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Abstract

In this Letter a connection between the holographic dark energy model and the f (R) theory is established. We treat the f (R) theory as an
effective description for the holographic dark energy and reconstruct the function f (R) with the parameter c > 1, c = 1 and c < 1, respectively.
We show the distinctive behavior of each cases realized in f (R) theory, especially for the future evolution.
© 2008 Elsevier B.V.
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1. Introduction

Since 1998, the Type Ia Supernovae observations [1] have
indicated that the expansion of the universe is currently accel-
erating. This result has then been further confirmed by indepen-
dent observations of Cosmic Microwave Background (CMB)
[2] and Large Scale Structure (LSS) [3]. One explanation for
the cosmic acceleration is ascribed to adding an exotic energy
component with negative pressure, dubbed the dark energy, of
which the origin and nature is still a mystery. Various dark en-
ergy models have been proposed in the literature (see [4] for a
detailed review). Among others, the simplest candidate for dark
energy is the cosmological constant or the vacuum energy. Fit-
ted quit well with observational data though it is, this model
suffers from the famous cosmological constant problem [5].
This problem arises primarily due to the fact that the vacuum
energy is considered within the framework of quantum field
theory in Minkowski background. As we known, however, at
cosmological scales where the effect of gravity has to be taken
into account, the above description of the vacuum energy would
break down, and it is believed that the correct theoretical value
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of the vacuum energy will be predicted by a complete theory
of quantum gravity. Although we are far from reaching such a
fundamental theory, we do know some features of it. The holo-
graphic principle [6] is an important feature which can shed
some light on the cosmological constant problem and the dark
energy problem. According to this principle, considering grav-
ity, the number of the degree of freedom of a local quantum field
theory system is related to the area of its boundary, rather than
the volume of the system as expected when gravity is absent.
Along this line, Cohen et al. [7] suggested an entanglement re-
lation between the IR and UV cut-offs due to the limitation set
by the formation of a black hole, which in effect sets an upper
bound for the vacuum energy

(1)L3ρΛ � LM2
p,

where ρΛ is related to the UV cut-off, L is the IR cut-off and
Mp is the reduced Planck mass. The form of dark energy is
proposed by saturating the bound as

(2)ρΛ = 3c2M2
p

L2
,

where c is a numerical factor. It is easy to check that inserting
L = H−1

0 may give rise to the energy density compatible with
current observation in orders of magnitude. However, as Hsu [8]
pointed out, this cannot lead to a desired equation of state. Li [9]
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proposed the holographic dark energy model, where L is cho-
sen to be the future event horizon

(3)Reh = a

∞∫
t

dt ′

a(t ′)
= a

∞∫
a

da′

Ha′2
.

This model has been tested to be well consistent with current
observations [10], and it is a compelling candidate for solving
the dark energy problem.

Adding new component of dark energy to the whole energy
budget is one way, there are also other promising ways without
resorting to new forms of energy. Since general relativity is only
tested within solar system up to now, we may well consider the
modification to the Einstein–Hilbert action in Einstein gravity
at larger scales with higher order curvature invariant terms such
as R2, RμνRμν, RμναβRμναβ , or R �k R as well as nonmin-
imally coupled scalar fields with terms like φ2R. Furthermore,
these terms naturally emerge as quantum corrections in the
low energy effective action of quantum gravity or string theory
[11,12]. Here we focus on the f (R) theories where the modifi-
cation is a function of the Ricci scalar only. In [13], the author
first introduced an additional R2 to the Einstein–Hilbert action
leading to an inflationary solution for the early universe. As for
applications to the dark energy problem, it is shown that adding
an term 1/Rn [14] or more generalized c1/R

n + c2R
m [15] can

lead to late time acceleration originated from pure geometrical
effect, equivalent to introducing an effective dark energy in the
Einstein frame (see, for example, [16], Section XVI in [4] and
the references therein for more works dedicated to solving the
dark energy problem with f (R) theories).

