1], $\tilde{H}_{i}\left(\Delta_{\mathbf{b}}, k\right)=0$ for all i if there is a component $b_{j} \geqslant \rho_{j}(I)$. Therefore, we may assume that $b_{j}<\rho_{j}(I)$ for all j. By Theorem 1.1 the Cohen-Macaulayness of I implies

$$
\tilde{H}_{i-\left|G_{\mathbf{b}}\right|-1}\left(\Delta_{\mathbf{b}}, k\right)=0 \quad \text { for } i<d,
$$

where $d=\operatorname{dim} S / I$. By Lemma 1.4,

$$
\operatorname{dim} \Delta_{\mathbf{b}}=\operatorname{dim} \Delta-\left|G_{\mathbf{b}}\right|=d-\left|G_{\mathbf{b}}\right|-1
$$

Therefore, the above formula can be rewritten as

$$
\tilde{H}_{j}\left(\Delta_{\mathbf{b}}, k\right)=0 \quad \text { for } j<\operatorname{dim} \Delta_{\mathbf{b}}
$$

So we can conclude that $\tilde{H}_{j}\left(\mathrm{lk}_{\Delta_{\mathbf{a}}} F, k\right)=0$ for $j<\operatorname{dimlk}_{\Delta_{\mathbf{a}}} F$.
(ii) \Rightarrow (iii): By Lemma 1.5 (ii), $\Delta_{\mathbf{a}}(I)=\Gamma$ for all $\mathbf{a} \in L_{\Gamma}(I)$. Therefore, $L_{\Gamma}(I)=\emptyset$ if Γ is not Cohen-Macaulay.
(iii) \Rightarrow (i): By Theorem 1.1 we only need to show that $\tilde{H}_{i-\left|G_{\mathbf{a}}\right|-1}\left(\Delta_{\mathbf{a}}, k\right)=0$ for all $\mathbf{a} \in \mathbb{Z}^{n}$ with $G_{\mathbf{a}} \in \Delta, i<d$. As we have seen above, this formula can be rewritten as $\tilde{H}_{j}\left(\Delta_{\mathbf{a}}, k\right)=0$ for $j<\operatorname{dim} \Delta_{\mathbf{a}}$. We may assume that $\Delta_{\mathbf{a}} \neq \emptyset$. By Lemma 1.2, there is a set $G \supseteq G_{\mathbf{a}}$ such that $x^{\mathbf{a}} \notin I S_{G}$. From this it follows that $x^{\mathbf{a}} \notin I S_{G_{\mathbf{a}}}$. Let $\mathbf{b} \in \mathbb{N}^{n}$ with $b_{i}=a_{i}$ if $a_{i} \geqslant 0$ and $b_{i}=0$ else. Then $x^{\mathbf{b}} \notin I S_{F}$ iff $x^{\mathbf{a}} \notin I S_{F}, F \supseteq G_{\mathbf{a}}$. So $x^{\mathbf{b}} \notin I S_{G_{\mathbf{a}}}$. Let $\Gamma=\Delta_{\mathbf{b}}$. By Lemma 1.2, $G_{\mathbf{a}} \in \Gamma$ and

$$
\Delta_{\mathbf{a}}=\left\{F \backslash G_{\mathbf{a}} \mid F \supseteq G_{\mathbf{a}}, x^{\mathbf{b}} \notin I S_{F}\right\}=\left\{F \backslash G_{\mathbf{a}} \mid F \supseteq G_{\mathbf{a}}, F \in \Gamma\right\}=\mathrm{lk}_{\Gamma} G_{\mathbf{a}}
$$

By Lemma 1.5, $\mathcal{F}(\Gamma) \subseteq \mathcal{F}(\Delta)$ and $\mathbf{b} \in L_{\Gamma}(I)$. Therefore, (iii) implies that Γ is CohenMacaulay. Hence $\tilde{H}_{j}\left(\Delta_{\mathbf{a}}, k\right)=0$ for $j<\operatorname{dim} \Delta_{\mathbf{a}}$.

Remark 1.7. The above proof also shows that we may replace Theorem 1.6(ii) by the condition that $\Delta_{\mathbf{a}}$ is Cohen-Macaulay for $\mathbf{a} \in \mathbb{N}^{n}$ with $a_{j}<\rho_{j}(I), j=1, \ldots, n$. This restriction is very useful in computing examples.

If I is a squarefree monomial ideal, $\rho_{j}(I)=1$ for all j, hence there is only a point $\mathbf{a} \in \mathbb{N}^{n}$ with $a_{j}<1$ for all j, which is $\mathbf{0}$. But $\Delta_{\mathbf{0}}=\Delta$. Therefore, Theorem 1.6(ii) implies the well-known result that I is Cohen-Macaulay if and only if Δ is Cohen-Macaulay [14]. If I is an arbitrary monomial ideal, Theorem 1.6 (ii) implies that Δ is Cohen-Macaulay if I is Cohen-Macaulay. From this we immediately obtain the result that \sqrt{I} is Cohen-Macaulay [7, Theorem 2.6(i)].

If I is the intersection of prime ideal powers, we can interpret Theorem 1.6(iii) in terms of Diophantine linear inequalities. In fact, if $I_{F}=P_{F}^{m_{F}}$ for some positive integer m_{F}, we have $x^{a} \in I_{F}$ if and only if $\sum_{i \neq F} a_{i} \geqslant m_{F}$. Hence we can translate the condition

$$
x^{\mathbf{a}} \in \bigcap_{F \in \mathcal{F}(\Delta) \backslash \mathcal{F}(\Gamma)} I_{F} \backslash \bigcup_{G \in \mathcal{F}(\Gamma)} I_{G}
$$

as a system of linear inequalities:

$$
\begin{gathered}
\sum_{i \notin F} a_{i} \geqslant m_{F} \quad(F \in \mathcal{F}(\Delta) \backslash \mathcal{F}(\Gamma)), \\
\sum_{i \notin G} a_{i}<m_{G} \quad(G \in \mathcal{F}(\Gamma))
\end{gathered}
$$

The condition $L_{\Gamma}(I)=\emptyset$ means that this system of linear inequalities has no solution $\mathbf{a} \in \mathbb{N}^{n}$. Thus, I is Cohen-Macaulay if and only if this system is inconsistent in \mathbb{N}^{n} for all non-CohenMacaulay subcomplexes Γ of Δ with $\mathcal{F}(\Gamma) \subseteq \mathcal{F}(\Delta)$.

In particular, if $\operatorname{dim} S / I=2$, we may identify Δ with the graph of its edges. In this case, the non-Cohen-Macaulay subcomplexes are the unconnected subgraphs so that we can easily write
down the corresponding systems of linear inequalities. As an example we consider the following class of monomial ideals for which it took several efforts [18,11] until one knows which of them is Cohen-Macaulay [3,4].

Example 1.8 (Tetrahedral curves). Let

$$
I=\left(x_{1}, x_{2}\right)^{m_{1}} \cap\left(x_{1}, x_{3}\right)^{m_{2}} \cap\left(x_{1}, x_{4}\right)^{m_{3}} \cap\left(x_{2}, x_{3}\right)^{m_{4}} \cap\left(x_{2}, x_{4}\right)^{m_{5}} \cap\left(x_{3}, x_{4}\right)^{m_{6}}
$$

where m_{1}, \ldots, m_{6} are arbitrary positive integers. Then Δ is the complete graph K_{4}. This graph has three unconnected subgraphs which correspond to the pairs of disjoint edges: $\{\{1,2\},\{3,4\}\},\{\{1,3\},\{2,4\}\},\{\{1,4\},\{2,3\}\}$. Let Γ be the complex of the subgraph $\{\{1,2\}$, $\{3,4\}\}$. Then $L_{\Gamma}(I)$ is the set of all points $\mathbf{a} \in \mathbb{N}^{4}$ which satisfies the inequalities

$$
\left\{\begin{array}{ll}
a_{2}+a_{4} \geqslant m_{2}, & a_{2}+a_{3} \geqslant m_{3}, \\
a_{3}+a_{4}<m_{1}, & a_{1}+a_{2}<m_{6} .
\end{array} \quad a_{1}+a_{4} \geqslant m_{4}, \quad a_{1}+a_{3} \geqslant m_{5},\right.
$$

For the complexes of the subgraphs $\{\{1,3\},\{2,4\}\},\{\{1,4\},\{2,3\}\}$ we have two similar systems of inequalities. By Theorem 1.6(iii), I is Cohen-Macaulay iff the three systems of inequalities have no solutions in \mathbb{N}^{4}. Using standard techniques of integer programming one can easily solve these systems of inequalities and obtain a Cohen-Macaulay criterion for I in terms of the exponents m_{1}, \ldots, m_{6} (see [4] for details).

Recently, Herzog, Takayama and Terai [7, Theorem 3.2] proved that all unmixed monomial ideals with radical I_{Δ} are Cohen-Macaulay if and only if Δ has no non-Cohen-Macaulay subcomplex Γ with $\mathcal{F}(\Gamma) \subseteq \mathcal{F}(\Delta)$. But that is just an immediate consequence of Theorem 1.6(iii). In addition, we can use the same condition on Δ to characterize the Cohen-Macaulayness of all intersections of prime ideal powers with radical I_{Δ}.

