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Resonant Bifurcations
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Dipartimento di Fisica, Unï ersita di Pisa, Via Buonarroti 2, Ed. B, I-56127, Pisa, Italy`

Submitted by Paul S. Muhly

Received January 14, 1999

We consider dynamical systems depending on one or more real parameters, and
assuming that, for some ‘‘critical’’ value of the parameters, the eigenvalues of the
linear part are resonant, we discuss the existence}under suitable hypotheses}of
a general class of bifurcating solutions in correspondence with this resonance.
These bifurcating solutions include, as particular cases, the usual stationary and
Hopf bifurcations. The main idea is to transform the given dynamical system into

Ž .normal form in the sense of Poincare and Dulac and to impose that the´
normalizing transformation is convergent, using the convergence conditions in the
form given by A. Bruno. Some specifically interesting situations, including the cases
of multiple-periodic solutions and of degenerate eigenvalues in the presence of
symmetry, are also discussed in some detail. Q 2000 Academic Press

1. INTRODUCTION

In this paper we consider dynamical systems of the form

u s f u , l ' A l u q F u , l u t g Rn , l g R p 1Ž . Ž . Ž . Ž . Ž .˙

depending on one or more real parameters l, and, assuming that, for some
Ž .‘‘critical’’ value l s l of the parameters, the matrix A l admits reso-0 0

nant eigenvalues, we want to discuss the existence}under suitable hy-
Ž .potheses}of a general class of ‘‘bifurcating solutions’’ u s u t in corre-l

spondence with this resonance. These bifurcating solutions include, as
particular cases, the usual stationary bifurcation and the Hopf bifurcation
Ž w x.see, e.g., 1 . The main idea is to transform the given dynamical system

Ž w x.into normal form in the sense of Poincare and Dulac 2]9 and try to´
impose that the normalizing transformation be convergent. The imposition
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of convergence is essentially based on the application of the conditions
w xgiven by Bruno 4, 5 and leads to some prescriptions which may be

fulfilled thanks to the presence of the parameters l; in this way, the
appearance of these ‘‘resonant bifurcating’’ solutions can be automatically
deduced.

Among these solutions, some attention is paid to discussing some
Ž .situations of special interest also from the physical point of view , includ-

ing the cases of multiple-frequency periodic solutions and of degenerate
eigenvalues in the presence of symmetry, giving examples for each situa-
tion.

2. BASIC ASSUMPTIONS AND PRELIMINARIES

We need some preliminary notions and results.
Ž . n p Ž .Let u t g R , let l g R , and let f s f u, l be a vector-valued

Žanalytic function in a neighborhood of some u and l it is not restrictive0 0
. Ž .to choose u s 0 and l s 0 , such that f l, 0 s 0 for each l in a0 0

Ž .neighborhood of l . Let us denote the linear part of f by A l u, where0

A l s = f l, 0 , 2Ž . Ž . Ž .u

Žand assume that, for some ‘‘critical’’ value of the parameters we can
.assume that this value is just l s 0 the matrix0

A s A 0Ž .0

is semisimple, i.e., diagonalizable. Let us notice that, in the case A is not0
semisimple, it could be uniquely decomposed into a sum of a semisimple
and a nilpotent part: A s AŽ s. q AŽn., and the foregoing discussion could0
be equally well applied to the semisimple part AŽ s., considering in particu-
lar normal forms with respect only to AŽ s.. The introduction of normal
forms with respect to a non-semisimple matrix requires a more difficult

Ž w x.procedure and will not be considered here cf. 10, 11 .
ŽUp to a linear change of coordinates possibly after complexification of

.the space , we will assume for convenience that the matrix A is diagonal,0
with eigenvalues s , . . . , s . The first important assumption is that, for the1 n
value l s 0, the eigenvalues exhibit a resonance; i.e., there are some0
nonnegative integers m such thati

n n

m s s s , m G 2 3Ž .Ý Ýi i j i
is1 is1

w xfor some index j g 1, . . . , n .
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Ž . Ž .Together with the given dynamical system DS 1 , we need also to
Ž . Ž w x.consider its normal form NF in the sense of Poincare and Dulac 2]9 ,´

in a neighborhood of u s 0, l s 0. As is well known, the idea is that of0 0
performing a near-identity coordinate transformation

u ª ¨ s u q w u 4Ž . Ž .

in such a way that in the new coordinates ¨ the given DS takes its
Ž‘‘simplest’’ form. To define this, consider the linear operator AA the

w x.‘‘homological operator’’ 2]9 defined on the space of vector-valued
Ž .functions h ¨ by

AA h s A ¨ ? =h y A h. 5Ž . Ž .0 0

Writing the NF in the form

¨ s g ¨ , l s A ¨ q G ¨ , l 6Ž . Ž . Ž .˙ 0

Ž . w xthe nonlinear terms G ¨ , l are then defined by the property 2]9, 11]14

G ¨ , l g Ker AA . 7Ž . Ž . Ž .

Ž .Actually, to be more precise, one should also consider, together with 1 ,
the p equations

l̇ s 0

Ž .as in the usual suspension procedure , extend the homological operator AA

adding to the matrix A the last p columns and p rows equal to zero, and0
Ž . Ž .similarly extend G ¨ , l as an n q p -dimensional vector-valued function

with the last p components equal to 0. It is important indeed to notice that
it is essential here to consider the l as independent variables; in this way,
in particular, one has that the bilinear terms in ¨ and l are included in
Ž .G ¨ , l ; see also Remark 1 below.
Let us now briefly recall the following important results. The proof of

w xthese can be found, e.g., in 8, 11]14 .

Ž .LEMMA 1. Gï en the matrix A , the most general NF is gï en by 6 with0

G ¨ , l s b l, r ¨ B ¨ where B g CC A , r s r ¨ g II ,Ž . Ž . Ž . Ž .Ž .Ý i i i 0 A0
i

8Ž .

Ž .where CC A is the set of the matrices commuting with A , and II is the set0 0 A0

of the constants of motion of the linear system

¨ s A ¨ . 9Ž .˙ 0
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Ž .The sum in 8 is extended to a set of independent matrices B , the constants ofi
Ž . Ž .motion r ¨ can be chosen in the form of monomials possibly fractional ,

Ž w xand the functions b are series or rational functions of the ¨ see 13 , for ai i
.detailed statement, and below, for the cases of interest for our discussion .

