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1. Introduction 

This paper extends the results of the work by the authors [21,29,31,32] on the crack and screen 
problems for the Laplace and Helmholtz equations as well as on the exterior elasticity problems 
with a regular smooth boundary to the Dirichlet problem for the two-dimensional Lame system 
exterior to an arc. Some of the results here were presented in [18] and have been recently 
generalized to the Neumann problem [33]. Throughout the paper, let F be an open arc in the 
plane IR 2, i.e., a simple oriented curve joining two points which will be termed the “crack tips”. 
We consider here the boundary value problem consisting of the linear elasticity equation for the 
displacement field U: 

A*u:=pAlr+(h+p) graddiv u=O in 52,=lR2\T, (E) 

together with the boundary condition 

ul,=g, (B) 

where p > 0 and X > -p are given Lame constants [13], and g is a prescribed smooth function. 
In addition, we assume that u - r is regular at infinity, where r = r(x) denotes the rigid motion 
associated with U. Following [21,23], by this we mean 

Da(U-r)=O((x(-n-*), a=O,l, as(x]-+co, (C] 

with D = a/axi. More precisely, let us represent the rigid motion r(x) in the form 

r(x) = qf?, + ti2e^, + w3(x2e^, -xi;,), 

where e^, denotes the unit vectors in lR2 and the G+‘S are constants, which together with u are 
unknown. As indicated in [17,21], condition (C) implies that 

(Cl) 

and in order to ensure the uniqueness, we further impose the equilibrium condition of vanishing 
total momentum 

cc,> 
which will become transparent later (see (2.12)). Here, ds stands for the arc-length element and 
y denotes the point of integration. We note that condition (C,) will not be needed in the case 
when w3 is given [21]. Here [T(u)] stands for the jump of traction T(u) across F, 

T(u) := 2p&u + XA div u + @? x curl u, (1.1) 

with iz being the unit normal to r, and curl u := curl(u,, u2, 0). 
In the following we shall refer to the problem defined by (E), (B), (C,) and (C,) as the crack 

problem (P). Such crack problems arise if, e.g., an inlet of rigid material is immersed at F into 
the elastic material occupying 52,. Note that this rigid part might also be moved against the 
surrounding infinite elastic material. We remark that, alternatively, we may also formulate the 
crack problem with (B) replaced by the two boundary conditions 

ulr+=u+ and u]~~=u_. 
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Fig. 1. 

The orientation of r defines the direction of the normal vector li (see Fig. 1). Here rk denote 
the positive and negative sides of r, correspondingly. The jump, [u] := U_ - U+ vanishes at the 
tips of r. As usual, u ( r+ and u 1 r denote the traces of u on r from the + and - sides, 
respectively. Then our approach below can be easily adapted with g replaced appropriately (see, 

e.g., VI). 
Our aim is to develop a solution procedure for (P) by making use of an integral equation 

method which allows us to obtain the explicit singular behavior of the “stress” near the tips of r. 
Following [21,32], we reduce the problem (P) to a system of boundary integral equations of the 
first kind [12,16,35] with the jump of traction across r as the unknown. These boundary integral 
equations are derived by the “direct approach” based on the Betti formula. By using the method 
of local Mellin transform as in [4-8,10,22] and the calculus of pseudodifferential operators 
[11,28], we establish existence, uniqueness and regularity results for the solution of our boundary 
integral equations. In particular, we are able to obtain appropriate asymptotic expansions for the 
jump of tractions near the tips of r. The latter provides us useful information concerning 
numerical treatment such as the Galerkin scheme for our boundary integral equations. In fact, in 
our augmented boundary element method, we use, as in [24,32,34,36] in addition to the regular 
finite elements, appropriate singular elements concentrated near the tips and improve signifi- 
cantly the asymptotic convergence rates of our approximate solutions. 

It should be emphasized that since our boundary integral equations are derived directly from 
the Betti formula, the boundary charges are precisely the jumps of tractions across r. From our 
boundary element method using augmented test and trial function spaces with the appropriate 
singular elements, we are able to compute both approximate boundary charges and the stress 
intensity factors simultaneously. Hence, our asymptotic error estimates include explicit estimates 
for the stress intensity factors, as well. 

2. Integral representation 

We begin with the variational formulation for the problem (P). We then derive the integral 
representation for the variational solution by the direct method based on the Betti formula. In 
order to characterize the variational solution of (P), we introduce the vector-valued function 
space H,l(Q,), the completion of all C”-functions f(x) of the form 

f(x) =f&) + 44 
with respect to the norm 11 + (1 l,c defined by 

(2.1) 

II f II I,c := f)dx+LlfI'ds (2.2) 
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where f0 is regular at infinity and r denotes a rigid motion of the form 

r(x) = cqe^, + w2t2 + wg( x22, - xlE2) =: M(x) w’, 

with w’= (w,, w2, L+)~ and M(x) the corresponding 2 X 3 matrix. Here 

&‘(f,g):=(X+p)divfdivg+;p i J~+Z$$+~~ 

(2.3) 

is a bilinear form for the derivatives of f and g (see [23]). We denote by &‘(a,) the closed 
subspace of H,‘(L?,) such that 

tic’@&) = { fEH,‘(&.): f Ir=O}. 