Corollary 1.9. Let Δ be a pure simplicial complex. The ideal $I=\bigcap_{F \in \mathcal{F}(\Delta)} P_{F}^{m_{F}}$ is CohenMacaulay for all exponents $m_{F} \geqslant 1$ (or $m_{F} \gg 0$) if and only if Δ has no non-Cohen-Macaulay subcomplex Γ with $\mathcal{F}(\Gamma) \subseteq \mathcal{F}(\Delta)$.

Proof. It suffices to show the necessary part. Assume that Δ has a non-Cohen-Macaulay subcomplex \mathcal{F} with $\mathcal{F}(\Gamma) \subseteq \mathcal{F}(\Delta)$. Given any point $\mathbf{a} \in \mathbb{N}^{n}$ with all $a_{i}>0$ we choose

$$
\begin{gathered}
m_{F}=\sum_{i \notin F} a_{i} \quad(F \in \mathcal{F}(\Delta) \backslash \mathcal{F}(\Gamma)), \\
m_{G}=\sum_{i \notin G} a_{i}+1 \quad(G \in \mathcal{F}(\Gamma)) .
\end{gathered}
$$

As mentioned above, this implies $L_{\Gamma}(I) \neq \emptyset$. Hence I is not Cohen-Macaulay by Theorem 1.6(iii).

Note that Δ has no non-Cohen-Macaulay subcomplex Γ with $\mathcal{F}(\Gamma) \subseteq \mathcal{F}(\Delta)$ if and only if after a suitable permutation, $\mathcal{F}(\Delta)=\left\{F_{1}, \ldots, F_{r}\right\}$ with $F_{i}=\{1, \ldots, i-1, i+1, \ldots, d+1\}$, $i=1, \ldots, r$, or $F_{i}=\{1, \ldots, d, d+i\}, i=1, \ldots, r$ [7, Theorem 3.2].

2. Cohen-Macaulayness of the second symbolic power

Let Δ be an arbitrary simplicial complex on the vertex set $[n]$. One calls

$$
I_{\Delta}=\bigcap_{F \in \mathcal{F}(\Delta)} P_{F}
$$

the Stanley-Reisner ideal and $k[\Delta]=S / I_{\Delta}$ the face ring of Δ.
We will use Theorem 1.6 to study the Cohen-Macaulayness of the symbolic powers of I_{Δ}. For every integer $m \geqslant 1$, the m th symbolic power of I_{Δ} is the ideal

$$
I_{\Delta}^{(m)}=\bigcap_{F \in \mathcal{F}(\Delta)} P_{F}^{m}
$$

Obviously, $\Delta\left(I_{\Delta}^{(m)}\right)=\Delta$. Since we study the Cohen-Macaulayness of $I_{\Delta}^{(m)}$ we may assume that Δ is pure, which is equivalent to say that I_{Δ} is unmixed.

For every subset $V \subseteq[n]$ we denote by Δ_{V} the subcomplex of Δ whose facets are the facets of Δ with at least $|V|-1$ vertices in V.

Theorem 2.1. $I_{\Delta}^{(2)}$ is Cohen-Macaulay if and only if Δ is Cohen-Macaulay and Δ_{V} is CohenMacaulay for all subsets $V \subseteq[n]$ with $2 \leqslant|V| \leqslant \operatorname{dim} \Delta+1$.

Proof. For $I=I_{\Delta}^{(2)}$ we have $\rho_{j}(I)=2$ for all $j=1, \ldots, n$. Hence $\{0,1\}^{n}$ is the set of all $\mathbf{a} \in \mathbb{N}^{n}$ with $a_{j}<\rho_{j}(I)=2, j=1, \ldots, n$. By Remark 1.7, $I_{\Delta}^{(2)}$ is Cohen-Macaulay iff $\Delta_{\mathbf{a}}$ is CohenMacaulay for all $\mathbf{a} \in\{0,1\}^{n}$.

If $\mathbf{a}=0, \Delta_{\mathbf{0}}=\Delta$ by Example 1.3. If $\mathbf{a}=\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}$, the unit vectors of \mathbb{N}^{n}, we have $x^{\mathbf{e}_{i}}=$ $x_{i} \notin P_{F}^{2}$ for all $F \in \mathcal{F}(\Delta)$, which by Lemma 1.5(i) implies $\Delta_{\mathbf{a}}=\Delta$. If $\mathbf{a} \neq 0, \mathbf{e}_{1}, \ldots, \mathbf{e}_{n}$, let $V=\left\{i \in[n] \mid a_{i}=1\right\}$. Then $|V| \geqslant 2$ and $\Delta_{\mathbf{a}}=\Delta_{V}$. In fact, for any subset F of $[n], F$ is a facet of $\Delta_{\mathbf{a}}$ iff $x^{\mathbf{a}} \notin P_{F}^{2}$ iff $\sum_{i \notin F} a_{i}<2$ iff $|V \backslash F|<2$ iff $|F \cap V| \geqslant|V|-1$.

It remains to show that Δ_{V} is Cohen-Macaulay if $|V| \geqslant \operatorname{dim} \Delta+2$. If $|V|=\operatorname{dim} \Delta+2$, then Δ_{V} is a union of facets of a simplex. In this case, $I_{\Delta_{V}}$ is a principal ideal. Hence Δ_{V} is CohenMacaulay. If $|V| \geqslant \operatorname{dim} \Delta+3$, then $\Delta_{V}=\emptyset$ because no facet of Δ can have more than $\operatorname{dim} \Delta+1$ vertices.

Theorem 2.1 puts strong constraints on simplicial complexes Δ for which $I_{\Delta}^{(2)}$ is CohenMacaulay. We shall see later in Corollary 4.4 that $I_{\Delta}^{(2)}$ is Cohen-Macaulay if $I_{\Delta}^{(m)}$ is CohenMacaulay for some $m \geqslant 3$.

Recall that for a graph Γ, the distance between two vertices of Γ is the minimal length of paths from one vertex to the other vertex. This length is infinite if there is no paths connecting them. The maximal distance between two vertices of Γ is called the diameter of Γ and denoted by $\operatorname{diam}(\Gamma)$.

Corollary 2.2. Let Δ be a simplicial complex such that $I_{\Delta}^{(2)}$ is a Cohen-Macaulay ideal. Let Γ be the graph of the one-dimensional faces of Δ. Then $\operatorname{diam}(\Gamma) \leqslant 2$.

Proof. Let $i \neq j$ be two arbitrary vertices of Γ and put $V=\{i, j\}$. Then the faces of Δ_{V} are the faces of Γ which contain i or j. By Theorem 2.1, Δ_{V} is connected. Therefore, there are a face containing i and a face containing j which meet each other. This implies that Γ has an edge containing i and an edge containing j which share a common vertex. Hence the distance between i and j is $\leqslant 2$.

The converse of Corollary 2.2 holds in the case $\operatorname{dim} \Delta=1$.
Corollary 2.3. (See [12, Theorem 2.3].) Let Δ be a graph. Then $I_{\Delta}^{(2)}$ is a Cohen-Macaulay ideal if and only if $\operatorname{diam}(\Delta) \leqslant 2$.

Proof. It is known that a graph is Cohen-Macaulay iff it is connected. Therefore, it suffices to show that Δ_{V} is connected for all subsets $V \subseteq[n]$ with $|V|=2$ iff $\operatorname{diam}(\Delta) \leqslant 2$. Assume that $V=\{i, j\}$. Then the edges of Δ_{V} are the edges of Δ which contain i or j. Therefore, Δ_{V} is connected iff the distance between i and j is $\leqslant 2$. Since i, j can be chosen arbitrarily, this means $\operatorname{diam}(\Delta) \leqslant 2$.

Munkres [13] showed that the Cohen-Macaulayness of I_{Δ} depends only on the geometric realization of Δ. In other words, the Cohen-Macaulayness of I_{Δ} is a topological property of Δ. From Corollary 2.3 we can easily see that the Cohen-Macaulayness of $I_{\Delta}^{(2)}$ is not a topological property of Δ.

Example 2.4. Let Δ be a path of length r. Then $\operatorname{diam}(\Delta)=r$. Hence $I_{\Delta}^{(2)}$ is Cohen-Macaulay if $r=1,2$ and not Cohen-Macaulay if $r \geqslant 3$, though any path is topologically a line. Since the barycentric subdivision of a path of length 2 is a path of length 4 , this also shows that the Cohen-Macaulayness of $I_{\Delta}^{(2)}$ doesn't pass to the barycentric subdivision of Δ.

For higher dimensional simplicial complexes we couldn't get a similar result as Corollary 2.3 because we don't know how to check the Cohen-Macaulayness of subcomplexes. This can be done only in special cases.

We call a pure simplicial complex Δ a tight complex if for every pair of facets G_{1}, G_{2} with $\left|G_{1} \cap G_{2}\right| \leqslant \operatorname{dim} \Delta-1$ and for any pair of vertices $i \in G_{1} \backslash G_{2}$ and $j \in G_{2} \backslash G_{1}$ there exists at least a facet $F \subset G_{1} \cup G_{2}, F \neq G_{1}, G_{2}$, which contains $G_{1} \cap G_{2}$ and at least one of the vertices i and j. Obviously, this class of complexes contains all matroid complexes.

Recall that a matroid complex is a collection of subsets of a finite set, called independent sets, with the following properties:
(1) The empty set is independent.
(2) Every subset of an independent set is independent.
(3) If F and G are two independent sets and F has more elements than G, then there exists an element in F which is not in G that when added to G still gives an independent set.