Ž .It is now clear that the assumption 3 on the existence of some
resonance among the eigenvalues of A ensures that there are nontrivial0

Ž .constants of motion of the linear problem 9 and then nontrivial terms in
Ž .the NF 8 .

It is also well known that the coordinate transformations taking the
given DS into NF is usually performed using recursive techniques and that
in general the sequence of these transformations is purely formal: indeed,
only very special conditions can assure the convergence of the normalizing

Ž .transformation NT .
Let us now recall the basic conditions, in the form given by Bruno and

called respectively Condition v and Condition A, which ensure this
Ž w x .convergence. The first condition is see 4, 5 for details .

<Ž . <Condition v. Let v s min q, s y s for all j s 1, . . . , n and allk j
n k Ž .n-tuples of nonnegative integers q such that 1 - Ý q - 2 and q, si is1 i

s Ý q s / s . Then we requirei i i j

`
yk y12 ln v - `.Ž .Ý k

ks1

This is a actually very weak condition, devised to control the appearance
of small divisors in the series of NT, and generalizes the Siegel-type
condition,

ynn

q , s y s ) e qŽ . Ýj iž /
is1

<Ž . <for some e , n ) 0, or the much simpler condition q, s y s ) e ) 0, forj
Ž . Ž w x.all n-tuples q such that q, s / s see 2]5 . We explicitly assume fromi j

now on that this condition is always satisfied.
The other condition, instead, is a quite strong restriction on the form of

the NF. To state this condition in its simplest form, let us assume that
there is a straight line through the origin in the complex plane which
contains all the eigenvalues s of A . Then the condition readsi 0

Condition A. There is a coordinate transformation u ª ¨ changing
Ž .f s A u q F to a NF g s g ¨ of the form0

g ¨ s A ¨ q a ¨ A ¨Ž . Ž .0 0

Ž . Ž Ž . .where a ¨ is some scalar-valued power series with a 0 s 0 .
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In the case that there is no line in the complex plane which satisfies the
w x Žabove property, then Condition A should be modified 4, 5 or even

weakened: for instance, if there is a straight line through the origin such
that all the s lie on the same side in the complex plane with respect toi

w xthis line, then the eigenvalues belong to a Poincare domain 2]5 and the´
.convergence is guaranteed without any other condition , but in all our

applications below we shall assume for the sake of definiteness that the
eigenvalues are either all real or purely imaginary; therefore, the above
formulation of Condition A is enough to cover all the cases to be
considered.

Remark 1. It can be useful to point out that it is essential in the
present approach to use the suspension procedure for the parameters l,
i.e., to consider l as additional variables. Indeed, let us consider, for
instance, a simple standard Hopf-type two-dimensional bifurcation prob-

Ž .lem with one parameter p s 1 ,

0 1u s A u q lIu q higher order terms where A s˙ 0 0 ž /y1 0

and I is the identity matrix. If l is kept fixed / 0, the eigenvalues of the
linear part A q lI are s s l " i and, as a consequence, there are no0
Ž .analytic or fractional constants of motion of the linearized problem, and
the NF is trivially linear. Also, the NT would be convergent, as a conse-

Ž w x.quence of Condition A or, more simply, of the Poincare criterion 2]5 .´
But no bifurcation can be found in this way. Instead, considering l as an
independent variable, the linear part of the problem is u s A u and now˙ 0
there are nontrivial constants of motion in the NF, i.e., the functions of
r 2 s u2 q u2 and l.1 2

Ž .Given the DS 1 , it will be useful to rewrite its NF according to Lemma
Ž .1, observing that obviously A g CC A and in view of Condition A, in the0 0

Ž Ž . Ž ..following ‘‘split’’ form cf. 6 , 8

¨ s g ¨ , l s A ¨ q a l, r ¨ A ¨ q U b l, r ¨ B ¨Ž . Ž . Ž .Ž . Ž .˙ Ý0 0 j j
j

r ¨ g II , 10Ž . Ž .A0

Ž . Uwhere hereafter Ý is the sum extended to the matrices B / A .j j 0
w xFollowing Bruno 4, 5 , we can say that the convergence of the NT is

U Ž Ž ..granted if Ý b l, r ¨ B ¨ s 0. Clearly, ‘‘convergence’’ stands for ‘‘con-j j j
vergence in some neighborhood of u s 0, l s 0.’’0 0

Let us remark, incidentally, that an algorithmic implementation of the
Ž w x.procedure for obtaining the NF step by step is possible cf., e.g., 15, 16 ;
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we stress, however, that actually, in this paper, we shall not need any
explicit calculation of NF’s.

3. THE TWO-DIMENSIONAL CASE

For the sake of simplicity we consider first of all the case of a two-di-
mensional DS, with some other simplifying assumptions; more general
cases will be considered in subsequent sections.

THEOREM 1. Gï en a two-dimensional DS

u s A l u q F u , l u g R2 , l g R 11Ž . Ž . Ž .˙

Ž .i.e., n s 2, p s 1 , assume that for l s 0 the two eigen¨alues s , s of A0 1 2 0
Ž .are nonzero, are of opposite sign if real, and satisfy a resonance relation 3 ,

which in this case can be more con¨eniently written in the form of commensu-
rability of the two eigen¨alues,

s s1 2s y s u , 12Ž .0s s1 2

where s , s are two positï e, relatï ely prime integers. Assume also that1 2

d d
<s A l q s A l / 0. 13Ž . Ž . Ž .ls02 11 1 22dl dl

Ž .Then there is a ‘‘resonant bifurcating’’ solution u s u t of the formˆ l̂

q`
Ž1.u s c exp s u l t q c exp n u l tŽ . Ž .Ž . Ž .ˆ Ý1 1 n 11

n sy`1
n /s1 1

14Ž .q`
Ž2.u s c exp ys u l t q c exp n u l t ,Ž . Ž .Ž . Ž .ˆ Ý2 2 n 22

n sy`2
n /ys2 2

where for l ª 0

s u l ª s , ys u l ª s , cŽ1. , cŽ2. ª 0Ž . Ž .1 1 2 2

Ž .and all terms in the two series are ‘‘higher order terms’’ h.o.t. , i.e., terms
¨anishing more rapidly than the two leading terms, and the series are con¨er-
gent in some time inter̈ al. There is also an analytic constant of motion along
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this solution, which, for small l, has the form

s s2 1Ž1. Ž2.r u s c c q h.o.t .Ž . Ž . Ž .ˆ

Ž .Proof. Consider the possibly non-convergent coordinate transforma-
Ž . Ž .tion u ª ¨ 4 which takes the given DS into NF 10 . The assumption on

the resonance of the eigenvalues s and Lemma 1 imply that the DS in NFi
is expected to have the form

¨ s g l, ¨ s A ¨ q a l, r A ¨ q b l, r B¨ s 1 q a A ¨ q bB¨ ,Ž . Ž . Ž . Ž .˙ 0 0 0

15Ž .