It can be shown [17] that through conformal transformations,
extended theories with higher order terms and nonminimally
coupled scalar fields correspond to Einstein gravity with some
minimally coupled scalar fields (quintessence) suggesting, to
some extent, an equivalence between dynamic dark energy
models and f (R) theories. An approach was proposed in [18]
to reconstruct the form of f (R) from a given expansion his-
tory H(z). From observational data such as SNe distance mod-
ulus vs redshift, we can obtain the luminosity distance DL(z)

through which H(z) is given by

(4)H(z) =
{

d

dz

[
DL(z)

1 + z

]}−1

.

In fact, however, large errors in current observational data pre-
vent using this procedure to determine the exact form of f (R).
But the important thing is that we can use a given H(z) pre-
dicted from a dark energy model to reconstruct its equivalent
f (R) theory. For example, the f (R) theories reconstructed
from the H(z) given by quiessence and the Chaplygin gas re-
spectively were obtained in [18]. In this Letter, we treat the
holographic dark energy model as one inspired by the holo-
graphic principle, an important feature of a more fundamental
theory of quantum gravity, and to reconstruct the correspond-
ing f (R) theory as an equivalent description. Compared with
previous works, where the holographic dark energy is recon-
structed within scalar field models like ghost condensate [19],
quintessence [20], tachyon [21] and hessence [22], here we per-
form the reconstruction in f (R) theory without resorting to any
additional dark energy component, that is, the holographic dark
energy is effectively described by the modification of gravity.

In addition we note that there are in fact two strategies in
f (R) theories: the metric formalism, where the action is varied
with respect to the metric only; and the Palatini formalism [23],
where the metric and the connection are treated as two inde-
pendent variables with respect to which the action is varied.
It is only in Einstein gravity f (R) = R that both approaches
reach the same result. In general f (R) theories, the problem of
which approach should be used is still an open question and the
final solution may be determined by further observations and
theoretical development. At present we assume the metric for-
malism in this Letter.

2. Reconstruction of f (R) theory

Now let us consider a homogeneous and isotropic universe
with flat spatial geometry consisting of matter and the vacuum
energy given by (2). The Friedmann equation reads

(5)3M2
pH 2 = ρm + ρΛ,

where ρm = ρm0(1 + z)3 by the equation of energy conserva-
tion, and a subscript 0 denotes the value at present. By introduc-
ing ΩΛ = ρΛ

3M2
pH 2 and Ωm = ρm

3M2
pH 2

0
= Ωm0(1 + z)3, we obtain

the Hubble parameter

(6)H(z) = H0

√
Ωm

1 − ΩΛ

.

Clearly, once we determine the evolution of ΩΛ(z), the whole
expansion history H(z) is determined. Combining the defin-
itions of holographic dark energy and the event horizon (2)
and (3) we get

(7)

∞∫
a

da′

Ha′2
= c

Ha
√

ΩΛ

,

with the initial condition given by setting z = 0 in (6)

(8)Ωm0 + ΩΛ0 = 1.

Inserting (6) into the above equation and taking derivative with
respect to z on both sides (using 1 + z = 1/a), we obtain the
differential equation of ΩΛ

(9)Ω ′
Λ = − 1

(1 + z)
ΩΛ(1 − ΩΛ)

(
1 + 2

c

√
ΩΛ

)
,

where the prime denotes derivative with respect to z. We can
see that c is the only parameter determining the dynamics of
the holographic dark energy. In fact, we can use the equation of
energy conservation of the dark energy to get the equation of
state (EoS) of the dark energy

(10)wΛ = −1

3
− 2

3c

√
ΩΛ.