Examples of matroid complexes are abundant such as collections of linearly independent subsets of finite sets of elements in a vector space. Note that there are tight complexes of any dimension which are not matroid complexes such as the complex generated by all subsets of $n-2$ elements of $[n-1]$ and the set $\{3, \ldots, n\}, n \geqslant 4$.

Theorem 2.5. Let Δ be a tight complex. Then $I_{\Delta}^{(2)}$ is Cohen-Macaulay.
Proof. If $n=2$, the assertion is trivial. Assume that $n>2$. By Theorem 1.6(iii) we only need to show that $L_{\Gamma}\left(I_{\Delta}^{(2)}\right)=\emptyset$ for all non-Cohen-Macaulay subcomplexes Γ of Δ with $\mathcal{F}(\Gamma) \subseteq \mathcal{F}(\Delta)$. Without restriction we may assume that $n \in \Gamma$.

Let Δ_{1} and Γ_{1} be the subcomplexes of Δ and Γ generating by the facets not containing n, respectively. Then Δ_{1} is a tight complex on $[n-1]$ and Γ_{1} is a subcomplex of Δ_{1} with $\mathcal{F}\left(\Gamma_{1}\right) \subseteq$ $\mathcal{F}\left(\Delta_{1}\right)$. Since $\mathcal{F}\left(\Gamma_{1}\right) \subseteq \mathcal{F}(\Gamma)$ and $\mathcal{F}\left(\Delta_{1}\right) \backslash \mathcal{F}\left(\Gamma_{1}\right) \subseteq \mathcal{F}(\Delta) \backslash \mathcal{F}(\Gamma), L_{\Gamma}\left(I_{\Delta}^{(2)}\right) \subseteq L_{\Gamma_{1}}\left(I_{\Delta_{1}}^{(2)}\right)$. By induction we may assume that $I_{\Delta_{1}}^{(2)}$ is Cohen-Macaulay. If Γ_{1} is not Cohen-Macaulay, $L_{\Gamma_{1}}\left(I_{\Delta_{1}}^{(2)}\right)=\emptyset$ by Theorem 1.6(iii) and hence $L_{\Gamma}\left(I_{\Delta}^{(2)}\right)=\emptyset$. So we may assume that Γ_{1} is CohenMacaulay.

Let $\Delta_{2}=\mathrm{lk}_{\Delta}\{n\}$. Then Δ_{2} is a tight complex on $[n-1]$. By induction we may assume that $I_{\Delta_{2}}^{(2)}$ is Cohen-Macaulay. Let Δ_{2}^{*} be the subcomplex of Δ generating by the facets containing n. Then $I_{\Delta_{2}}$ and $I_{\Delta_{2}^{*}}$ lie in different polynomial rings but have the same (minimal) monomial generators. Therefore, $I_{\Delta_{2}^{*}}^{(2)}$ is Cohen-Macaulay.

Let Γ_{2}^{*} be the subcomplex of Γ generating by the facets containing n. Then Γ_{2}^{*} is a subcomplex of Δ_{2}^{*} with $\mathcal{F}\left(\Gamma_{2}^{*}\right) \subseteq \mathcal{F}\left(\Delta_{2}^{*}\right)$. If Γ_{2}^{*} is not Cohen-Macaulay, $L_{\Gamma_{2}^{*}}\left(I_{\Delta_{2}^{*}}^{(2)}\right)=\emptyset$ by Theorem 1.6(iii). On the other hand, it is easy to see that $L_{\Gamma}\left(I_{\Delta}^{(2)}\right) \subseteq L_{\Gamma_{2}^{*}}\left(I_{\Delta_{2}^{*}}^{(2)}\right)$. Therefore, $L_{\Gamma}\left(I_{\Delta}^{(2)}\right)=\emptyset$. So we may assume that Γ_{2}^{*} is Cohen-Macaulay.

Let $\Gamma_{2}=\mathrm{lk}_{\Gamma}\{n\}$. Since Γ_{2}^{*} is a cone over Γ_{2}, Γ_{2} is Cohen-Macaulay. Note that $\Gamma_{1} \cap \Gamma_{2}^{*} \subseteq \Gamma_{2}$ and $\Gamma_{1} \cup \Gamma_{2}^{*}=\Gamma$. If $\Gamma_{1} \cap \Gamma_{2}^{*}=\Gamma_{2}$, there is an exact sequence

$$
0 \rightarrow k[\Gamma] \rightarrow k\left[\Gamma_{1}\right] \oplus k\left[\Gamma_{2}^{*}\right] \rightarrow k\left[\Gamma_{2}\right] \rightarrow 0 .
$$

Since $k\left[\Gamma_{1}\right], k\left[\Gamma_{2}^{*}\right]$ and $k\left[\Gamma_{2}\right]$ are Cohen-Macaulay with $\operatorname{dim} k\left[\Gamma_{1}\right]=\operatorname{dim} k\left[\Gamma_{2}^{*}\right]=\operatorname{dim} k\left[\Gamma_{2}\right]+1$, we can conclude that $k[\Gamma]$ is Cohen-Macaulay, which contradicts the assumption that Γ is not Cohen-Macaulay. So $\Gamma_{1} \cap \Gamma_{2}^{*}$ is properly contained in Γ_{2}.

Choose $G_{1} \in \mathcal{F}\left(\Gamma_{1}\right)$ and $G_{2} \in \mathcal{F}\left(\Gamma_{2}^{*}\right)$ such that $G_{2} \backslash\{n\} \in \Gamma_{2} \backslash\left(\Gamma_{1} \cap \Gamma_{2}^{*}\right)$ and $G_{1} \cap G_{2}$ is as large as possible. Since $G_{1} \cap G_{2} \subset G_{2} \backslash\{n\},\left|G_{1} \cap G_{2}\right| \leqslant\left|G_{2} \backslash\{n\}\right|-1=\operatorname{dim} \Delta-1$. By the definition of tight complexes, there exists a facet F of Δ such that $F \subset G_{1} \cup G_{2}$, $F \neq G_{1}, G_{2}, F \supset G_{1} \cap G_{2}$. Since F contains vertices of $G_{1} \backslash G_{2}$ and $G_{2} \backslash G_{1}, G_{1} \cap F$ and $F \cap G_{2}$ contain $G_{1} \cap G_{2}$ properly. Therefore, $G_{1} \cap F$ and $F \cap G_{2}$ can't be faces of $\Gamma_{1} \cap \Gamma_{2}^{*}$. This implies $F \notin \Gamma_{1}, \Gamma_{2}^{*}$ so that $F \notin \Gamma_{1} \cup \Gamma_{2}^{*}=\Gamma$. So we have $F \notin \mathcal{F}(\Gamma)$, whereas $G_{1}, G_{2} \in \mathcal{F}(\Gamma)$.

Assume that $L_{\Gamma}\left(I_{\Delta}^{(2)}\right) \neq \emptyset$. For $\mathbf{a} \in L_{\Gamma}\left(I_{\Delta}^{(2)}\right)$ we have

$$
\sum_{i \notin F} a_{i} \geqslant 2, \quad \sum_{i \notin G_{1}} a_{i}<2, \quad \sum_{i \notin G_{2}} a_{i}<2 .
$$

Since $G_{1} \backslash F \subseteq G_{1} \backslash G_{2}$ and $G_{2} \backslash F \subseteq G_{2} \backslash G_{1}$,

$$
\sum_{i \notin G_{1} \cup G_{2}} a_{i}+\sum_{i \in G_{1} \backslash F} a_{i} \leqslant \sum_{i \notin G_{1} \cup G_{2}} a_{i}+\sum_{i \in G_{1} \backslash G_{2}} a_{i}=\sum_{i \notin G_{2}} a_{i}<2,
$$

$$
\sum_{i \notin G_{1} \cup G_{2}} a_{i}+\sum_{i \in G_{2} \backslash F} a_{i} \leqslant \sum_{i \notin G_{1} \cup G_{2}} a_{i}+\sum_{i \in G_{2} \backslash G_{1}} a_{i}=\sum_{i \notin G_{1}} a_{i}<2 .
$$

From this it follows that

$$
\sum_{i \notin G_{1} \cup G_{2}} a_{i}=0, \quad \sum_{i \in G_{1} \backslash F} a_{i}=1, \quad \sum_{i \in G_{2} \backslash F} a_{i}=1 .
$$

Therefore, $a_{t}=0$ for all $t \notin G_{1} \cup G_{2}$ and there are $i \in G_{1} \backslash G_{2}$ and $j \in G_{2} \backslash G_{1}$ such that $a_{i}=$ $a_{j}=1$ and $a_{t}=0$ for $t \in\left(G_{1} \cup G_{2}\right) \backslash\left(G_{1} \cap G_{2}\right), t \neq i, j$. By the definition of tight complexes, we can choose F such that F contains at least one of the vertices i and j. Then $\sum_{t \notin F} a_{t} \leqslant 1$, a contradiction. So we have proved that $L_{\Gamma}\left(I_{\Delta}^{(2)}\right)=\emptyset$.

The converse of Theorem 2.5 is not true.
Example 2.6. Let Δ be the graph of a 5-cycle:

Then $\operatorname{diam}(\Delta)=2$ so that $I_{\Delta}^{(2)}$ is Cohen-Macaulay by Corollary 2.3. For the edges $\{1,2\}$ and $\{3,4\}$, there is no other edge in $\{1,2,3,4\}$ containing the vertices 1,4 . Hence Δ is not a tight complex.