For the variational formulation of the crack problem (P), let h E H1(W2) with compact support 
be an extension of the boundary values g E H1/2( r) with h ] r = g. Hence, h E H,‘( 52,) and it is 
regular at infinity. By a simple modification of the results, in [21], one can show that the 
variational formulation for problem (P) reads: For given h E H,‘( In,), find a function u E kC1( s2,) 
such that u - h E I&‘( a,) and 

B(u, @) := ( cf’(u, @) dx = 0 (2.5) 

for all @ E fiJ(s2,). Alternatively, with u := u - h, (2.5) is the same as to find 0 E gJ( 52,) such 
that 

B(u, @) = -/ 6(h, tD) dx. 
or 

By definition, tiJ( 9,) is a Hilbert space, and the right-hand side is a bounded linear functional 
on fi:(Q,). Therefore, by the Riesz-FrCchet representation theorem, there exists exactly one 
solution o E &*( 52,) and hence, exactly one solution u E HJ( 0,) of (2.5) with u - h E I?:( a,) 
which, actually, is independent of the special choice of h. 

In order to derive an integral representation of the variational solution of the problem (P), as 
in [l&32] we extend r to an arbitrary smooth simple closed curve Gi. We use the notation [v] for 
the jump u_-IJ+ _ of a function 2) across 6,. Here the subscripts -, + denote the limits taken 
from G, and R2\G,, respectively. For later use, let B4 be a circle with radius R sufficiently 
large enough to enclose G,. The domain bounded by G, and the boundary BR of BR will be 
denoted by G,. The boundary G, of G2 consists of r together with G,\r and 8, (see Fig. 1). 

In what follows, let H”(d,) be defined as the trace of H”+*‘2(R2) for s > 0, as L2(G,) for 
s = 0, and as the dual space of H-“( 6,) for s < 0. For s > 0, H”(r) denotes the usual trace space 
of H”(G-,) on I? and a”(r) is defined by 

tis(r):=(f=f*lr: f*EHS@), f*&=O) 

equipped with the topology of H”( 6,). For s -C 0, we define 

H”(r) := (ii-‘(r))’ and g”(T) := (H-“(T))’ 
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by duality with respect to the L2(r) scalar product. It is clear that from the definition, for s > 0 

P(r)= (fEH-S(G,): supp(f)cr), 

which is also the completion of Cow(r) with respect to the norm of H-“(6,) (see [l], [14, 

Theorem 25.1, p.55ff.l). 
We now state some properties concerning the solution u E H,‘( s2,) of (2.5). 

Lemma 2.1. Let u E HJ(L?,) be the solution of (2.5). Then u ( 6, E H’j2(6,) and u ( r E H’12(r). 

For the traction T(u) we have 

T(u) lG, EH-“~(~,) and T(u) Jr~21/2(I’)‘; 

moreover, if we denote by [T(u)] = T(u) _ - T(u) + the jump of the traction across r, then we have 

[T(u)] (r~I?“2(r). 

Here in the definition of T(u) (see (1.1)) the exterior normal derivative to 6, is used. 

Proof. The proof is based on the trace theorem [25], the first Kom inequality [13,26] and on 
Weyl’s lemma. First, we show for the variational solution u E H,‘(O,) that u ( G E H’(G,), the 
standard Sobolev space associated with G,, i = 1, 2. Then, let 2) := u - h E &‘(S,‘), and the first 
Korn inequality (see [26, Eq. (1.4.28)]) implies 

i/2 

]I u ]] H’(G,) G 11 2, iI H’(G,) + 11 h 11 H’(G,) G c 
iJ 

cf’(u, v) dx 
G, ) 

+ ]I h ]I H’(G,) 

G c { iI u II H:(sZ,) + 11 h II H,‘(B,) } + II h 11 H’(G,). 

Thus, u ( G, E H’( Gi). Moreover, since u is the solution of (2.5), by standard arguments, A* u = 0 
in Or. Hence, by Weyl’s lemma, u E C”( a,). Now, take w E C” with supp w c BR. Then the 
first Betti formula [23, p.91 applied to Gi for i = 1, 2, respectively, yields 

J,,w- [T(u)] ds=jG uG+v~ u> dx 
I 2 

i cR ( 11 w tl H'(G,) + 11 w 11 H'(G2)> 11 u 11 H,‘(ii’,,)- 

Hence, with the same arguments as in [3, p.3771 involving the trace theorem, we see that the 
left-hand side defines a bounded linear functional on w ) 6, E H1/*( 6,). Consequently, [T(U)] E 

H-“2(61), th e d 1 ua space of H”2(6,). Since [T(u)] =0 on G,\F, we have [T(u)] EI?‘/~(I’). 