It is easy to see that when ΩΛ → 1 in the future, for c > 1 the
EoS will always be greater than −1 showing quintessence-like



X. Wu, Z.-H. Zhu / Physics Letters B 660 (2008) 293–298 295
behavior; for c = 1 the universe will end up with a de Sitter
phase; and for c < 1 the universe will end up with a phantom
phase and the EoS crossing −1 occurs during the evolution ex-
hibiting quintom-like behavior. Therefore the parameter c plays
a very important role in determining the evolutionary nature of
the holographic dark energy. Many works [10] have been de-
voted to constraining this parameter by observations such as
SNe, CMB and galaxy clusters etc. Almost all the best fits in-
dicate c < 1, although c > 1 is also compatible with the data
within 1σ .

Once we fix c and Ωm0, the evolution of ΩΛ(z) can be deter-
mined by solving (9) with the initial condition (8). Then by (6)
we can obtain H(z). Now we assume the holographic dark en-
ergy as an underlying theory of dark energy, and we want to
find the corresponding f (R) theory as an effective description.
We follow the method proposed in [18]. Using the Robertson–
Walker metric, the Ricci scalar can be expressed in terms of the
Hubble parameter:

(11)R = −6

(
Ḣ + 2H 2 + k

a2

)
,

where the dot represents derivative with respect to time t . In
this Letter we set k = 0. Note that here we assume the signature
as {+,−,−,−}, the same as in [18], and therefore R is always
negative (so it is with f ). Once we choose {−,+,+,+}, the
minus sign in front of (11) would disappear. This is just a matter
of convention, which means no physical difference. Let us start
from the action

(12)S =
∫

d4x
√−g

[
f (R) +Lm

]
,

where Lm is the matter Lagrangian. We use the units Mp = c =
h̄ = 1. Variation with respect to the metric leads to the modified
field equation [24]

(13)Gμν = Rμν − 1

2
Rgμν = T (curv)

μν + T (m)
μν ,

where Gμν is the Einstein tensor, and an effective stress-energy
tensor containing the higher order contributions is defined by

T (curv)
μν = 1

f ′(R)

{
gμν

[
f (R) − Rf ′(R)

]
/2

(14)+ f ′(R);αβ(gμαgνβ − gμνgαβ)
}

and the matter’s contribution is in T
(m)
μν = T̃

(m)
μν /f ′(R) with

T̃
(m)
μν the standard minimally coupled matter stress-energy ten-

sor. With the RW metric, we obtain the modified Friedmann
equations

(15)H 2 + k

a2
= 1

3

[
ρcurv + ρm

f ′(R)

]
,

(16)2
ä

a
+ H 2 + k

a2
= −(pcurv + pm),

and the continuity equation

(17)ρ̇tot + 3H(ρtot + ptot) = 0.

The three equations are not independent and we combine them
to get one equation
Fig. 1. Reconstructed f (R) with 0 � z � 10 and c = 0.6 (dash-dotted), c = 0.8
(dashed), c = 1.0 (solid) and c = 1.2 (dotted).

Ḣ = − 1

2f ′(R)

{
3H 2

0 Ωm0(1 + z)3 + R̈f ′′(R)

(18)+ Ṙ
[
Ṙf ′′′(R) − Hf ′′(R)

]}
,

where the prime denotes derivative with respect to R. Using the
relation d/dt = −(1 + z)Hd/dz to replace the variable t by z,
(18) can be transformed into a third order differential equation
of f (z)

(19)

C3(z)
d3f

dz3
+ C2(z)

d2f

dz2
+ C1(z)

df

dz
= −3H 2

0 Ωm0(1 + z)3,

where Cn(z) consists of H(z) and its derivatives. Once we know
the function H(z), the coefficients Cn(z)’s can be calculated.
However, in our case of the holographic dark energy model,
H(z) cannot be derived analytically. By (6) and (9), H(z)

and its derivatives can be expressed by ΩΛ(z), therefore, af-
ter painful derivation, the coefficients Cn(z)’s can be ultimately
expressed by the combinations of ΩΛ(z). Although ΩΛ itself
can be solved by (9) alone, it has to be considered as a part of
the whole set of differential equations in order to solve f (z).
So we consider (9) and (19) together as a differential equation
set, of which one initial condition is (8). According to [18], the
other initial conditions are

(20)

(
df

dz

)
z=0

=
(

dR

dz

)
z=0

,

(21)

(
d2f

dz2

)
z=0

=
(

d2R

dz2

)
z=0

,

(22)f (z = 0) = f (R0) = 6H 2
0 (1 − Ωm0) + R0.