The proof of Theorem 2.5 is remarkable in the sense that it gives a method to pass the difficult test on all non-Cohen-Macaulay subcomplexes of Δ to the unions of two facets. We will use it again in the proof of Theorem 3.5.

A simplicial complex Δ on the vertex set $[n]$ is called a shifted complex if there is a labelling of the vertices such that for every face $F \in \Delta$ and every vertex $i \in F,(F \backslash\{i\}) \cup\{j\} \in \Delta$ for all $j<i$ [9]. We shall see that shifted complexes are tight.

Corollary 2.7. Let Δ be a pure shifted complex. Then $I_{\Delta}^{(2)}$ is Cohen-Macaulay.
Proof. Let G_{1}, G_{2} be two facets of Δ with $\left|G_{1} \cap G_{2}\right| \leqslant \operatorname{dim} \Delta-1$. Given two vertices $i \in$ $G_{1} \backslash G_{2}$ and $j \in G_{2} \backslash G_{1}$ we may assume that $j<i$. Then $F=\left(G_{1} \backslash\{i\}\right) \cup\{j\}$ is a facet of Δ. Obviously, $F \neq G_{1}, G_{2}, F \subset G_{1} \cup G_{2}$ and $F \supset G_{1} \cap G_{2}$. This shows that Δ is tight.

We now present an operation for the construction of new simplicial complexes such that the second symbolic power of their Stanley-Reisner ideals are Cohen-Macaulay. Given two simplicial complexes Δ and Γ on disjoint vertex sets, one calls the simplicial complex

$$
\Delta * \Gamma=\{F \cup G \mid F \in \Delta, G \in \Gamma\}
$$

the join of Δ and Γ.

Theorem 2.8. Let Δ and Γ be simplicial complexes such that $I_{\Delta}^{(2)}$ and $I_{\Gamma}^{(2)}$ are Cohen-Macaulay. Then $I_{\Delta * \Gamma}^{(2)}$ is Cohen-Macaulay.

Proof. Let Δ and Γ be complexes on the vertex sets $[n]$ and $\{n+1, \ldots, n+m\}$, respectively. Let $d=\operatorname{dim} \Delta$ and $e=\operatorname{dim} \Gamma$. Then $\operatorname{dim} \Delta * \Gamma=d+e+1$. By Theorem 2.1 we have to show that $(\Delta * \Gamma)_{U}$ is Cohen-Macaulay for all $U \subseteq[m+n]$ with $2 \leqslant|U| \leqslant d+e+2$. Set $V=U \cap[n]$ and $W=U \cap\{n+1, \ldots, n+m\}$. Let

$$
\begin{aligned}
\mathrm{st}_{\Delta} V & =\{F \in \Delta \mid F \cup V \in \Delta\}, \\
\text { st }_{\Gamma} W & =\{G \in \Gamma \mid G \cup W \in \Gamma\}
\end{aligned}
$$

It is easy to see that

$$
(\Delta * \Gamma)_{U}=\left(\Delta_{V} * \mathrm{st}_{\Gamma} W\right) \cup\left(\mathrm{st}_{\Delta} V * \Gamma_{W}\right)
$$

By Theorem 2.1, Δ_{V} and Γ_{W} are Cohen-Macaulay. By [19, Chapter III, proof of Corollary 9.2], $\mathrm{st}_{\Delta} V$ and $\mathrm{st}_{\Gamma} W$ are Cohen-Macaulay. Therefore, $\Delta_{V} * \mathrm{st}_{\Gamma} W$ and $\mathrm{st}_{\Delta} V * \Gamma_{W}$ are CohenMacaulay complexes of dimension $d+e+1$ [2, Exercise 5.1.21]. Since st ${ }_{\Delta} V \subseteq \Delta_{V}$ and st ${ }_{\Gamma} W \subseteq$ Γ_{W},

$$
\left(\Delta_{V} * \mathrm{st}_{\Gamma} W\right) \cap\left(\mathrm{st}_{\Delta} V * \Gamma_{W}\right)=\mathrm{st}_{\Delta} V * \mathrm{st}_{\Gamma} W
$$

Therefore, $\left(\Delta_{V} * \mathrm{st}_{\Gamma} W\right) \cap\left(\mathrm{st}_{\Delta} V * \Gamma_{W}\right)$ is a Cohen-Macaulay complex of dimension $d+e-1$. Now, from the exact sequence

$$
\begin{aligned}
0 & \rightarrow k\left[(\Delta * \Gamma)_{U}\right] \rightarrow k\left[\Delta_{V} * \mathrm{st}_{\Gamma} W\right] \oplus k\left[\mathrm{st}_{\Delta} V * \Gamma_{W}\right] \\
& \rightarrow k\left[\left(\Delta_{V} * \mathrm{st}_{\Gamma} W\right) \cap\left(\mathrm{st}_{\Delta} V * \Gamma_{W}\right)\right] \rightarrow 0
\end{aligned}
$$

we can conclude $k\left[(\Delta * \Gamma)_{U}\right]$ is Cohen-Macaulay.

It is well known that the Cohen-Macaulayness of I_{Δ} depends on the characteristic of the base field [14]. By Theorem 2.1 we may expect that the Cohen-Macaulayness of $I_{\Delta}^{(2)}$ also depends on the characteristic of the base field. However we have been unable to settle this problem. The triangulation of the projective plane does not provide an example for that.

Example 2.9. Let Δ be the triangulation of the projective plane with the facets

Since all vertices of Δ are connected by one-dimensional faces, $\operatorname{diam}(G)=1$. On the other hand, for $V=\{4,5,6\}, \Delta_{V}$ is the simplicial complex with the facets $\{1,4,5\},\{1,4,6\},\{2,5,6\}$, $\{2,4,5\},\{3,4,6\},\{3,5,6\}$. Since the geometric realization of Δ_{V} can be contracted to a cycle, Δ_{V} is not Cohen-Macaulay. Therefore, $I_{\Delta}^{(2)}$ is not Cohen-Macaulay by Theorem 2.1.

3. Cohen-Macaulayness of all symbolic powers

In the following we shall use Theorem 1.6(iii) to study the Cohen-Macaulayness of all symbolic powers of Stanley-Reisner ideals. For that we shall need the following characterization of strict homogeneous inequalities.

Lemma 3.1. Let A and B be matrices having the same number of columns. Then there exists a column vector \mathbf{x} such that $A \mathbf{x}<\mathbf{0}$ and $B \mathbf{x} \geqslant \mathbf{0}$ if and only if there are no row vectors $\mathbf{y}, \mathbf{z} \geqslant \mathbf{0}$ such that $\mathbf{y} A+\mathbf{z} B=\mathbf{0}$ and $\mathbf{y} \neq \mathbf{0}$.

Proof. Consider the general system $A \mathbf{x}<\mathbf{b}$ and $B \mathbf{x} \geqslant \mathbf{c}$, where \mathbf{b} and \mathbf{c} are given column vectors. Motzkin's transposition theorem (see e.g. [16, Corollary 7.1k]) says that such a system has a solution iff the following conditions are satisfied for all row vectors $\mathbf{y}, \mathbf{z} \geqslant \mathbf{0}$:
(i) if $\mathbf{y} A+\mathbf{z} B=\mathbf{0}$ then $\mathbf{y b}+\mathbf{z c} \geqslant \mathbf{0}$,
(ii) if $\mathbf{y} A+\mathbf{z} B=\mathbf{0}$ and $\mathbf{y} \neq 0$ then $\mathbf{y b}+\mathbf{z c}>\mathbf{0}$.

For $\mathbf{b}=\mathbf{c}=\mathbf{0}$, condition (i) is always satisfied and condition (ii) is satisfied iff there are no vectors $\mathbf{y}, \mathbf{z} \geqslant 0$ with $\mathbf{y} A+\mathbf{z} B=\mathbf{0}$ and $\mathbf{y} \neq \mathbf{0}$.

Using Lemma 3.1 we obtain the following criterion of the Cohen-Macaulayness of all symbolic powers of Stanley-Reisner ideals, which is the first step in the proof that simplicial complexes with this property are exactly matroid complexes.

For a subset F of $[n]$ we denote by \mathbf{a}_{F} the incidence vector of F (which has the i th component equal to 1 if $i \in F$ and 0 else).