Ž . s2 s1 Ž .where r s r ¨ s ¨ ¨ is a monomial constant of motion of the linear1 2
Žproblem ¨ s A ¨ , B is any diagonal matrix independent of A i.e., such˙ 0 0

.that s B q s B / 0 , and l can be viewed as a constant of motion of2 11 1 22
˙the enlarged system including l s 0. We now impose the Bruno Condition

Ž .A in the form given above, indeed s are either real or purely imaginaryi
to ensure the convergence of the NT: this amounts to imposing

b l, r s 0. 16Ž . Ž .

ŽThe expression of this function is clearly not known unless the NF itself is
. w xknown , but the manifold defined by b s 0 is analytic 4 and the relevant

Ž . Ž .behavior of the first-order terms in l of b l, r can be inferred from the
Ž . Ž . Ž .original DS u s A l u q ??? . Indeed the first-order terms in l of A l u,˙

Ž Ž . . <i.e., A u q l dA l rdl u, are not changed by the NT; thereforels00

a 0, 0 s b 0, 0 s 0Ž . Ž .

and

d d ­b
<s A l q s A l s s B q s B ,Ž . Ž . Ž .ls02 11 1 22 2 11 1 22dl dl ­l ls0, rs0

Ž .having also used s s q s s s 0. Assumption 13 then shows that one2 1 1 2
Ž .can satisfy the condition b l, r s 0, thanks to the implicit-function

theorem, if l and r are related by a function

l s l r with l 0 s 0. 17Ž . Ž . Ž .

Ž .With b s 0, a solution of 15 is then

¨ t s exp 1 q a A t ¨Ž . Ž .Ž .ˆ ˆ0 0
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Ž . Ž .or, putting u l s u 1 q a ,0

¨ t s ¨ exp s u l tŽ . Ž .Ž .ˆ ˆ1 10 1
18Ž .

¨ t s ¨ exp ys u l tŽ . Ž .Ž .ˆ ˆ2 20 2

with the constraints

s s s s2 1 2 1¨ t ¨ t s ¨ ¨ s r g II and l s l rŽ . Ž . Ž .Ž . Ž .Ž . Ž .ˆ ˆ ˆ ˆ1 2 10 20 A0

19Ž .

Ž Ž .. Ž .and where a s a l r ª 0, u l ª u for l, ¨ , r ª 0. On the other0
Ž .hand, in the analytic manifold defined by b l, r s 0 the NT is conver-

gent and this bifurcating solution corresponds to an analytic solution
Ž .u s u t of the initial problem. The original coordinates u are in factˆ l̂

Ž Ž ..related to the new ones ¨ by an analytic transformation the inverse of 4

u s ¨ q c ¨ ,Ž .

where c is a power series in the ¨ , ¨ , and the convergence is granted on1 2
< < < <some neighborhood of zero, say ¨ - R , ¨ - R . Notice now that the1 1 2 2

Ž . Žcondition r ¨ s const does not ensure, if the eigenvalues are real see
.the examples below , that the variables are bounded for all t g R; in this

case, it will be sufficient to choose l, together with ¨ , ¨ , small enoughˆ ˆ10 20
that the convergence is granted in some interval T - t - T .1 2

Ž . Ž . Ž .EXAMPLE 1. Let the matrix elements A l of A l in 11 satisfyi j

A l ª 1, A l ª y2, A l and A l ª 0 for l ª 0.Ž . Ž . Ž . Ž .11 22 12 21

Then s s 1, s s y2, the constant of motion of the linear DS ¨ s A ¨˙1 2 0
2 Ž . <is r s ¨ ¨ , and, assuming d 2 A q A rdl / 0, there is a reso-ls01 2 11 22

nant bifurcating solution whose leading terms have the exponential behav-
ior

u s cŽ1. exp 1 q a t q ???Ž .Ž .ˆ1

u s cŽ2. exp y2 1 q a t q ???Ž .Ž .ˆ2

with a , cŽ1., cŽ2. ª 0. To give a more explicit case, let us assume that the
Ž .first terms of the DS 11 are

1 q 2l A l u3uŽ .12 1 2u s u q q h.o.t.˙ 2 2ž /A l y2 q l ž /Ž . u u21 1 2

with A , A arbitrary vanishing functions of l. In this case, the first12 21
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Ž Ž ..nonlinear term is already in NF, with B s I s identity cf. 10 , and one
Ž . Ž .easily gets u l s 1 q lr3 q ??? , a s lr3 q ??? ; whereas Eq. 16 takes

5the form b s l q r q ??? s 0, giving3

3 2l s y u u q ??? .ˆ ˆ1 25

The next example, even if apparently similar, is actually a generalization
of Theorem 1; indeed eigenvalues of the same sign will be involved. In this
case, the convergence of the NF would be guaranteed with no other
condition, thanks to the Poincare criterion; however, we need even in this´
case to impose that Condition A is fulfilled, to obtain a bifurcating
solution of the same form as discussed so far.

Ž . Ž Ž . Ž .. <EXAMPLE 2. Let A s diag 1, 2 and d 2 A l y A l rdl / 0.ls00 11 22
Then r s ¨ 2r¨ and the bifurcating solution is expected along a manifold1 2

2 Ž .of the form lu A u q ??? , obtained as solution of the condition 16 . Theˆ ˆ2 1
discussion is now identical to the previous cases.

Ž .COROLLARY 1 Hopf Bifurcation . If s , s are imaginary, s s "iv ,1 2 1, 2 0

Ž .then the condition 13 becomes the standard ‘‘trans̈ ersality condition’’

d Re s lŽ .
/ 0

dl ls0

and the bifurcating solution is the usual Hopf bifurcation.