q 

For the integral representation of the solution u, we need the fundamental solution of (E), the 
Kelvin matrix (see, e.g., [2]): 

Y(Y, x) = 
A + 3j_l 

470 + 2P) i 
loglx:ylI+ 

h+P (x-Y>(x-Y)’ 
x + 3j.L i Ix-Y12 ’ 

(2.6) 
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and the corresponding stress matrix on ej [18]: 

YdY> 4 := (T,Y(Y, 4)’ 

ii 

@+I-4 
= 2n(hl:2p) I+ E”,x-Y12 (x-Y)(X-y)r)& + [; ;q$-] 

P-7) 

where T stands for the transposed and a/as, for differentiation with respect to arc length at 
y E Gj. By applying the Betti formula [23, p.431 to the variational solution u in G,, j = 1, 2, we 
obtain 

aju(x) = -Jen(y7 
I 

+(Y> ds, + J~Y(Y, +(u)(y) dSv (2.8) 
I 

for fixed x E G, with a, = 1 and a? = 0. These representations hold for u E HJ( a,), since from 
Lemma 2.1 we have u 1 G, E H’12(Gj) and T(U) 16, E H-‘12(6,). Now from (2.8) it follows that 

+> = - &YAY? MY> ds, + JSRY(Y, x)+)(Y) ds, 

- /YAY> X)[Ul(Y) dSY + @Y, x)[T(u)l(Y) ds, (2.9) 
r 

for fixed x E G,. We note that [T(U)] ( ,+,r = 0 and, for the boundary condition (B), [u] ( r = 0. 
If I( - M( x)2 is regular at infinity, one can show that the first two terms tend to M( x)w’ as 

R + CO [21]. Thus, we arrive at the modified Betti representation formula 

u(x) = J;/(Y. #-(u)](y) ds,+M(x)& x~G1. (2.10) 

Clearly, in a similar manner, one can show that the same representation holds for x E G, with 

arbitrary R. 
We summarize the foregoing results in the following theorem. 

Theorem 2.2. Suppose u E H,‘( ii?,) is the variational solution of (P). Then u admits the integral 
representation 

44 = JrY(Y, x)[T(u)] ds,+M(x)o’, XE[W~\~, (2.11) 

where [T(u)] ) r E II?~‘~(~) is the jump of traction across r, satisfying the condition (C,), and 
M(x) 0’ corresponds to the rigid motion of u at infinity. 

We remark that from the representation (2.11), as in [21], one may derive the generalized 
formula for the virtual work of displacement fields including rigid motions at infinity: 

J 
+v, u) dx= - (2.12) 

Q2, 
/w. [T(u)1 ds+ jMYF+)) * [T(u)1 d% 
r r 
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for w E HJ( or), where u E H,‘( Q,) is a variational solution of (P) and M( Y)Q( w) corresponds 
to the rigid motion of w at infinity according to (2.1), (2.3). This formula indicates that one 
indeed needs the additional condition such as (C,) in order to ensure the uniqueness of the 
solution of the problem (P). 

3. Boundary integral equations 

We now reduce the variational boundary value problem of Section 2 to equivalent boundary 
integral equations for the jump of traction [T(u)] across I’. This can be achieved from the 
integral representation (2.11) by letting x tend to r. In fact, we have the following result. 

Theorem 3.1. Let g E H1j2( r) be given. Then u E H,‘( a,) is the variational solution of (P) with 
@ = [T(u)] 1 r if and only if @ E &11/2(r), w’ E R 3 solve the integral equations 

J 
,y(y, x)@(y) ds, + M(x)w’=g, I@ ds = 0 and /m,(y). @ ds = 0 

r r 

for x E r, 

where m3(y) := y2e^, - y,e^,. 

(3.1) 

Proof. For convenience, let us denote by Vr the boundary integral operator defined by 

&Q(x) := Iry(y, X>@(Y) ds,, x E r. (3.2) 

For @ E G’(r), Vr can be identified with 

I%@(x) = /“. Y(X, Y)@*(Y) ds, =: K@*(x), 
Gl 

where @* is the extension of @ by zero onto G, \r. As is known from [21], V& is a 
pseudodifferential operator with the symbol 

where ui is the symbol of a smoothing operator [ll]. Hence, I’,: B”(r) --) H’+‘(T) is continu- 
ous for every real s (see also [19]). 

Now the necessity in Theorem 3.1 follows clearly from the derivation of the integral 
representation (2.11) by density of C”(T) in &“2(IJ, since for continuous @, the potential 
Vr@ is continuous in R2. Hence, any variational solution satisfies the first equation of (3.1) with 
@ = [T(u)] ) r E II- l/‘(r). By taking the limit x -+ cc in the representation formula (2.11), we 
easily find the three last conditions in (3.1) since u is the variational solution by definition and 
u - M( x)G is regular at infinity. 