Given Ωm0 and c, with these four initial conditions (8) and
(20)–(22), the differential equation set (9) and (19) can be
solved numerically. The reconstructed function f (R) is pre-
sented in Fig. 1, where we set Ωm0 = 0.29 and c = 0.6, 0.8,
1.0, 1.2 respectively. For the sake of comparison, we also show
the same result on a lf –lR plane in Fig. 2, where lf ≡ ln(−f )

and lR ≡ ln(−R) as used in [18]. Note that we set the values
of c within the range 0.6 � c � 1.2, which is consistent with fit-
ting results according to the works in [10]. Compared with the
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Fig. 2. Reconstructed f (R) in lf –lR plane with 0 � z � 10. lf ≡ ln(−f ) and
lR ≡ ln(−R).

reconstructed function f (R) for quiessence and that for Chap-
lygin gas (Fig. 2 and Fig. 4 in [18]), we can see that the three
figures are similar. This is because the values of the parameters
are set to be around their best fits. This is in effect approxi-
mately equivalent to reconstruct f (R) with H(z) directly from
observational data. We expect future observations with more
accurate data will discriminate between these models.

3. Discussion and conclusion

The reconstructed f (R) theory is naturally consistent with
the solar system experiment by the reconstruction method. In
fact, this requirement is just the physical motivation for the ini-
tial conditions (20) and (21). For one thing, if we rewrite (15)
explicitly with 8πG

(23)H 2 = 8πG

3

[
ρcurv + ρm

f ′(R)

]
,

we can see that f ′(R) effectively modifies the Newton gravita-
tional constant G as G/f ′(R), that is, a variable gravitational
coupling. In order to be compatible with solar system experi-
ments, at z = 0, we must require G/f ′(R0) = G or f ′(R0) = 1.
By

(24)f ′(R0) =
[(

dR

dz

)−1
df

dz

]
z=0

= 1

this leads to (20). For the other, it is shown [25] that the con-
sistency with solar system test also requires f ′′(R0) = 0, which
directly gives rise to (21). As for the remote past, there is no
reason for us to impose this requirement since the experiments
are done today and the validity of the result holds only at z ∼ 0.

Fig. 1 shows that for small |R| (small z also), the func-
tions f (R) are indistinguishable for different parameter c. As
we mentioned before, c is a crucial parameter characterizing
the nature of the holographic dark energy. Differences between
the corresponding f (R) functions become significant as |R|
(or z) increases. To further illustrate that the reconstructed the-
ory does reflect the distinctive effect of c, we consider the future
Fig. 3. The future evolution of R.

evolution scenario. Fig. 3 shows the future evolution of R. As
is expected, for c < 1, the curves indicate the typical phan-
tom behavior: |R| → ∞. This is because the dark energy with
EoS < −1 dominates over matter and the phantom energy den-
sity increases with time, tears apart structures and a Big Rip is
unavoidable. For c = 1, |R| varies little and the dark energy be-
comes more and more like a cosmological constant. For c > 1,
R vanishes in the future. In Fig. 4, we can see that the differ-
ence is more distinctively reflected by the function f (R) recon-
structed based upon the future evolution of the holographic dark
energy model. For c = 1.2, as R approaches zero, f increases
from negative to positive, which may indicate an inverse power
law dependence of f on R. This is consistent with the models
proposed in [14] and [15]. For c = 1, the straight line manifests
a linear dependence on R up to a constant, which is consistent
with the de Sitter phase where f = R + 2Λ. For c = 0.8, the
curve first meets a turnaround point, at which the decreasing |R|
begins to increase due to the domination of the phantom-like
dark energy. It can be checked that in this case, the turnaround
redshift is in the near future for c = 0.8 while it is in the near
past for c = 0.6, namely, the domination of phantom-like dark
energy begins earlier for smaller c. As the universe evolves, |R|
keeps growing, and f decreases first and then increases to be-
come positive. Both f and R become divergent in the final Big
Rip. Further analysis shows that for c = 0.6, f → −∞; for
c = 0.8, f → +∞, which clearly reveals that the form of the
function f (R) may be significantly different for different c. We
note that the existence of the turnaround point is a universal fea-
ture for all the phantom-dark energy models realized in f (R)