Proof. The proof of Theorem 1 holds also in the case of imaginary
2 2 2 Ž . Žeigenvalues. In this case, s s s s 1, r s ¨ q ¨ s r , u l s i v q1 2 1 2 0

Ž Ž 2 .. Ž .a l r s iv l , and a simple calculation shows indeed that

d A q A d Re sŽ .11 22 s 2 .
dl dl ls0ls0

2 < <Notice that in this case the condition r s r s const ensures ¨ F r andi
then the convergence is true for all t g R.

4. DS WITH DIMENSION n ) 2: REDUCTION TO A
LOWER DIMENSIONAL PROBLEM

In this section, we will consider a general situation in which, given an
n-dimensional DS with n ) 2, it is possible to reduce the problem to a
lower dimensional case. A quite simple but useful result is the following.

Ž .LEMMA 2. Consider an n-dimensional DS n ) 2 , and assume that for
l s 0 there are r - n resonant eigen¨alues, say s , . . . , s , such that no0 1 r
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resonance relation of the form

r

m s s s k s r q 1, . . . , n 20Ž .Ý h h k
hs1

exists. Then the DS}once in NF}can be reduced to an r-dimensional
problem, putting for the remaining n y r ¨ariables

¨ t ' 0 k s r q 1, . . . , n.Ž .ˆk

Ž . ŽIf this r-dimensional problem admits a solution ¨ t , h s 1, . . . , r e. g., aˆh
.bifurcating solution as in Theorem 1 , then the original DS admits a solution
Ž .in which the n y r components u t , k s r q 1, . . . , n, are ‘‘h.o.t.’’ withˆk

Ž .respect to the first r components u t .ˆh

Proof. Let us consider the NF variables ¨ , i s 1, . . . , n, and let usi
X Ž . Y Ž .introduce the shorthand notation ¨ ' ¨ , . . . , ¨ and ¨ ' ¨ , . . . , ¨1 r rq1 n

}and, correspondingly,

AX
0 XA s with A s diag s , . . . , sŽ .Y0 0 1 rž /A0

and similarly for AY . According to Lemma 1, the matrices B commuting0 i
with A necessarily split in block form:0

BX
iB s .Yi ž /Bi

Therefore the DS in NF will be

¨ X s AX ¨ X q b XBX ¨ X s 1 q a AX ¨ X q U b XBX ¨ XŽ .˙ Ý Ý0 i i 0 j j
j

21Ž .
Y Y Y Y Y Y Y Y Y Y YU¨ s A ¨ q b B ¨ s 1 q a A ¨ q b B ¨ ,Ž .˙ Ý Ý0 i i 0 j j

j

X Y Ž .where b and b are functions of l and of all the constants of motioni i
Ž X Y . Yr ¨ , ¨ . Considering in particular the terms b , the assumption that there

Ž .are no resonances of the form 20 excludes the occurrence of fractional
Y XŽ X .constants of motion in II of the form b s r ¨ r¨ for some k s r qA k0

1, . . . , n; then ¨Y s 0 solves the second set of equations of the system in
NF. Transformation into the initial coordinates u shows the final state-
ment.

Remark 2. A quite common situation, which is actually a special case
of Lemma 2, is that the n eigenvalues s are such that the only analytic ori
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fractional constants of motion r which can be constructed depend only on
X ' 'Ž .r variables ¨ , with the above notation e.g., if s s 2, y2, 2 , 3 . In thisi

Ž .case, no resonance of the form 20 is clearly admitted and Lemma 2 holds
Ž .true; notice in particular that in this case the NF 21 becomes automati-

Ž w x.cally ‘‘triangular’’ cf. 13 . It is also clear that, given n eigenvalues s , iti
can happen that several different reductions are possible: e.g., if s si' ' '1, y2, 2 , y 2 , 3 , Lemma 2 can allow a reduction of the NF either into
a four-dimensional problem or equally well into two independent two-di-
mensional problems.

Remark 3. We can clearly combine Theorem 1 and Lemma 2 to obtain
a resonant bifurcating solution with n G 2, r s 2, p s 1. It can be noted
that the leading terms of the resonant bifurcating solution obtained in this
way can be characterized as the kernel of the linear operator T defined by

d
T s y A0dt

Ž .acting on the linear space of the vectors w ' w , . . . , w , where the w1 n i
Ž .are formal series in powers of exp u t ,0

q`

w s c exp m u t i s 1, . . . , n , 22Ž . Ž .Ýi m i 0i
m sy`i

Ž .where, using previously introduced notation 12 ,

s s1 2
u s s y .0 s s1 2

It is easily seen, indeed, that the hypothesis on s is equivalent to thei
property that T has precisely a two-dimensional kernel, generated by

Ž . Ž . Ž . Ž . Ž .w s exp s u t s exp s t and w s exp ys u t s exp s t ; see 14 .1 2 0 1 2 1 0 2

An especially interesting case occurs clearly when one of the eigenvalues
is zero. This can be considered as a particular case of Lemma 2; we have
indeed:

Ž .COROLLARY 2 Stationary Bifurcation . Assume that for l s 0 the0
Ž .matrix A of the gï en DS admits just one eigen¨alue say s equal to zero.0 1

Then, with the standard condition

dA lŽ .11
/ 0, 23Ž .

dl ls0

there is a stationary bifurcating solution of the form u s u q ??? .ˆ ˆ1
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Proof. With the notation introduced in the proof of Lemma 2 we put
X Y Ž .here ¨ s ¨ , ¨ s ¨ , . . . , ¨ , and now ¨ g II as s s 0. Writing the1 2 n 1 A 10

Ž . Y XŽ . Yproblem in the form 21 , there cannot be terms of the form b s r ¨ r¨1
Ž . Yindeed, s , . . . , s / 0 , and therefore ¨ s 0 solves the second set of2 n
equations for ¨Y. The remaining equation is then a one-dimensional
equation

¨ s U b XBX ¨ ' b U l, ¨ ¨Ž .˙ Ý1 j j 1 1 1
j

Ž . U <and the assumption 23 is easily seen to be equivalent to ­b r­l / 0,ls0

which ensures the existence of a stationary bifurcation, solving ¨ s 0 with˙1
Ž .l s l ¨ , as in the usual situations. As in the previous cases, the proof is1

completed by coming back to the original coordinates u.

5. DS WITH DIMENSION n ) 2: A GENERAL RESULT

We now consider an n-dimensional DS: according to the above section,
we can assume, for concreteness, that there is a resonance involving all the

Ž .n eigenvalues see also Remark 4 below .
Before giving the main result of this section, the following property may

Ž .be useful the proof is straightforward .