Theorem 3.2. Let Δ be a pure simplicial complex. Then $I_{\Delta}^{(m)}$ is Cohen-Macaulay for all $m \geqslant 1$ if and only if for every non-Cohen-Macaulay subcomplex Γ of Δ with $\mathcal{F}(\Gamma) \subseteq \mathcal{F}(\Delta)$, there exist facets $F_{1}, \ldots, F_{s} \in \mathcal{F}(\Delta) \backslash \mathcal{F}(\Gamma)$ and $G_{1}, \ldots, G_{s} \in \mathcal{F}(\Gamma)$ not necessarily different such that

$$
\mathbf{a}_{F_{1}}+\cdots+\mathbf{a}_{F_{s}}=\mathbf{a}_{G_{1}}+\cdots+\mathbf{a}_{G_{s}}
$$

Proof. By Theorem 1.6(iii) we have to check when $L_{\Gamma}\left(I^{(m)}\right)=\emptyset$ for all $m \geqslant 1$. By definition,

$$
L_{\Gamma}\left(I^{(m)}\right)=\left\{\mathbf{a} \in \mathbb{N}^{n} \mid x^{\mathbf{a}} \in P_{F}^{m} \text { for } F \in \mathcal{F}(\Delta) \backslash \mathcal{F}(\Gamma) \text { and } x^{\mathbf{a}} \notin P_{G}^{m} \text { for } G \in \mathcal{F}(\Gamma)\right\}
$$

Thus, $L_{\Gamma}\left(I^{(m)}\right)=\emptyset$ for all $m \geqslant 1$ means that the system

$$
\begin{gathered}
\sum_{i \notin F} a_{i} \geqslant m \quad(F \in \mathcal{F}(\Delta) \backslash \mathcal{F}(\Gamma)), \\
\sum_{i \notin G} a_{i}<m \quad(G \in \mathcal{F}(\Gamma))
\end{gathered}
$$

has no solution $\mathbf{a} \in \mathbb{N}^{n}$ for all $m \geqslant 1$. This condition is equivalent to the condition that the system

$$
\sum_{i \notin F} a_{i}>\sum_{i \notin G} a_{i} \quad(F \in \mathcal{F}(\Delta) \backslash \mathcal{F}(\Gamma), G \in \mathcal{F}(\Gamma))
$$

has no solution $\mathbf{a} \in \mathbb{N}^{n}$. In fact, any solution $\mathbf{a} \in \mathbb{N}^{n}$ of the second system will be a solution of the first system for $m=\min \left\{\sum_{i \notin F} a_{i} \mid F \in \mathcal{F}(\Delta) \backslash \mathcal{F}(\Gamma)\right\}$. So we have to study when the homogeneous system

$$
\begin{gathered}
\sum_{i \notin G} a_{i}-\sum_{i \notin F} a_{i}<0 \quad(F \in \mathcal{F}(\Delta) \backslash \mathcal{F}(\Gamma), G \in \mathcal{F}(\Gamma)), \\
a_{i} \geqslant 0 \quad(i=1, \ldots, n)
\end{gathered}
$$

has no solution $\mathbf{a} \in \mathbb{R}^{n}$ because any solution in \mathbb{R}^{n} can be replaced by a solution in \mathbb{Q}^{n}, which then leads to a solution in \mathbb{N}^{n}.

Let A and B denote the matrices of the coefficients of the inequalities of the first and second line, respectively. By Lemma 3.1, the above homogeneous system has no solution iff there exist row vectors $\mathbf{y}, \mathbf{z} \geqslant \mathbf{0}$ such that $\mathbf{y} A+\mathbf{z} B=\mathbf{0}$ and $\mathbf{y} \neq \mathbf{0}$. Let c_{1}, \ldots, c_{r} be the non-zero components of the vector \mathbf{y}. Since the rows of A are of the form $\mathbf{a}_{\bar{G}}-\mathbf{a}_{\bar{F}}$, where \bar{G} and \bar{F} denote the complements of G and F, and since $\mathbf{a}_{\bar{G}}-\mathbf{a}_{\bar{F}}=\mathbf{a}_{F}-\mathbf{a}_{G}$, we have

$$
\mathbf{y} A=c_{1}\left(\mathbf{a}_{F_{1}}-\mathbf{a}_{G_{1}}\right)+\cdots+c_{r}\left(\mathbf{a}_{F_{r}}-\mathbf{a}_{G_{r}}\right)
$$

for not necessarily different $F_{1}, \ldots, F_{r} \in \mathcal{F}(\Delta) \backslash \mathcal{F}(\Gamma)$ and $G_{1}, \ldots, G_{r} \in \mathcal{F}(\Gamma)$. Since B is the unit matrix, the relation $\mathbf{y} A+\mathbf{z} B=\mathbf{0}$ just means that the monomial $x^{c_{1} \mathbf{a}_{F_{1}}} \ldots x^{c_{r} \mathbf{a}_{F_{r}}}$ is divided by the monomial $x^{c_{1} \mathbf{a}_{G_{1}}} \ldots x^{c_{r} \mathbf{a}_{G_{r}}}$. On the other hand, since F_{1}, \ldots, F_{r} and G_{1}, \ldots, G_{r} have the same number of elements, $\operatorname{deg} x^{\mathbf{a}_{F_{i}}}=\operatorname{deg} x^{\mathbf{a}_{G_{j}}}$ for all $i, j=1, \ldots, r$. Therefore,

$$
\operatorname{deg} x^{c_{1} \mathbf{a}_{F_{1}}} \cdots x^{c_{r} \mathbf{a}_{F_{r}}}=\operatorname{deg} x^{c_{1} \mathbf{a}_{G_{1}}} \cdots x^{c_{r} \mathbf{a}_{G_{r}}} .
$$

So we must have $x^{c_{1} \mathbf{a}_{F_{1}}} \ldots x^{c_{r} \mathbf{a}_{F_{r}}}=x^{c_{1} \mathbf{a}_{G_{1}}} \ldots x^{c_{r} \mathbf{a}_{G_{r}}}$ or, equivalently,

$$
c_{1} \mathbf{a}_{F_{1}}+\cdots+c_{r} \mathbf{a}_{F_{r}}=c_{1} \mathbf{a}_{G_{1}}+\cdots+c_{r} \mathbf{a}_{G_{r}} .
$$

Replacing $c_{i} \mathbf{a}_{F_{i}}$ by $\mathbf{a}_{F_{i}}+\cdots+\mathbf{a}_{F_{i}}$ and $c_{i} \mathbf{a}_{G_{i}}$ by $\mathbf{a}_{G_{i}}+\cdots+\mathbf{a}_{G_{i}}$ (c_{i} times) we may rewrite the above condition as

$$
\mathbf{a}_{F_{1}}+\cdots+\mathbf{a}_{F_{s}}=\mathbf{a}_{G_{1}}+\cdots+\mathbf{a}_{G_{s}}
$$

for not necessarily different $F_{1}, \ldots, F_{s} \in \mathcal{F}(\Delta) \backslash \mathcal{F}(\Gamma)$ and $G_{1}, \ldots, G_{s} \in \mathcal{F}(\Gamma)$. Thus, $L_{\Gamma}\left(I_{\Delta}^{(m)}\right)=\emptyset$ for all $m \geqslant 1$ iff this condition is satisfied.

The condition of Theorem 3.2 implies that Δ is very compact in the following sense. Following the terminology of graph theory we call an alternating sequence of distinct vertices and facets $v_{1}, F_{1}, v_{2}, F_{2}, \ldots, v_{t}, F_{t}$ a t-cycle of Δ if $v_{i}, v_{i+1} \in F_{i}$ for all $i=1, \ldots, t$, where $v_{t+1}=v_{1}$.

Corollary 3.3. Assume that $I_{\Delta}^{(m)}$ is Cohen-Macaulay for all $m \geqslant 1$. Then every pair G_{1}, G_{2} of facets of Δ with $\left|G_{1} \cap G_{2}\right| \leqslant \operatorname{dim} \Delta-1$ is contained in a 4 -cycle of Δ with vertices outside of $G_{1} \cap G_{2}$ and facets containing $G_{1} \cap G_{2}$. Moreover, one of the vertices of the cycle can be chosen arbitrarily in $G_{1} \backslash G_{2}$ or $G_{2} \backslash G_{1}$.

Proof. By Theorem 3.2, there exist facets $F_{1}, \ldots, F_{s} \neq G_{1}, G_{2}$ such that

$$
\mathbf{a}_{F_{1}}+\cdots+\mathbf{a}_{F_{s}}=c_{1} \mathbf{a}_{G_{1}}+c_{2} \mathbf{a}_{G_{2}}
$$

for some positive integers $c_{1}, c_{2}, s=c_{1}+c_{2}$. By this relation, $G_{1} \cup G_{2}=F_{1} \cup \cdots \cup F_{s}$ and every facet F_{i} contains $G_{1} \cap G_{2}$ and vertices of both $G_{1} \backslash G_{2}$ and $G_{2} \backslash G_{1}$.

Since $\left|G_{1} \cap G_{2}\right| \leqslant\left|G_{1}\right|-2$, we can always find two different vertices in $G_{1} \backslash G_{2}$. Let u be an arbitrary vertex of $G_{1} \backslash G_{2}$. If for every other vertex $v \in G_{1} \backslash G_{2}$, we have $F_{i} \cap G_{2}=F_{j} \cap G_{2}$ for all facets F_{i} containing u and F_{j} containing v, then $F_{i} \cap G_{2}=F_{j} \cap G_{2}$ for all $i, j=1, \ldots, s$. Since $G_{2} \subset F_{1} \cup \cdots \cup F_{s}$, this implies $G_{2} \subseteq F_{i}$ for all $i=1, \ldots, s$, a contradiction. Therefore, there is another vertex v in $G_{1} \backslash G_{2}$ such that $F_{i} \cap G_{2} \neq F_{j} \cap G_{2}$ for some facets F_{i} containing u and F_{j} containing v.

Since F_{i}, F_{j} contain $G_{1} \cap G_{2}, F_{i} \cap\left(G_{2} \backslash G_{1}\right) \neq F_{j} \cap\left(G_{2} \backslash G_{1}\right)$. So we can find two different vertices $u^{\prime} \in F_{i} \cap\left(G_{2} \backslash G_{1}\right)$ and $v^{\prime} \in F_{j} \cap\left(G_{2} \backslash G_{1}\right)$. Clearly, $u, G_{1}, v, F_{j}, v^{\prime}, G_{2}, u^{\prime}, F_{i}$ form a 4-cycle of Δ with vertices outside of $G_{1} \cap G_{2}$ and facets containing $G_{1} \cap G_{2}$.