For the sufficiency, we proceed as follows. Let @ E Z?-1’2( r), w’ E [w 3 solve (3.1). Then the 
potential 

4x) = J-rY(1.3 x) Q(y) ds, + M(x); (3.3) 
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is well defined for every x P r since y( y, x) E W*/‘( T’) for y E P, and the same holds for any 
derivative (a/8x)/( El/a~)~y( X, u). 

Now, the single layer potential operator Vr defined in (3.2) is a pseudodifferential operator 
with the symbol given above of order - $ as a mapping from functions on the boundary 6, into 
functions on the bounded domain G, and/or its complement G, = W2\ c1 (see [ll, !@I). Thus 
for CD E He112(G1) we have V,@ E H’(G,) where @J 16, is defined by extension by zero on 
G,\r, j = 1, 2. 

For x @ r we use (2.10) and may interchange differentiation and integration obtaining 

A”u=O in fir. 

For 1 x 1 2 R the potential (3.3) is analytic and with /,@( JJ) ds, = 0 there holds 

U(X) = M(x)o’+ 0 & 
i i 

and 6(u, U) = 0( 1 x I-“). 

Hence, from (2.2) follows u E H,‘(fi2,). 0 

In order to guarantee that the system (3.1) is always solvable, we need some properties of the 
operators in (3.1). Let A, be the functional defined by 

A,@ := MT(y)@(y) dsY, 
J r 

where MT(y) is the transposed of the matrix M(y) in (2.3), that is, 

0 
MT(y) = ; 1 [ 1 . 

Y2 -Y1 

We also introduce the matrix operator A,: 

(3.4) 

(3.5) 

In the theorem below we will show, as one expects from [32,36], that the operator A, here also 
satisfies a G&-ding inequality in the energy space H “-‘/2(I’> X R3. This means that A, is a 

Fredholm operator of index zero [19,20,30] and hence, together with the uniqueness of the 
solution of (3.1), it implies that (3.1) will always be uniquely s&able. 

Theorem 3.2. The matrix operator A, and its adjoint A? with respect to the duality 

((‘k, Z), (@, 4)tZ~i-)xlR3 := (‘k, @)LZU-) + k’. z, 

both are continuous and bijective mappings, 

(3.7) 

If"(r)~R~-+H~+~(r)X08~ for-l<s<O. (3.8) 

Moreover, the operator A, satisfies a G&ding inequality on fi-“2( r) X R3, i.e., there exists a 
constant y > 0 and a compact mapping 

c,: tiF2(r)x ta3 *H1j2(r)x ua3, (3.9) 
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such that the inequality 

((A.+ G>(@, 4, wJ> 4)L2~T)XW) 2 Y( II @Ill&-) + I 4’) 

holds for all (CD, w’) E I?-1’2( T) X R’ 3. 

(3.10) 

Proof. An elementary computation gives that A; is the formal adjoint to A, with respect to the 
L2-duality between g’- ( ) I/’ r x R 3 and W’/*(r) X R3. The continuity (3.8) for s = - a is a 
direct consequence of Theorem 3.1. For the remaining s with - 1 < s < 0, the continuity (3.8) 
holds too, as shown above. 

Before we prove the bijectivity of the mapping (3.8), let us first show that the Garding 
inequality (3.10) holds. Let us write the kernel in (2.6) as 

Y(X> Y) = 
x + 3/J x+/J (Y-x)(Y-xJT 

4VJP + 2/J.) log ,~lyl’+~’ L= 41~/@,+2p) Ix-Y12 . 

(3.11) 

This decomposition induces a corresponding decomposition of the integral operator 

Vr@ = QD + L,@. (3.12) 

Next note that if @ E &l’*(r), then @* E H-‘j2( 6,) and hence 

(J%@: @)P(T) = (R_$*, @*)L2@# 

with Ed,@* defined via (3.11) and (3.12). Hence from [35, Lemma 2.11 

(JQ, @)L’cn > Y II a* II&‘@,) - (VP*> @* )P&, 

= II @It&r) - (C,@> Q%(r), (3.13) 

with y > 0 and C, a compact mapping from a- rj2( r) into Hri2( I’). On the other hand, we note 
that the kernel L in (3.11) belongs to C”( r x r) if r E Cm+*. Hence since r is smooth, L, is a 
compact operator from ti-1’2( r) into H 1/2(r). We obtain (3.10) with C, = Cl + L,. 

Now A, is bijective from & r’*(r) X !R3 onto EI”2(r) X R3 since G&-ding’s inequality (3.10) 
shows that A, is a Fredholm operator of index zero and the integral equation (3.1) is uniquely 
solvable. 