Ž . Ž .LEMMA 3. Gï en a DS in NF ¨ s g ¨ s A ¨ q G ¨ , the constants of˙ 0
motion r g II of the linear part are in general not constants of motion of theA0

full DS, but their time dependence can be expressed as a function only of the r
Ž . Ž . Ž .themsel̈ es: drrdt s F r , where drdt is the Lie derï atï e along theg g

DS. If the DS satisfies Condition A, then these constants of motion r are also
Ž .constants of motion of the full DS in NF ¨ s g ¨ .˙

Ž .THEOREM 2. Consider the DS 1 and assume that for the ¨alue l s 00
the eigen¨alues s of A are distinct, are real or purely imaginary, and satisfyi 0

Ž .a resonance relation 3 . Assume also that p s n y 1, i.e., that there are
Ž .n y 1 real parameters l ' l , . . . , l and finally that putting1 ny1

­ A lŽ .i iŽ i.a s i s 1, . . . , n , k s 1, . . . , n y 1 24Ž .k ­lk ls0

Žthe n = n matrix D constructed according to the following definition notice
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Ž . Ž . .that only the diagonal terms A l of A l are in¨ol̈ ed is not singular:i i

s aŽ1. aŽ1. ??? aŽ1.
1 1 2 ny1

Ž2.s a ???2 1det D ' det / 0. 25Ž .
???� 0Žn. Žn.s a ??? an 1 ny1

Then there is, in a neighborhood of u s 0, l s 0, t s 0, a bifurcating0 0
solution of the form

u t s exp a l A t u l q h.o.t . i s 1, . . . , n , 26Ž . Ž . Ž . Ž .Ž .ˆ ˆ ˆŽ .i 0 0 i

Ž . Ž .where a l is some function of the l’s such that a l ª 1 for l ª 0.ˆ ˆ
Proof. As in the particular cases examined in the previous sections, let

Ž .us consider the given problem transformed into NF: ¨ s A ¨ q G ¨ , l in˙ 0
Ž .the new coordinates ¨ . Let us write G ¨ , l in the more convenient form

n

G ¨ , l s k l, r ¨ K ¨ ,Ž . Ž .Ž .Ý i i
is1

Ž .where K ' diag 0, . . . , 1, . . . , 0 is the diagonal matrix with 1 at the ithi
position, or also

¨ s s ¨ q k l, r ¨ ¨ no sum over i s 1, . . . , n , r ¨ g II .Ž . Ž . Ž .Ž .i̇ i i i i A0

27Ž .

Ž . Ž .Now recall that the functions r ¨ and k l, r can be fractional in the
components ¨ , but in such a way that each term k K ¨ is a polynomial, soi i i
that the only admitted fractional terms necessarily have the form, e.g.,
Ž s2 sn.¨ ? ??? ? ¨ r¨ and so on; the assumption that the s are distinct2 n 1 i

Žensures that the functions k cannot be of zero degree in the ¨ i.e., of thei
.form ¨ r¨ , e.g. ; then when ¨ ª 0 all terms k ¨ vanish more rapidly than2 1 i i

¨ and one finds

­
k l, r ¨ ¨ s k l, 0 no sum over i .Ž . Ž . Ž .Ž .Ž .i i i¨s0­ ¨ i

Ž .Then Eq. 27 can be written, at the lowest order,

ny1

¨ s s ¨ q k l, 0 ¨ q ??? s s ¨ q q l ¨ q ??? q ??? , 28Ž . Ž .˙ Ýi i i i i i i i k k i
ks1
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Ž .where q are the elements of a constant matrix with n rows and n y 1i k
columns. On the other hand, considering the original DS

u s A l u q ???Ž .˙

Ž . Ž i. Ž Ž ..its diagonal bilinear terms in u and l a l u using the definition 24k k i
are just NF terms and are not changed by the normalizing procedure;
therefore, aŽ i. s q . Now according to Condition A, the NF is convergentk ik
Ž . Ž .or, better, is obtained by a convergent NT if one can rewrite 27 in the

Ž .split form as in 10 ,

¨ s A ¨ q a l, r ¨ A ¨ q U b l, r ¨ B ¨ , 29Ž . Ž . Ž .Ž . Ž .˙ Ý0 0 j j
j

Ž .where a , b are suitable combinations of the k and can satisfy the n y 1j i
conditions

b l, r s 0. 30Ž . Ž .j

Ž .In fact, the hypothesis 25 ensures precisely that one is able to do this and
Ž .also to satisfy b l, r s 0, by means of the implicit-function theorem,j

Ž . Žgiving some n y 1 relations here the r are considered as independent
.variables

l s l r . 31Ž . Ž .j j

Once these n y 1 conditions are satisfied, i.e., on the manifold defined
Ž . Ž w x.just by 31 which is an analytic manifold}see 4 , the convergence of the

NT taking the initial DS into

¨ s A ¨ q a l A ¨ s a l A ¨ 32Ž . Ž . Ž .˙ ˆ0 0 0

is granted. This DS can be easily solved, giving

¨ t s exp a l A t ¨ 33Ž . Ž . Ž .Ž .ˆ ˆ ˆŽ .0 0

with the n y 1 relations

l s l r ¨ r s r ¨ t s r ¨ g II . 34Ž . Ž . Ž .Ž . Ž . Ž .ˆ ˆ ˆj j 0 A0

The desired result is then obtained, with remarks similar to those in the
proof of Theorem 1, coming back to the initial coordinates by means of the

Ž . Ž . Ž .inverse convergent transformation ¨ ª u s ¨ q c ¨ , where c ¨ are
Ž .series of monomials of the ¨ i s 1, . . . , n .i

Ž .It is immediately seen that, in particular, condition 13 of Theorem 1 is
Ž .nothing but a special case of 25 . As a generalization of Corollary 1, the
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case of purely imaginary eigenvalues is particularly interesting, because it
corresponds to the case of coupled oscillators with multiple frequencies
and gives, with the above hypotheses, the existence of multiple-periodic

w xbifurcating solutions. We have indeed 17 :

COROLLARY 3. With the same notation as before, let n s r s 4 and
Ž .s s ys s i, s s ys s mi with m s 2, 3, . . . : then, with l '1 2 3 4