By Corollary 3.3, every pair of disjoint facets of Δ is contained in a 4 -cycle of Δ. If $\operatorname{dim} \Delta=1$, this means that every pair of disjoint edges is contained in a rectangle. It turns out that this is also a sufficient condition for the Cohen-Macaulayness of all symbolic powers of I_{Δ}.

Corollary 3.4. (See [12, Theorem 2.4].) Let Δ be a graph. Then $I_{\Delta}^{(m)}$ is Cohen-Macaulay for all $m \geqslant 1$ if and only if every pair of disjoint edges of Δ is contained in a rectangle.

Proof. We only need to prove the sufficient part. Let G_{1}, G_{2} be two disjoint edges of Δ. Let F_{1}, F_{2} be the other edges of a rectangle of Δ containing G_{1}, G_{2}. Obviously,

$$
\mathbf{a}_{F_{1}}+\mathbf{a}_{F_{2}}=\mathbf{a}_{G_{1}}+\mathbf{a}_{G_{2}}
$$

Hence the condition of Theorem 3.2 is satisfied.

It is easy to see that a graph defines a matroid complex if and only if every pair of disjoint edges is contained in a rectangle. This fact together with Theorem 2.5 suggest that there may be a strong relationship between matroid complexes and the Cohen-Macaulayness of all symbolic powers. In fact, we can prove the following result. This result is also proved independently by Varbaro [21, Theorem 2.1].

Theorem 3.5. $I_{\Delta}^{(m)}$ is Cohen-Macaulay for all $m \geqslant 1$ if and only if Δ is a matroid complex.
Proof. Assume that $I_{\Delta}^{(m)}$ is Cohen-Macaulay for all $m \geqslant 1$. We will show that if I and J are two faces of Δ with $|I \backslash J|=1$ and $|J \backslash I|=2$, then there is a vertex $x \in J \backslash I$ such that $I \cup\{x\}$ is a face of Δ. By [17, Theorem 39.1], this implies that Δ is a matroid complex.

Choose two facets $G_{1} \supset I$ and $G_{2} \supseteq J$ such that $\left|G_{1} \cap G_{2}\right|$ is as large as possible. If G_{1} contains a vertex $x \in J \backslash I$, then $I \cup\{x\}$ is a face of Δ because it is contained in G_{1}. Therefore, we may assume that G_{1} doesn't contain any vertex of $J \backslash I$. Then $\left|G_{1} \cap G_{2}\right| \leqslant\left|G_{2}\right|-|J \backslash I|=$ $\operatorname{dim} \Delta-1$. Let $I \backslash J=\{u\}$. If $u \in G_{2}$, then $I \subset G_{2}$ and $I \cup\{x\}$ is a face of Δ for any $x \in G_{2} \backslash I$. If $u \notin G_{2}$, using Corollary 3.3 we can find a facet $F \supseteq G_{1} \cap G_{2}$ such that F contains u and a vertex $u^{\prime} \in G_{2} \backslash G_{1}$. Therefore, $F \supset I$ and $\left|F \cap G_{2}\right| \geqslant\left|\left(G_{1} \cap G_{2}\right) \cup\left\{u^{\prime}\right\}\right|=\left|G_{1} \cap G_{2}\right|+1$, a contradiction to the choice of G_{1} and G_{2}. So we have proved the necessary part of the assertion.

Conversely, assume that Δ is a matroid complex. We will use induction to show that Δ satisfies the condition of Theorem 3.2. If $n=2$, the assertion is trivial. So we may assume that $n \geqslant 3$. Let Γ be an arbitrary non-Cohen-Macaulay subcomplex of Δ with $\mathcal{F}(\Gamma) \subseteq \mathcal{F}(\Delta)$.

Let Δ_{1} and Γ_{1} be the subcomplexes of Δ and Γ generating by the facets not containing n, respectively. Then Δ_{1} is a matroid complex on $[n-1]$ and Γ_{1} is a subcomplex of Δ_{1} with $\mathcal{F}\left(\Gamma_{1}\right) \subseteq \mathcal{F}\left(\Delta_{1}\right)$. By induction we may assume that Δ_{1} satisfies the condition of Theorem 3.2. If Γ_{1} is not Cohen-Macaulay, there exist facets $F_{1}, \ldots, F_{s} \in \mathcal{F}\left(\Delta_{1}\right) \backslash \mathcal{F}\left(\Gamma_{1}\right)$ and $G_{1}, \ldots, G_{s} \in$ $\mathcal{F}\left(\Gamma_{1}\right)$ such that

$$
\mathbf{a}_{F_{1}}+\cdots+\mathbf{a}_{F_{s}}=\mathbf{a}_{G_{1}}+\cdots+\mathbf{a}_{G_{s}} .
$$

Clearly, $F_{1}, \ldots, F_{s} \in \mathcal{F}(\Delta) \backslash \mathcal{F}(\Gamma)$ and $G_{1}, \ldots, G_{s} \in \mathcal{F}(\Gamma)$. So we may assume that Γ_{1} is Cohen-Macaulay.

Let $\Delta_{2}=\mathrm{k}_{\Delta}\{n\}$ and $\Gamma_{2}=\mathrm{k}_{\Gamma}\{n\}$. Then Δ_{2} is also a matroid complex on $[n-1]$ and Γ_{2} is a subcomplex of Δ_{2} with $\mathcal{F}\left(\Gamma_{2}\right) \subseteq \mathcal{F}\left(\Delta_{2}\right)$. By induction we may assume that Δ_{2} satisfies the condition of Theorem 3.2. If Γ_{2} is not Cohen-Macaulay, there exist facets $F_{1}^{\prime}, \ldots, F_{s}^{\prime} \in$ $\mathcal{F}\left(\Delta_{2}\right) \backslash \mathcal{F}\left(\Gamma_{2}\right)$ and $G_{1}^{\prime}, \ldots, G_{s}^{\prime} \in \mathcal{F}\left(\Gamma_{2}\right)$ such that

$$
\mathbf{a}_{F_{1}^{\prime}}+\cdots+\mathbf{a}_{F_{s}^{\prime}}=\mathbf{a}_{G_{1}^{\prime}}+\cdots+\mathbf{a}_{G_{s}^{\prime}}
$$

Set $F_{i}=F_{i}^{\prime} \cup\{n\}$, and $G_{i}=G_{i}^{\prime} \cup\{n\}$ for all $i=1, \ldots, s$. Then $F_{1}, \ldots, F_{s} \in \mathcal{F}(\Delta) \backslash \mathcal{F}(\Gamma)$ and $G_{1}, \ldots, G_{s} \in \mathcal{F}(\Gamma)$. Clearly,

$$
\mathbf{a}_{F_{1}}+\cdots+\mathbf{a}_{F_{s}}=\mathbf{a}_{G_{1}}+\cdots+\mathbf{a}_{G_{s}} .
$$

So we may assume that Γ_{2} is Cohen-Macaulay.

Let Γ_{2}^{*} be the subcomplex of Γ generating by the facets containing n. Then $\Gamma=\Gamma_{1} \cup \Gamma_{2}^{*}$. Since Γ_{2}^{*} is a cone over $\Gamma_{2}, \Gamma_{2}^{*}$ is Cohen-Macaulay. Note that $\Gamma_{1} \cap \Gamma_{2}^{*} \subseteq \Gamma_{2}$. If $\Gamma_{1} \cap \Gamma_{2}^{*}=\Gamma_{2}$, there is an exact sequence

$$
0 \rightarrow k[\Gamma] \rightarrow k\left[\Gamma_{1}\right] \oplus k\left[\Gamma_{2}^{*}\right] \rightarrow k\left[\Gamma_{2}\right] \rightarrow 0
$$

Since $k\left[\Gamma_{1}\right], k\left[\Gamma_{2}^{*}\right]$ and $k\left[\Gamma_{2}\right]$ are Cohen-Macaulay with $\operatorname{dim} k\left[\Gamma_{1}\right]=\operatorname{dim} k\left[\Gamma_{2}^{*}\right]=\operatorname{dim} k\left[\Gamma_{2}\right]+1$, we can conclude that $k[\Gamma]$ is Cohen-Macaulay, which contradicts the assumption that Γ is not Cohen-Macaulay. So $\Gamma_{1} \cap \Gamma_{2}^{*}$ is properly contained in Γ_{2}.