For uniqueness we consider the solution $, & of the homogeneous equations 

J Y(X, Y)%(YY) ds, + M(x)& = 0, 
r 

J Q. ds = 0, 
J 

m,(Y). Q. ds = 0. 
r r 

Then the corresponding potential 

u0(x> := /Y( x, Y)@,(Y) ds, + J++% 

will satisfy [T( uO] = @,, on r due to the jump relations, and uO, r‘ = 0. Moreover, (2.12) for u0 
implies 

J ( 
d I+,, uO) dx = - 

a,. s 
Us.@,, ds+ r&I(y)+@,, ds,=O. 

r 1 

Hence, uO( x) = M(x) GO. Then a0 = 0 and moreover o’O = 0, since u,, , ,. = 0. 
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For - 1 < s < 0 the operator fr- is bijective from I?“(r) onto H’+‘(r) due to [36, Theorem 
2.21 provided diam(G,) < 1. Hence, we easily obtain the bijectivity (3.8) of A, and A: in the 
general case by scaling (see [ 321). •I 

4. Regularity of results 

We now arrive at the point of our main concern- the singularity of [T(u)] near the crack tips 
2,. As in the case of potential theory [28,30,31], the variational solution u of (2.5) has in general 
unbounded traction [T(U)], even for Cm-data. Hence, one will not be able to improve the 
approximation of [T(u)] by the conventional constructive methods such as finite-element or 
boundary element methods without any modifications, since for better approximations, one 
generally requires higher regularity of the exact solution [T(u)]. For this purpose, we decompose 
[T(u)] into special singular terms concentrated near the tips Z, and a regular remainder. In this 
way, as in [8,24,29,31,32,36], one may then augment the finite-element spaces to test and trial 
functions with appropriate global singular elements, according to the special forms of the 
singular terms in [T(u)], to improve the order of convergence of the approximations. A different 
approach for improving the approximation consists of using graded meshes associated with the 
singular terms [27]. 

Theorem 4.1. For ( (J ) < +, let g E ITZ~+~(T), s = : or 4 be given. Then the solution [T(u)] 1 r E 

1?-1/2( l’J (and 0’ E i.R 3, of the integral equations (3.1) admits the asymptotic representation near 

the endpoints Z, E 5;: 

(4 
[T(u)] Jr= ~~ip1~1/2xi+\k, fors=:, 

i=l 

with \k, E I-?1’2s0( r), tii E lR2, i = 1, 2; 

04 
[T(u)] lr= i ($p;1’2+&d/2)xi+~I fors= 3, 

i=l 

with !PI =ti3j2+O(r), zi, &E R2. 

Here pi denotes the distance between x E r and Z,, while xi is a C” cut-off function such that 
0 < xi < 1, x, = 1 near Z, and xi = 0 elsewhere, i = 1, 2. 

We remark that the coefficients $ and & in the above theorem are indeed the stress intensity 
factors as in the crack problem, since T(u) is the traction. We further comment that the 
regularity of the remainder term in [T(u)] 1 r may be improved as the given datum g becomes 
smoother; however, in general the solution [T(u)] 1 r possesses singularities and is then always 
unbounded at the tips. 

Proof of Theorem 4.1. Let us assume that z = z(s) is the regular parameter representation of the 
arc r, where s is the parameter of arc length measured from the endpoint Z,. The kernel (3.11) 
of the integral operator V, in (3.3) has the form 

Y(44, z(t)) = 4$y-+3;;) logIs-t11+O(s2+t2), (4.1) 
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as can be seen easily from Taylor’s expansion since r is sufficiently smooth (see [5, (2.19)] and 
[19, (A.6)]). This yields near Z, the decomposition 

V,= ?r+L, withpr= pO+R,, Lr=L,+R,, (4.2) 

where I& and L, are given by 

@P(t) = - (X+3/d 
J 
3o 

~-vO+~PL) o 
log 11 - ; j*(s) ds, 

L&t)= h+l-l 
J 4-w(~+2P) 0 
"!I+) ds 

(4.3) 

for Ik E C,(O, cc). Here R,, R2 and Lo are smoothing operators (see [4,5,10]). The application 
of the Mellin transform yields 

(&S)^(5)=+0(5.)@({-i) forIm[E(O,l), 

with the Mellin symbol 

(4.4) 

(h+ 3~) 1 coshT{ 

‘(‘) = - HIT/_&!+ 2~) T sinh 7r{ ’ (4.5) 

The Mellin transform @({) for 9 E C,“(O, cc) is an entire analytic function defined by 

4/(S) = 1=x iz-‘!P(x) dx. (4.6) 

The inversion formula is 

(4.7) 

where ‘P,, = \k for all h E R if \k E C,“(O, cc). (For vector-valued functions the expressions (4.6) 
(4.7) are understood componentwise.) If YP E G’(rW +) has compact support, then q’(c) exists and 
is holomorphic for Im { < s - :, and \k = !Ph for h < k, = s - $. Having performed the Mellin 
transform of the local version of the integral equation (3.1) one can find by means of 
Kondratiev’s method [22] the asymptotic expansions (a), (b) of the solution. Since one can find 

from (4.5) the explicit decaying behavior of I$,(() for Im l= s - i with I{ 1 + 00, one obtains 
the mapping properties of A, by taking into account possible poles of the Mellin transformed 
equations using the Cauchy residue theorem. 