theories, due to the competition between dark energy and mat-
ter.

In conclusion, we have reconstructed the function f (R) in
the extended theory of gravity according to the holographic
dark energy. The basic reconstruction procedure can be simply
summarized as: first, express R as a function of z; then f can
also be considered as a function of z by f (z) = f [R(z)]; thirdly
obtain a third order differential equation for f (z) and solve
it with some initial conditions; and finally reconstruct f (R)

from R(z) and f (z). Note that in this procedure, the Hub-
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Fig. 4. Reconstructed f (R). The curves are plotted with z from around 2 down
to −1. The arrow denotes the direction of z increasing. The star denotes current
value at z = 0. The turnaround point is the point where the total energy density
starts to increase after phantom energy dominates over matter.

ble parameter H(z) and its derivatives with respect to z enter
into R and the coefficients of the differential equation for f (z).
Since H(z) and its derivatives can be expressed by ΩΛ, what
we are dealing with can be treated essentially as a differential
equation set with the unknown functions f (z) and ΩΛ(z) to be
solved. With some initial conditions imposed by physical con-
sideration, we solved the differential equation set and found the
function f (R) numerically.
In addition, it should be emphasized that the holographic
dark energy is the result obtained within the framework of
general relativity, rather than any other extended theory such
as f (R) theory. What we have done is to reconstruct the f (R)

theory which effectively describes the holographic dark energy
in Einstein gravity. Whether the holographic vacuum energy
can be generalized to f (R) theories and what it looks like are
questions worth further investigation.

Acknowledgements

We thank Rong-Gen Cai for helpful discussion. This work
was supported by the National Natural Science Foundation
of China, under Grant No. 10533010, 973 Program
No. 2007CB815401 and Program for New Century Excellent
Talents in University (NCET) of China.

Appendix A

According to [18], here we list some expressions essential
for practical calculation. The coefficients in (19) are

C1 = Ṙ2
(

dR

dz

)−4[
3

(
dR

dz

)−1(
d2R

dz2

)2

− d3R

dz3

]

− (R̈ − ṘH)

(
dR

dz

)−3
d2R

dz2

(A.1)− 2(1 + z)H
dH

dz

(
dR

dz

)−1

,

(A.2)C2 = (R̈ − ṘH)

(
dR

dz

)−2

− 3Ṙ2
(

dR

dz

)−4
d2R

dz2
,

(A.3)C3 = Ṙ2
(

dR

dz

)−3

.

R(z) and its derivatives are

(A.4)R = −6

[
2H 2 − (1 + z)H

dH

dz

]
,

dR

dz
= −6

{
−(1 + z)

(
dH

dz

)2

(A.5)+ H

[
3
dH

dz
− (1 + z)

d2H

dz2

]}
,

(A.6)Ṙ = −(1 + z)H
dR

dz
,

R̈ − ṘH = 6(1 + z)H 2
{

3(1 + z)2 dH

dz

d2H

dz2

(A.7)+ H

[
(1 + z)2 d3H

dz3
− 6

dH

dz

]}
.

Higher order derivatives of H(z) are too complicated to be
listed here. In practical calculation, we use computer program
for derivation. In addition, the code for Mathematica 5.0 we
used is available on request.
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