Ž . 3l , l , l g R and det D / 0, there is a double-periodic bifurcating solu-1 2 3
tion preser̈ ing the frequency resonance

v : v s 1 : m.1 2

EXAMPLE 3. Consider a four-dimensional DS, with u g R4, l g R3,
describing two coupled oscillators with unperturbed frequencies v s 1,1
v s 2,2

u s A l u q F u , lŽ . Ž .˙

l q l y 1 q l l 0Ž .1 3 2 1

1 q l l y l 0 l2 1 3 1where A l s .Ž .
l 0 l y22 3� 0
0 yl 2 l2 3

For l s 0, the eigenvalues of A are "i, " 2 i, and it is easily seen that0
Ž . Žcondition 25 is satisfied the above procedure and notation can be

.extended without difficulty to the complex space . The NF will have the
form, denoting by w s ¨ q ï , w s ¨ q ï the new coordinates, ina 1 2 b 3 4
complex form

w s iw q l q b Ž1. l, r q i l q b Ž1. l, r wŽ . Ž .˙ Ž .Ž .a a 1 1 2 2 a

w s 2 iw q l q b Ž1. l, r q ib Ž1. l, r w ,Ž . Ž .˙ Ž .b b 3 3 4 b

where we have put

b l, r s b l, 0 q b Ž1. l, rŽ . Ž . Ž .i i i

Ž .and the b are real functions of the three functionally independenti
constants of motion

< < 2 2 2 2 < < 2 2 2 2r s w s ¨ q ¨ ' r , r s w s ¨ q ¨ ' r ,1 a 1 2 a 2 b 3 4 b

2 2r s w w q c.c. ' 2 r r cos 2w ,Ž .3 a b a b

where w is the time phase-shift between the two components w and w .a b
Ž .Notice that fractional constants of motion r w may appear in this
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2 Žproblem, e.g., w rw or w w rw which are functionally}but not polyno-a b a b a
.mially}dependent on the three above , but this would not alter the result,

as shown in the proof of the theorem. The above NF can be transformed
Ž .into the split form 29

w s iw q ia l, r w w q b l, r w wŽ . Ž .Ž . Ž .˙a a a a a

w s 2 iw q 2 ia l, r w w q b l, r w wŽ . Ž .Ž . Ž .˙b b b b b

with

a s yl y b Ž1. q b Ž1.
2 2 4

b s l q b Ž1. q i 2l q 2b Ž1. y b Ž1.Ž .a 1 1 2 2 4

b s l q b Ž1. q i 2l q 2b Ž1. y b Ž1. .Ž .b 3 3 2 2 4

Ž .One can impose the convergence of the NT solving for l s l r thei i
conditions b s b s 0, which actually give three real conditions, anda b
obtain a bifurcating double-periodic solution, with frequencies

v s 1 q a l and v s 2 1 q a l .Ž . Ž .Ž .1 2

Just to give a concrete example, let us imagine that the NF is such that

b Ž1. s yr , b Ž1. s 0, b Ž1. s yr , b Ž1. s r .1 1 2 3 2 4 3

Then the leading terms of the solution, in the original real variables u , arei

u s r cos v t , u s r sin v t , u s r cos 2v t q w ,Ž .ˆ ˆ ˆ1 a 2 a 3 b

u s r sin 2v t q wŽ .ˆ4 b

with the constraints

l s r 2 , l s r 2 , l s r 2 r cos 2w , v s 1 q l1 a 3 b 2 a b 2

Ž .producing see especially the role of l a sort of amplitude]phase]fre-2
quency locking in the solution.

Remark 4. As already remarked, it can happen that, among the n
resonant eigenvalues s , as considered in Theorem 2, one can find somei
r - n eigenvalues s in such a way that the assumption of Lemma 2 ish
satisfied; therefore the problem can be reduced}as explained in the
above section}to an r-dimensional problem. In this case, if one can also
find r y 1 parameters l in such a way that the corresponding r = rh
matrix D is not singular, then the existence of another bifurcating solution

Žis ensured by the same Theorem 2 see the end of the final Example 6 for
Ž . .a quite simple case .
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6. DEGENERATE EIGENVALUES AND THE PRESENCE
OF SYMMETRIES

We now consider the case of multiple eigenvalues of the matrix A .0
This situation is a little bit more involved: indeed, the presence in this case
of constants of motion r g II of the form r s ¨ r¨ prevents the directA i j0

application of the argument used in the previous theorems. Another
Ž . Ždifficulty is related to the greater number of matrices B g CC A if ani 0

eigenvalue s has multiplicity d, then any d = d matrix acting on thei
.subspace of the corresponding eigenvectors clearly commutes with A :0

this would require the presence of a greater number of parameters l, to
satisfy the Condition A.

However, the presence of degenerate eigenvalues is usually connected to
the existence of some symmetry property of the problem, and we will
restrict to consider this simpler}and probably more realistic and physi-
cally interesting}case.

wWe refer here to the case of ‘‘geometric’’ or Lie point-symmetries 18,
x Ž . Ž . Ž19 : a vector function s u s Lu q S u is said to be the infinitesimal

. Ž .generator of a symmetry for the given DS if s u is not proportional to
Ž .f u and the vector fields X s f ? = and X s s ? = commute,f s

X , X s 0 35Ž .f s

� 4or, introducing the Lie]Poisson bracket ?, ? between two vector functions
Ž1.Ž . Ž2.Ž .h u , h u defined by

� Ž1. Ž2.4 Ž1. Ž2. Ž2. Ž1.h , h s h ? = h y h ? = h 36Ž . Ž . Ž .i i i

if, equivalently,
� 4 Xf , s s 0. 35Ž .

The symmetry is linear if S s 0. Notice that linear and nonlinear symme-
Ž .tries are changed into the other under nonlinear coordinate transforma-

tions u ª ¨ . It can also be remarked that a DS in NF always admits a
w xlinear symmetry 8, 11, 12 :

LEMMA 4. Any NF admits the linear symmetry s s A ¨ :A 00

A ¨ , g ¨ s 0.� 4Ž .0

Ž . Ž .This is in fact a restatement of 7 and 5 using the above definition
Ž . Ž . � 436 , indeed AA g s A ¨ , g .0

We need the following important properties of Lie]point symmetries of
a DS.