Choose $G_{1} \in \mathcal{F}\left(\Gamma_{1}\right)$ and $G_{2} \in \mathcal{F}\left(\Gamma_{2}^{*}\right)$ such that $G_{2} \backslash\{n\} \in \Gamma_{2} \backslash\left(\Gamma_{1} \cap \Gamma_{2}^{*}\right)$ and $G_{1} \cap G_{2}$ is as large as possible. Since $G_{1} \cap G_{2} \subset G_{2} \backslash\{n\},\left|G_{1} \cap G_{2}\right| \leqslant\left|G_{2} \backslash\{n\}\right|-1=\operatorname{dim} \Delta-1$. By the symmetric exchange property of matroids [17, Theorem 39.12] there is a vertex $x \in G_{1} \backslash G_{2}$ such that $\left(G_{1} \backslash\{x\}\right) \cup\{n\}$ and $\left(G_{2} \backslash\{n\}\right) \cup\{x\}$ are facets of Δ. Put $F_{1}=\left(G_{1} \backslash\{x\}\right) \cup\{n\}$. Then $F_{1} \notin \Gamma_{1}$. We also have $F_{1} \notin \Gamma_{2}^{*}$ because otherwise $G_{1} \backslash\{x\}=G_{1} \cap F_{1} \in \Gamma_{1} \cap \Gamma_{2}^{*}$. Since $G_{1} \backslash\{x\} \supseteq G_{1} \cap G_{2}$, this implies $G_{1} \backslash\{x\}=G_{1} \cap G_{2}$ and we obtain a contradiction because $\left|G_{1} \backslash\{x\}\right|=\operatorname{dim} \Delta$. Put $F_{2}=\left(G_{2} \backslash\{n\}\right) \cup\{x\}$. Then $F_{2} \notin \Gamma_{2}^{*}$. Similarly as before, we also have $F_{2} \notin \Gamma_{1}$. Therefore, $F_{1}, F_{2} \notin \Gamma_{1} \cup \Gamma_{2}^{*}=\Gamma$. Since

$$
\mathbf{a}_{F_{1}}+\mathbf{a}_{F_{2}}=\mathbf{a}_{G_{1}}+\mathbf{a}_{G_{2}}
$$

we have proved that Δ satisfies the condition of Theorem 3.2.
Theorem 3.5 has some interesting consequences. First of all, it implies that the CohenMacaulayness of all symbolic powers of Stanley-Reisner ideals doesn't depend on the characteristic of the base field.

Given an integer $d \geqslant 0$, the d-skeleton of a simplicial complex is the set of all faces of dimension $\leqslant d$. Obviously, every skeleton of a matroid complex is again a matroid complex.

Corollary 3.6. Let Δ be a skeleton of a simplex. Then $I_{\Delta}^{(m)}$ is Cohen-Macaulay for all $m \geqslant 1$.
It is known that for a radical ideal $I \subset S, I^{m}$ is Cohen-Macaulay for all $m \geqslant 1$ if and only if I is a complete intersection, see e.g. [1,22]. This phenomenon doesn't hold for the symbolic powers. For instance, if Δ is the d-skeleton of a simplex, then I_{Δ} is generated by all squarefree monomials of degree $d+2$, which is not a complete intersection if $d \leqslant n-3$.

Following [19] we call a simplicial complex Δ a flag complex if all minimal non-faces consist of two elements. This is equivalent to say that I_{Δ} is the edge ideal of a simple graph. The CohenMacaulayness of symbolic powers of such ideals has been studied recently by Rinaldo, Terai and Yoshida [15]. Using the above results we can easily recover one of their main results.

Corollary 3.7. (See [15, Theorem 3.6].) Let Δ be a flag simplex and Γ the graph of the minimal nonfaces. Then $I_{\Delta}^{(m)}$ is Cohen-Macaulay for all $m \geqslant 1$ if and only if Γ is a union of disjoint complete graphs.

Proof. We note first that Δ the clique complex of the graph $\bar{\Gamma}$ of the nonedges of Γ. By [10, Theorem 3.3], the clique complex of a graph is a matroid complex if and only if there is a partition of the vertices into stable sets such that every nonedge of the graph is contained in a stable set.

A stable set of $\bar{\Gamma}$ is just a complete graph in Γ. Therefore, there is a partition of Γ into complete graphs such that every edge of Γ is contained in such a complete graph.

4. Preservation of Cohen-Macaulayness

Let Δ be a simplicial complex. We know by [12, Corollary 2.5] and [15, Theorem 3.6] that if $\operatorname{dim} \Delta=1$ or Δ is a flag complex and if $I_{\Delta}^{(t)}$ is Cohen-Macaulay for some $t \geqslant 3$, then $I_{\Delta}^{(m)}$ is Cohen-Macaulay for all $m \geqslant 1$. So it is quite natural to ask the following questions:

Question 4.1. Is $I_{\Delta}^{(m)}$ Cohen-Macaulay if $I_{\Delta}^{(m+1)}$ is Cohen-Macaulay?
Question 4.2. Does there exist a number t depending on $\operatorname{dim} \Delta$ such that if $I_{\Delta}^{(t)}$ is CohenMacaulay, then $I_{\Delta}^{(m)}$ is Cohen-Macaulay for all $m \geqslant 1$?

We don't know any counter-example to both questions. In the following we will prove some related results on the preservation of Cohen-Macaulayness between different symbolic powers.

Theorem 4.3. $I_{\Delta}^{(m)}$ is Cohen-Macaulay if $I_{\Delta}^{(t)}$ is Cohen-Macaulay for some $t \geqslant(m-1)^{2}+1$.
Proof. Write $t=r(m-1)+s$ with $1 \leqslant s \leqslant m-1$. Then $r \geqslant m-1 \geqslant s$. Assume for the contrary that $I_{\Delta}^{(m)}$ is not Cohen-Macaulay. By Theorem 1.6(iii), there is a non-Cohen-Macaulay subcomplex Γ of Δ such that $L_{\Gamma}\left(I_{\Delta}^{(m)}\right) \neq \emptyset$. This means that there is $\mathbf{a} \in \mathbb{N}^{n}$ such that

$$
\begin{gathered}
\sum_{i \notin F} a_{i} \geqslant m \quad(F \in \mathcal{F}(\Delta) \backslash \mathcal{F}(\Gamma)), \\
\sum_{i \notin G} a_{i}<m \quad(G \in \mathcal{F}(\Gamma)) .
\end{gathered}
$$

From this it follows that

$$
\begin{aligned}
& \sum_{i \notin F} r a_{i} \geqslant r m \geqslant r(m-1)+s=t \quad(F \in \mathcal{F}(\Delta) \backslash \mathcal{F}(\Gamma)), \\
& \sum_{i \notin G} r a_{i} \leqslant r(m-1)<r(m-1)+s=t \quad(G \in \mathcal{F}(\Gamma)) .
\end{aligned}
$$

Thus, $r \mathbf{a} \in L_{\Gamma}\left(I^{(t)}\right)$ so that $L_{\Gamma}\left(I^{(t)}\right) \neq \emptyset$. Therefore, $I_{\Delta}^{(t)}$ is not Cohen-Macaulay by Theorem 1.6(iii).

For $m=2$ we have $(m-1)^{2}+1=2$. Hence Theorem 4.3 has the following interesting consequence on the Cohen-Macaulayness of the second symbolic power.

Corollary 4.4. If $I_{\Delta}^{(t)}$ is Cohen-Macaulay for some $t \geqslant 3$, then $I_{\Delta}^{(2)}$ is Cohen-Macaulay.

Using Theorem 2.1 we obtain strong conditions on simplicial complexes Δ for which $I_{\Delta}^{(t)}$ is Cohen-Macaulay for some $t \geqslant 3$. For instance, the graph of the one-dimensional faces of Δ must have diameter $\leqslant 2$ by Corollary 2.2.

For $m=3$ we have $(m-1)^{2}+1=5$. Therefore, $I_{\Delta}^{(3)}$ is Cohen-Macaulay if $I_{\Delta}^{(t)}$ is CohenMacaulay for some $t \geqslant 5$. We don't know any example for which $I_{\Delta}^{(4)}$ is Cohen-Macaulay but $I_{\Delta}^{(3)}$ is not Cohen-Macaulay.

The next result shows that there exists a number t depending on n such that if $I_{\Delta}^{(t)}$ is CohenMacaulay, then $I_{\Delta}^{(m)}$ is Cohen-Macaulay for all $m \geqslant 1$.

Theorem 4.5. Let $d=\operatorname{dim} \Delta$. If $I_{\Delta}^{(t)}$ is Cohen-Macaulay for some $t \geqslant(n-d)^{n+1}$, then $I_{\Delta}^{(m)}$ is Cohen-Macaulay for all $m \geqslant 1$.