In detail we proceed as follows. For simplicity let us assume o’= 0. We take a partition of 
unity on I and we assume that the unknown function in the integral equation has its support in 
a neighborhood of the origin being the only endpoint of r considered. Then we may rewrite the 
first equation of (3.1) in the form go\k = f where f := g - (R, + Lo -t R,)@. By continuity 
arguments one can assume that f is smooth. Then the Mellin transformed equation 

&(SW - i) =./IS> (4.8) 
has a solution 

(4.9) 
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which is meromorphic on the strip Im [ E (h,, h,) in C. Here h, = 0 corresponds to the a priori 
known regularity of the variational solution providing 9 E E?-‘-‘/2(IJ. The line Im l= h, 
corresponds to the regularity of the regular part !PO or !Pr of the decompositions (a) or (b), where 
h G s + u - : because of the regularity of g E HSfo. The poles of $(c - i) in the strip give the 
singular parts of the expansions (a) and (b) after application of the inverse Mellin transform and 
the Cauchy residue theorem. In ocder to find the singularity functions ye can assume f = ( fi, f2) 
E C,[O, cc). This implies that f(c) h as meromorphic components f,(S), j = 1, 2, with simple 
poles at { = ik, k E N,. Therefore, !& is also meromorphic and its poles can be determined from 
(4.9). Since the analysis given in [6,10] applies to our case almost word by word, it suffices to 
discuss the qualitative behavior of (4.9). Since the factor 5 sinh n{ cancels the poles of f(S), 
there are only the simple poles at the zeros of 

&(i) = _ (A+ 3~) cash TJ 
4q(x + 2PL) s sinh 71, i.e., { = ii(2k - 1) with any integer k. (4.10) 

The hypothesis !P E SF?- i12 r implies that because of (4.9), only the poles with Im c > 0 have to ( ) 
be considered, that is (4.10) with k E N. Finally, by [8, Lemma 4.31, the expansions (a) and (b) 
are obtained by taking the inverse Mellin transform of (4.9) in connection with the Cauchy 
residue theorem. Then the remainder terms ‘k, and *i in (a) and (b) belong componentwise to 
the weighted Sobolev spaces F&/‘2”“(IJ and I&3/2+0 (IJ, respectively, which near the crack tips 
are equivalent to ~1’2’0(r) and ti33/2+0(Q, 
Sobolev spaces F&~‘2’“(r) and F@ 

respectively [8, Lemma 2.61. (For the weighted 
03/2+“(r) and their equivalent norms, see [8,22].) Hence, by 

patching together the local results, the proof is complete. EI 

To incorporate the expansions of [T(u)] ( r into the augmented Sobolev spaces for the purpose 
of boundary element approximation, we need mapping properties of [T(u)] such as in Theorem 
3.2. Let us begin with the following definition. 

Definition 4.2. (a) Let s > 1. We define 

i 

2 

Z”(T) := 9 = c i$ipi1’2Xi + -PO) i?, E lR2, ‘k, E I?(r) 

i=l 

equipped with 

i 

5 l4l+Il%llfi~(~) 
II VzJ&= i=l 

forOGs<l, 

II 9 II f?‘(r) fors<O. 

(b) For 1 G s < 2, we define 

Z”(T):= 9= ; (~~;1’2+zJ1~‘2)x;+~lI~j, p7ER2, 
i 

q E &(r) 
i=l I 

equipped with 

II 4 II Z’(T) := It I K I + I Iz I + II *1 II A”(r)* 

i=l 
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These augmented spaces allow us to extend the mapping properties in Theorem 3.2 to higher 
order spaces. The following results are similar to those in [10,32,36]. 

Theorem 4.3. For fixed a, 1 o ) < i, the operator A, defined by (3.6) possesses the following 

mapping properties: 

Ar:2’/*+“(T) xIR3 413'2+o(T)~R3 

and 

A,LZ~‘*+~(I-) x R3+H5'2+o(~)~lR3 

with 

and 

(4.11) 

respectively, are continuous and bijective. Furthermore, there hold the corresponding a priori 

estimates 

and 

II *II z”*+“(r) + I W’I G c { II g II H3’2+“(r) + I b I > 7 

II *II z”*+m(r) + I W’I G c { II g II H5’2+“(i-) + I b I >. (4.12) 

Proof. First note that for 0 < r < 1, we have p,r”* P E?‘(r), and for 1 4 r < 2 we have 

Pi -1/2 G I?(T) and p;12 4 I-??‘(r). Therefore, the injectivity of A, for - 1 < 7 < 0, as shown in 
Theorem 3.2, implies injectivity of A, for r = $ + a and for 7 = : + a, respectively. 

For proving surjectivity with g E H”+” (T) c H112( I’), first solve (3.1) for [T(u)] = Q, E 
&l/*(r) and then apply Theorem 4.1 to obtain Zi and ‘k, or GL, 6 and ?Pl for s = t or $, 
respectively. Note that according to the proof of Theorem 4.1, these decompositions of @ are 
uniquely determined for given g. 