Ž .LEMMA 5. Assume that the gï en DS admits a symmetry s u s Lu q
Ž .S u , where L is semisimple and not zero. Then one has in particular

w xA , L s 00

and there is a NF of the DS which admits the linear symmetry s s L¨ .L
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w xThe proof is well known and can be found, e.g., in 8, 11, 12 .
Ž .An unpleasant consequence of the degeneracy of the eigenvalues s ofi

Ž .A is a larger arbitrariness in the choice of the matrices B g CC A to0 i 0
Ž . 3express the NF 8 : consider, e.g., the case in R

A s diag 1, 1, y2 ,Ž .0

then the same resonant term can be written in two apparently different
Ž .forms the notation is obvious ,

x 2 yz 0 1 0
2s x z s r B ¨0 0 0 1 10 ž /� 0 0 0 00

1 0 0
s xyz s r B ¨ r , r g II , B , B g CC A .Ž .0 0 0 2 2 1 2 A 1 2 00ž /0 0 0

Assume now that the symmetry ‘‘removes the degeneracy’’; that is,
recalling that A and L commute, assume that there is a simultaneous0
basis of eigenvectors for A and L such that any two eigenvectors with the0
same eigenvalue under A are distinguished by a different eigenvalue0
under L. Then there are precisely n independent matrices, which we now

˜denote by B , commuting with both A and L:i 0

B̃ g CC A l CC L . 37Ž . Ž . Ž .i 0

˜ ŽThese matrices B also commute with each other they in fact can be takeni
to be diagonal: this is true upon complexification of the space, in the case

.the eigenvalues of A or of L are not real; see Example 4 below . We can0
˜then express the NF by using precisely these n matrices B ,i

n
˜ ˜G ¨ , l s b l, r ¨ B ¨ B g CC A l CC LŽ . Ž . Ž . Ž .Ž . Ž .Ý i i i 0

is1

U ˜s a l, r ¨ A ¨ q b l, r ¨ B ¨ 38Ž . Ž . Ž .Ž . Ž .Ý0 j j
j

using previously introduced notation. The convenience of this choice is
immediately evident. Indeed, recalling Lemma 5, the NF admits the
symmetry s s L¨ , i.e.,L

L¨ , G ¨ s 0, 39� 4Ž . Ž .
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which implies
n

˜L¨ ? =b B ¨ s 0Ý i i
is1

˜or, due to the independence of the B ¨ ,i

a l, r ¨ , b l, r ¨ g II j s 1, . . . , n y 1 , 40Ž . Ž . Ž . Ž .Ž . Ž .j L

where II is the set of the constants of motion of the linear problemL
Ž . Ž .¨ s L¨ , and this means that the functions b in 38 and the r as well˙ i

can be chosen as simultaneous constants of motion of the two linear
problems ¨ s A ¨ and ¨ s L¨ :˙ ˙0

r ¨ , b l, r g II l II . 38XŽ . Ž . Ž .i A L0

The assumption that L has removed the degeneracy has the other conse-
quence that no constants of motion of the form ¨ r¨ are admitted ini j

Ž Ž ..II l II and then in the NF 38 ; therefore, the functions b appearingA L j0 U Ž .in the Ý in 38 can be written in the formj

b l, r s b l, 0 q b Ž1. l, r 41Ž . Ž . Ž . Ž .j j j

Ž1.Ž .with b l, 0 s 0. On the other hand, considering the first-order termsj
Ž .in u of the DS in its initial form, and writing

u s A u q AŽ1. l u q higher order termsŽ .˙ 0

˜s A u q b l B u q c l C u q h.o.t.Ž . Ž .Ý Ý0 i i ll ll

i ll

U ˜s A u q a l A u q b l B u q c l C u q h.o.t., 42Ž . Ž . Ž . Ž .Ý Ý0 0 j j ll ll

j ll

Ž1.Ž .where A 0 s 0, the sum Ý includes all linear terms which are notll

Ž w x .resonant i.e., A , C / 0 and therefore disappear after the NT. The0 ll

remaining terms are instead not changed by the NT and therefore one gets

a l s a l, 0 , b l s b l, 0 j s 1, . . . , n y 1 . 43Ž . Ž . Ž . Ž . Ž . Ž .j j

Ž .Then, assuming that there are n y 1 parameters l and that the n y 1k
˜Ž .= n y 1 matrix D, introduced by means of the following definition, is

not singular, i.e., that

­ bj˜det D ' det / 0 b s b l s b l, 0 , 44Ž . Ž . Ž .j j j­lk ls0
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one can proceed exactly as in Theorem 1 and conclude with the existence
of a convergent NT and of a bifurcating solution on some manifold

Ž .l s l r .j j
We can then state:

Ž . Ž .THEOREM 3. Let u s A l u q F l, u be a DS with n y 1 real parame-˙
ters l ; assume that A has degenerate resonant eigen¨alues and that the DSj 0

Ž . Ž .admits a Lie point-symmetry generated by s u s Lu q S u , where L / 0 is
semisimple, such that L remo¨es the degeneracy of the eigen¨alues of A . Let0
˜ Ž . Ž . ŽB be n independent matrices in CC A l CC L , and write the linear part ini 0

˜. Ž . Ž .u of the DS in the form 42 . Then, if the matrix D defined in 44 is not
Ž .singular, there is a resonant bifurcating solution of the same form 26 as in

Theorem 2.

ŽThis result can be well illustrated by two examples notice that in the
second one we will consider also the possibility of extending the above

Žprocedure in the presence of a discrete symmetry i.e., not a continuous
..Lie point-symmetry .

EXAMPLE 4. Introducing the 2 = 2 matrices

1 1J s I s 45Ž .2 2ž / ž /y1 1

consider the four-dimensional DS, describing two coupled oscillators with
the same unperturbed frequency v s 1.

J22 2u s f u , l s A u q w r , r , r = r , l M u with A s ,Ž .˙ Ž .Ý0 i a b a b i 0 ž /J2

46Ž .