Proof. Assume for the contrary that $I_{\Delta}^{(m)}$ is non-Cohen-Macaulay for some $m \geqslant 1$. By Theorem 1.6(iii), there is a non-Cohen-Macaulay subcomplex Γ of Δ with $\mathcal{F}(\Gamma) \subseteq \mathcal{F}(\Delta)$ such that $L_{\Gamma}\left(I_{\Delta}^{(m)}\right) \neq \emptyset$. This means that the system

$$
\begin{gathered}
\sum_{i \notin F} a_{i} \geqslant m \quad(F \in \mathcal{F}(\Delta) \backslash \mathcal{F}(\Gamma)), \\
\sum_{i \notin G} a_{i} \leqslant m-1 \quad(G \in \mathcal{F}(\Gamma))
\end{gathered}
$$

has a solution $\mathbf{a} \in \mathbb{N}^{n}$. We now consider the system

$$
\begin{gathered}
\sum_{i \notin F} a_{i}-m \geqslant 0 \quad(F \in \mathcal{F}(\Delta) \backslash \mathcal{F}(\Gamma)), \\
\sum_{i \notin G} a_{i}-m \leqslant 1 \quad(G \in \mathcal{F}(\Gamma)), \\
m \geqslant 0, \quad a_{i} \geqslant 0 \quad(i=1, \ldots, n)
\end{gathered}
$$

The solutions of this system in \mathbb{R}^{n+1} span a rational polyhedron. Let $\mathbf{x} \in \mathbb{R}^{n+1}$ be a vertex of this polyhedron. Then \mathbf{x} is the solution of a system $A \mathbf{x}=\mathbf{b}$, where A is an $(n+1) \times(n+1)$ matrix and \mathbf{b} a vector with entries $0, \pm 1$. For the i th components x_{i} of \mathbf{x} we have $x_{i}=$ $\left|\operatorname{det}\left(A_{i}\right)\right| /|\operatorname{det}(A)|$, where A_{i} is the matrix obtained from the matrix (A, \mathbf{b}) by deleting the column i. Putting $a_{i}=\left|\operatorname{det}\left(A_{i}\right)\right|$ for $i=1, \ldots, n$, we obtain a solution of the first system of inequalities with $m=\left|\operatorname{det}\left(A_{n+1}\right)\right|$. Since the rows of A_{n+1} have at most $n-d$ non-zero entries which are ± 1, their Euclidean norms are $\leqslant \sqrt{n-d}$. Thus, the Hadamard inequality yields

$$
\left|\operatorname{det}\left(A_{n+1}\right)\right| \leqslant \sqrt{(n-d)^{n+1}}
$$

So we may assume that $I_{\Delta}^{(m)}$ is non-Cohen-Macaulay for some $m \leqslant \sqrt{(n-d)^{n+1}}$. By Theorem 4.3, this implies that $I_{\Delta}^{(t)}$ is non-Cohen-Macaulay for $t \geqslant\left[\sqrt{(n-d)^{n+1}}-1\right]^{2}+1$. Since $(n-d)^{n+1} \geqslant\left[\sqrt{(n-d)^{n+1}}-1\right]^{2}+1$, this gives a contradiction to the assumption that $I_{\Delta}^{(t)}$ is Cohen-Macaulay for some $t \geqslant(n-d)^{n+1}$.

One may ask what is the smallest number t_{0} such that if $I_{\Delta}^{(t)}$ is Cohen-Macaulay for some $t \geqslant t_{0}$, then $I_{\Delta}^{(m)}$ is Cohen-Macaulay for all $m \geqslant 1$.

By [12, Corollary 2.5] and [15, Theorem 3.6] we have $t_{0}=3$ if $\operatorname{dim} \Delta=1$ or if Δ is a flag complex. For $\operatorname{dim} \Delta \geqslant 2$, we only know that $t_{0} \geqslant 3$. In fact, if we consider the simplicial complex Δ^{*} on $[n+1]$ with

$$
\mathcal{F}\left(\Delta^{*}\right)=\{F \cup\{n+1\} \mid F \in \mathcal{F}(\Delta)\}
$$

then $\operatorname{dim} \Delta^{*}=\operatorname{dim} \Delta+1$ and $I_{\Delta^{*}}^{(m)}$ is the extension of $I_{\Delta}^{(m)}$ in $k\left[x_{1}, \ldots, x_{n}, x_{n+1}\right]$. Therefore, $I_{\Delta^{*}}^{(m)}$ is Cohen-Macaulay if and only if $I_{\Delta}^{(m)}$ is Cohen-Macaulay.

Remark 4.6. If $\operatorname{dim} \Delta=1$, one can easily find examples such that $I_{\Delta}^{(2)}$ is Cohen-Macaulay but $I_{\Delta}^{(m)}$ is not Cohen-Macaulay for all $m \geqslant 3$. By [12, Corollary 2.5], an instance is a cycle of length 5, which is of diameter 2 but has pairs of disjoint edges not contained in any rectangle. Now, starting from an example in the case $\operatorname{dim} \Delta=1$, we can construct a simplicial complex Δ of any dimension $\geqslant 2$ such that $I_{\Delta}^{(2)}$ is Cohen-Macaulay but $I_{\Delta}^{(m)}$ is not Cohen-Macaulay for all $m \geqslant 3$.

We have found many examples with $\operatorname{dim} \Delta=2$ such that $I_{\Delta}^{(2)}$ is Cohen-Macaulay. In all these cases, we either have $I_{\Delta}^{(m)}$ Cohen-Macaulay or not Cohen-Macaulay for all $m \geqslant 3$. This suggests that we may have $t_{0}=3$ in the case $\operatorname{dim} \Delta=2$. In the following we present a simple example with $\operatorname{dim} \Delta=2$ such that $I_{\Delta}^{(2)}$ is Cohen-Macaulay but $I_{\Delta}^{(m)}$ is not Cohen-Macaulay for all $m \geqslant 3$, which is not originated from the case $\operatorname{dim} \Delta=1$.

Example 4.7. Let Δ be the simplicial complex with the facets

$$
\{1,2,3\},\{1,2,4\},\{1,3,4\},\{2,3,4\},\{3,4,5\} .
$$

We can easily check that Δ is a tight complex. By Theorem 2.5 , this implies that $I_{\Delta}^{(2)}$ is Cohen-Macaulay. To check the Cohen-Macaulayness of $I_{\Delta}^{(m)}, m \geqslant 3$, we consider the non-Cohen-Macaulay subcomplex Γ with the facets $\{1,2,3\},\{3,4,5\}$. Then $L_{\Gamma}\left(I_{\Delta}^{(m)}\right) \neq \emptyset$ because the associated system of linear inequalities:

$$
a_{1}+a_{5} \geqslant m, \quad a_{2}+a_{5} \geqslant m, \quad a_{3}+a_{5} \geqslant m, \quad a_{4}+a_{5}<m, \quad a_{1}+a_{2}<m
$$

has at least the solution $\mathbf{a}=(1,1,1,0, m-1)$. By Theorem 1.6(iii), this implies that $I_{\Delta}^{(m)}$ is not Cohen-Macaulay for all $m \geqslant 3$.

References

[1] R. Achilles, W. Vogel, Über vollständige Durchschnitte in lokalen Ringen, Math. Nachr. 89 (1979) 285-298.
[2] W. Bruns, J. Herzog, Cohen-Macaulay Rings, Cambridge Stud. Adv. Math., vol. 39, Cambridge University Press, Cambridge, 1993.
[3] C.A. Francisco, Tetrahedral curves via graphs and Alexander duality, J. Pure Appl. Algebra 212 (2008) 364-375.
[4] D.H. Giang, L.T. Hoa, On local cohomology of a tetrahedral curve, Acta Math. Vietnam (2010), in press.
[5] J. Herzog, T. Hibi, N.V. Trung, Symbolic powers of monomial ideals and vertex cover algebras, Adv. Math. 210 (1) (2007) 304-322.
[6] J. Herzog, T. Hibi, N.V. Trung, X. Zheng, Standard graded vertex cover algebras, cycles and leaves, Trans. Amer. Math. Soc. 360 (2008) 6231-6249.
[7] J. Herzog, Y. Takayama, N. Terai, On the radical of a monomial ideal, Arch. Math. 85 (2005) 397-408.
[8] M. Hochster, Cohen-Macaulay rings, combinatorics, and simplicial complexes, in: B.R. McDonald, R.A. Morris (Eds.), Ring Theory II, in: Lect. Notes Pure Appl. Math., vol. 26, Dekker, 1977, pp. 171-223.
[9] G. Kalai, Algebraic shifting, in: Computational Commutative Algebra and Combinatorics, Osaka, 1999, in: Adv. Stud. Pure Math., vol. 33, Math. Soc. Japan, Tokyo, 2002, pp. 121-163.
[10] K. Kashiwabara, Y. Okamoto, T. Uno, Matroid representation of clique complexes, Discrete Appl. Math. 155 (2007) 1910-1929.
[11] J. Migliore, U. Nagel, Tetrahedral curves, Int. Math. Res. Not. IMRN 15 (2005) 899-939.
[12] N.C. Minh, N.V. Trung, Cohen-Macaulayness of powers of two-dimensional squarefree monomial ideals, J. Algebra 322 (2009) 4219-4227.
[13] J. Munkres, Topological results in combinatorics, Michigan Math. J. 31 (1984) 113-128.
[14] G.A. Reisner, Cohen-Macaulay quotients of polynomial rings, Adv. Math. 21 (1976) 30-49.
[15] G. Rinaldo, N. Terai, K. Yoshida, Cohen-Macaulayness of symbolic powers ideals of edge ideals, preprint.
[16] A. Schrijver, The Theory of Linear and Integer Programming, Wiley-Interscience, 1998.
[17] A. Schrijver, Combinatorial Optimization, Springer, 2003.
[18] P. Schwarztau, Liaison addition and monomial ideals, PhD thesis, Brandeis University, 1982.
[19] R. Stanley, Combinatorics and Commutative Algebra, second ed., Birkhäuser, 1996.
[20] Y. Takayama, Combinatorial characterizations of generalized Cohen-Macaulay monomial ideals, Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 48 (2005) 327-344.
[21] M. Varbaro, Symbolic powers and matroids, preprint, arXiv:1003.2912.
[22] R. Waldi, Vollständige Durchschnitte in Cohen-Macaulay-Ringen, Arch. Math. (Basel) 31 (1978/1979) 439-442.

[^0]: The authors are supported by the National Foundation of Science and Technology Development.

 * Corresponding author.

 E-mail addresses: ngcminh@gmail.com (N.C. Minh), nvtrung@math.ac.vn (N.V. Trung).