Hence, A, in (4.11) is a bijective linear mapping from Z’+O( r) X R3 onto Hs+o(T) X R3. The 
mapping is also continuous since Vr: IZ-‘+O (r) + H’+O( r) is continuous, A, is linear and the 
spaces spanned by ~~7~‘~ for s = 5 or pi “* and pi “* for s = 2 are finite dimensional. The 
closed-graph theorem then implies continuity of the inverse mapping which is equivalent to the a 
priori estimates (4.12). 0 
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We remark that, in particular, one may take b = 0 in Theorem 4.3. Then (4.11) coincides with 
the integral equation (3.1) with 

[T(u)] (r= i Zip,:1’2xi+ ‘kO or [T(u)] (r= ~(iiT,p;1~2+&p~~2j~i+ !Pl, 

i=l i=l 

depending on the given data g E H312+O(r) or g E+H~‘~+O(I’). It is this system (4.11) that we 
will solve in the next section for $, ‘k,, 0’ and Z”, pi, \k,, 0’ by an augmented boundary element 
method originally developed for a closed smooth curve [24,34,36]. In our augmented method we 
use besides regular splines for !PO, *i, the special singular elements ,D-~/~x~, pf12x, as in 

Theorems 4.1 and 4.3. Our procedure has the advantage that we are able not only to obtain 
higher rates of convergence, but also to compute the stress intensity factors simultaneously 
together with the approximate desired boundary charges [T(u)] ) r. 

5. Boundary element method 

Here we derive asymptotic error estimates for the Gale&in approximation of the solution of 
the system (3.1). For conformity of the method we assume that S,, = ($3”)’ is a family of regular 
finite-element subspaces 

$I c z+‘(r) C H-“2(r). (5.1) 

Recall that the parameters in SA,” have the following meaning (roughly speaking): h with 

0 < h < h, is the maximum meshsize of the partition of r; t - 1 is the degree of piecewise 
polynomials; k describes the conformity, that is Si%” c Hk(r). The Galerkin approximation of 

the solution (@, w’) E g-“2(r) X R 3 of the system (3.1) for given g E H’12(r) and b E R3 is 
the pair (@, o’h) E S, X R3 satisfying the Galerkin equations 

for all \k E S,,, ZE [w3; that is 

(I/r@“, $(,., + w’&l, *)P<r) = (8, %V) 

= (I+@, %2(r) + ;?‘(&I, ‘k),:(,, (5 $3) 

for all \k E S,, and the side condition 

Ar.Qh = b = A,@. P-4) 

The solvability of the Gale&in equations (5.2) and the quasi-optimality of the Galerkin error 
in the energy norm follow immediately from G&-ding’s inequality (3.10) together with uniqueness 
of the system (3.1). The arguments here are now standard [19,30]. We summarize the results in 
the following theorem. 

Theorem 5.1. Let (@, 0’) E I?l12( r) X R3 denote the exact solution of (3.1) and ( Qh, Gh) E S,, x 

R3 be the Galerkin solution of (5.2). Then there hold: 
(i) there exists an h, > 0 such that for any 0 -C h < h, the Galerkin operator gh from I? ‘j2( r) 

X R3 into S,, X lR3 defined by (5.2) as 9,,( @, 0’) = ( !Dh, Cih) is uniformly bounded independently of 

h; 
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(ii) for decreasing meshsizes h + 0 there exist constants C, c > 0 independently of h, g and b 

such that for any e > 0 

)I @ - Qh )) fim’,Z(r) + ) w’ - 2) < ci& { 1) @ - YP]l g-‘/‘(r)} 
h 

< Ch”2-’ 1) Q, 1) Am’(rl 

< (%‘*-‘{ 1) g II Hl--(r) + I b I }. (5.5) 

Remark 5.2. The asymptotic rate of convergence (5.5) is due to the approximation property of S, 
and the restricted regularity of the exact solution @ caused by the singular terms P,:‘/~x, 
belonging to H-‘(T) for any 6 > 0. 

For higher convergence rates we augment the space of test and trial functions with the special 
singular elements pi-*‘2 xi, pt’2xi, i = 1, 2, constituting the augmented finite-dimensional finite- 
element spaces 2,‘12(ZJ, Z,“‘(r) on I? 

where 

Ii/Q) := p. ESh: YPo(z,) =o, i = 1, 2 and S, = (Sl,l)‘), 

fit(r) := (qr ES~: qI(Zi) = $‘(Z,) =O, i= 1, 2 and S,= (S;32)2}. 
(5.7) 

Here we have incorporated transition conditions at the crack tips Z,, i = 1, 2, so that 

I?;(r) cfi'(I') and k:(r) cl?'(r) 

hold when S>’ c H’(T), and S;,’ c H2( r), respectively. Consequently, we have 

z,‘/‘(r) c z1’2+0(r) c IV”(r), z,“*(r) c z3’2+O(r) c II-“‘(r). (5.8) 