Ž . 2 2where the eigenvalues of A are s s "i doubly degenerate , r s u q0 i a 1
u2 , r s u2 q u2 , r = r s u u y u u , and the M are matrices of the2 b 3 4 a b 1 4 2 3 i
form

N XJ NY J2 2 X YM s with N , N arbitrary 2 = 2 matrices.Y Xi ž /J N J N2 2

This DS admits the linear symmetry generated by Lu ? =, where

J2L s .ž /J2
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˜ Ž . Ž .There are four matrices B g CC A l CC L , namelyi 0

I I2 2A , L, I s , H s .0 ž / ž /I I2 2

Ž . Ž .Let us then write down explicitly the linear part in u of the DS 46 as in
Ž .42 , i.e.,

< Ž1.=f s A l s A q A lŽ . Ž .us0 0

4

s A q a l A q b l I q b l L q b l H q c l C ,Ž . Ž . Ž . Ž . Ž .Ž . Ý0 0 1 2 3 ll ll

lls1

Ž .where a, b , c are combinations of the w 0, 0, 0, l . When in NF the lastj ll i
sum disappears, whereas the other terms remain unchanged, and the NF
will have the form

¨ s A ¨ q a A ¨ q b l, r I q b l, r L q b l, r H ¨ , 47Ž . Ž . Ž . Ž .Ž .˙ 0 0 1 2 3

Ž . 2 2 2 2where r ¨ s ¨ q ¨ q ¨ q ¨ , ¨ ¨ q ¨ ¨ g II l II , and1 2 3 4 1 3 2 4 A L0

b l, 0 s b l j s 1, 2, 3.Ž . Ž .j j

Ž . Ž . <The assumption 44 det ­ b r­l / 0 then ensures, as already dis-ls0j k
cussed, the existence of a resonant bifurcating solution, which in this case
is a periodic solution with frequency v s 1 q ??? and preserving the strict
frequency resonance 1 : 1.

EXAMPLE 5. As an even simpler example, let us consider the case of a
three-dimensional DS with real eigenvalues: let

u s A u q w r 2 , z , l Lu q w r 2 , z , l Iu , 48Ž . Ž . Ž .˙ 0 1 2

where u g R3, l g R2, r 2 s u2 q u2 , z s u , and, using the 2 = 2 matri-1 2 3
Ž .ces introduced in 45 ,

I J2 2A s L s .0 ž / ž /y2 0

This DS admits the linear symmetry SO generated by Lu ? =. There are2
˜ Ž . Ž . Žthree matrices B in CC A l CC L , namely A , L, I notice that, actually,i 0 0
Ž . Ž . Ž . 2in this case, CC A ; CC L , but the DS 48 is not in NF, because r and0
.z are not in II . Proceeding as before, the NF will have the formA0

¨ s A ¨ q a A ¨ q b L¨ q b I¨ , 49Ž .˙ 0 0 1 2
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Ž . Ž 2 2 .where now b and a , of course are functions of r s ¨ q ¨ ¨ and lj 1 2 3
only. Then we need two real parameters l , and}with the assumptionk
Ž .44 }a bifurcating solution is obtained

u s u exp 1 q a t q h.o.t.Ž .ˆ ˆ1 10

u s u exp 1 q a t q h.o.t.Ž .ˆ ˆ2 20

u s u exp y2 1 q a t q h.o.t.Ž .Ž .ˆ ˆ3 30

along with some conditions

l s l r 2 z , l s l r 2 z .Ž . Ž .1 1 2 2

This example can be useful to show that also the presence of discrete
Ž .symmetries e.g., exchange or reflection symmetries can be of some help

in this approach: a DS admits a discrete symmetry R, where R is a
nonsingular matrix, if

f Ru s Rf u 50Ž . Ž . Ž .

w xand it is known that the NF also admits the same symmetry 5 . The
possible role of this fact in our argument can be illustrated by the
following modification of the above example.

EXAMPLE 5X. The situation is same as Example 5, but now assume the
DS admits the discrete symmetry

0 1
R s .1 0ž /1

Ž . Ž .Then, in both the initial DS 48 and its NF 49 , the term containing the
matrix L disappears; therefore, Condition A requires the vanishing of only
one term in the NF and a bifurcating solution can be obtained with the
presence of just one real parameter l.

7. FINAL REMARK ON THE ROLE OF CONDITION A

To stress and illustrate the relevance of the role played in our argument
by Condition A, let us consider this final example, which is essentially an

Ž .adjustment in view of the present discussion of an example given, with
w xquite different purposes, in 20 .
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EXAMPLE 6. With u g R3 and l g R2, let

y r 2 q 3 z 2 uŽ . 1

2 2u s A l u q ,y r q 3 z uŽ . Ž .˙ 2� 02 23r q z zŽ .

l q l 1 01 2

y1 l 0where A l s 51Ž . Ž .1� 00 0 yl1

2 2 2 Ž w x.with r s u q u , z s u . It is not difficult to see cf. 20 that, if l s 0,1 2 3 2
this system admits a family of heteroclinic orbits connecting the origin to
the circle r 2 s l and another family of heteroclinic orbits, living on the1
manifold r 2 q z 2 s l , connecting the circle r 2 s l to the point P '1 1
Ž .0, 0, l . When l / 0, this heteroclinic structure breaks down, and an1 2

w xapplication of the Melnikov theory 20]23 shows the occurrence of
transversal intersections of stable and unstable manifolds, with the conse-
quent appearance of the chaotic behavior described by the classical

ŽBirkhoff]Smale horseshoe-like structure actually, we need here a simple
three-dimensional version of the standard Melnikov theorem; see, e.g.,
w x.20 .

Ž .On the other hand, the NF of the above DS 51 exhibits a perfectly
Ž .regular i.e., nonchaotic behavior: indeed, the NF, according to Lemma 4,

must possess the linear symmetry generated by A , which implies that the0
NF is symmetric under rotations around the z-axis; then the NF is
essentially a two-dimensional problem and therefore no chaos is admitted.
This clearly implies that the NT cannot be convergent.

Ž .If one now imposes Condition A on the NF of the DS 51 , it can be
easily seen that this condition is satisfied only along the circle defined by

l s 3 ¨ 2 q ¨ 2 q ¨ 2 l s 4 ¨ y ¨ 2 y ¨ 2 ,Ž . Ž .1 1 2 3 2 3 1 2

Ž .where in fact a Hopf-type periodic solution occurs. Then, in conclusion,
Žwe are here in the presence of a regular solution where Condition A is

.indeed satisfied , which is completely surrounded by chaotic solutions: this
clearly confirms the crucial role played by Condition A in the argument.

Just for completeness, and in agreement with Lemma 2 and Corollary 2,
Ž .let us remark that this example admits quite trivially a reduction accord-

ing to Remark 4: indeed, in correspondence with the eigenvalue s s 0,3
we also get the stationary bifurcating solution l s z 2 with u s u s 0.1 1 2
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