We note that these augmented finite-element spaces satisfy the following two approximation 
properties: 

inf 
@EZ, 

1) * - \Eh 1) zV 6 Ch’-” 1) q, 1) g’(r) (5.9) 

for -:<s<r<l+lwithI=~andI=~,respectively,and 

inf 
@EZh/ 

1) !P - !Ph )I ~-IB~~) G Chr+1’2-6 1) !PO )I k’(T) (5.10) 

forl+l<r<l+$ andforany6>0. 
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These properties can be derived from the well-known approximation properties of the 
polynomial spline spaces Hh ‘+l12(r) as follows: for (5.9) we have 

since Z%‘+1’2(IJ c lfr’(r) for r < $ in case I = : and for Y < 2 if I= p. 
The second estimate (5.10) will be needed in order to apply the Aubin-Nitsche 

s= -i and I+l<r<l++.Here, 

trick where 

inf I( 9 - \kh (1 ~-I/Z(~) < inf 
‘IrhEZ, ~~&~+‘qi-) 

II \k, - *: II A-“Z(r) 

where Ph is the orthogonal projection in L2(r) onto H,, a ‘+l’*(r). The latter can further be 

estimated by 

inf ) I q. - Phqo 11 rim ‘/2(r) G inf II q. - % II L,(r) . sup Ch1’2-6 1) Q, II al/z-s(r) 
II @II “WC,.,< 1 

< Ch1’2-6 11 91 - I,*,, 11 ~qr) 

with any 6 > 0; and I, the interpolation of ‘k, by splines in H ‘+O(r) at the break- or midpoints, 

respectively. The interpolation, as is well known, provides the approximation property 

II 90 - Ihqo II L2(r) G Ch’ II ‘k, II H’(r) 

for 3 -C r < I+ 1. Hence, 

inf II \k - \Irh II 1j-112~~) < Ch’+1’2-s (I ‘k. I( H’(r) (5.11) 
@=Z,’ 

forI+l<r<l+i andforany6>0. 
Moreover, we shall also need the inverse property for the augmented spaces (also called 

“inverse assumption” in finite-element analysis). The inverse property has been established in 
[8,36] and reads as follows. 

Inverse property. Let the family of partitions of T’ be quasi-uniform. Then the augmented spaces 
satisfy 

II qkh II zr < Mh”-‘-’ I( !Fh (I zs, for qh E 2; (5.12) 

f or - + < s < r < I+ 1, I = + or $, respectively, where E = 0 for 0 @ [s, r] and for 1 G [s, r]. 

Otherwise, (5.12) holds with any c > 0. 
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The proof of (5.12) can be found in [8, Lemma 5.71. In view of the decomposition (Theorem 
4.1) we can improve the error estimates (5.5) by solving Gale&in’s equations (5.2) in the 
augmented finite-element spaces. With the conformity (5.8), similar to [9, Section 31, we have the 
next theorem. 

Theorem 5.3. (i) There exists a maximum mesh width h, > 0 such that the Galerkin equations (5.2) 
are uniquely solvable in Z,‘(T), I= i or ;, for any h , 0 -c h < h,. 

(ii) Let -_--_rssrr<++. Thenforh+Othereholds 

II @ - Qh II z’(rj + ( 3 - iZh ( < Ch’-“-’ (( @ (( Z’(T) 

d Ch’-‘-‘( II g II n’+‘(r) + I b I } (5.13) 

provided g E H ‘+‘(T), where the constant C > 0 is independent of the exact solution (@, ;j) of 
(3.1), of the GaIerkin solution ( Qh, w’h) E Z,‘(r) X U4’ 3, the given data (g, 6) as well as the mesh 

widthh, where e>O ifs>,0 and e=O ifs<O. 

Proof. First let us consider the case s = - i. Here, we can use Cea’s lemma, which follows here 
from (3.13) and uniqueness in exactly the same manner as for a closed smooth curve I’ in [20]. 
We obtain here the estimate 

Then the approximation property (5.11) implies (5.13). In case s < - $, the estimate (5.13) can 
be obtained from the Aubin-Nitsche lemma as given in [9, Lemma 2.11 which avoids the adjoint 
operator in g?“(r). In particular, the assumption in [9, (2.4)] is here satisfied due to (5.9), namely 

< Ch-“- 1’2-6 II Q0 11 fi-.\-‘(r) 

< Ch-“-‘/2-8 { II g II H-‘(T) + I b I }. 

The remaining case follows from the inverse property (5.12) in the standard manner by making 
use of (5.13) with s = - i. q 

Remark 5.4. For s > I - :, 1= : or 1 and for any E > 0, the estimate (5.13) provides an explicit 
error estimate of order hr-‘+1’2-’ for the stress intensity factors with I= 5 for $ and 1= 4 for 
Zj and & if g is sufficiently smooth, since for such s the norm in 2$(r) includes the stress 
intensity factors explicitly. 

Although numerical experiments have not been presented, it should be mentioned that in the 
present paper our scheme should be at least as efficient as in the case of the Laplacian. In the 
latter, numerical experiments are available in [24] and they are in agreement with our asymptotic 
error estimates. 
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