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We consider dynamical systems depending on one or more real parameters, and
assuming that, for some “critical” value of the parameters, the eigenvalues of the
linear part are resonant, we discuss the existence—under suitable hypotheses—of
a general class of bifurcating solutions in correspondence with this resonance.
These bifurcating solutions include, as particular cases, the usual stationary and
Hopf bifurcations. The main idea is to transform the given dynamical system into
normal form (in the sense of Poincaré and Dulac) and to impose that the
normalizing transformation is convergent, using the convergence conditions in the
form given by A. Bruno. Some specifically interesting situations, including the cases
of multiple-periodic solutions and of degenerate eigenvalues in the presence of
symmetry, are also discussed in some detail. ~ © 2000 Academic Press

1. INTRODUCTION
In this paper we consider dynamical systems of the form
u=f(u,\) =A(N)u + F(u, A) u(t) e R", A €R? (1)

depending on one or more real parameters A, and, assuming that, for some
“critical” value A = A, of the parameters, the matrix A(A,) admits reso-
nant eigenvalues, we want to discuss the existence—under suitable hy-
potheses—of a general class of “bifurcating solutions” u = u,(¢) in corre-
spondence with this resonance. These bifurcating solutions include, as
particular cases, the usual stationary bifurcation and the Hopf bifurcation
(see, e.g., [1]). The main idea is to transform the given dynamical system
into normal form (in the sense of Poincaré and Dulac [2-9]) and try to
impose that the normalizing transformation be convergent. The imposition
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of convergence is essentially based on the application of the conditions
given by Bruno [4, 5] and leads to some prescriptions which may be
fulfilled thanks to the presence of the parameters A; in this way, the
appearance of these “resonant bifurcating” solutions can be automatically
deduced.

Among these solutions, some attention is paid to discussing some
situations of special interest (also from the physical point of view), includ-
ing the cases of multiple-frequency periodic solutions and of degenerate
eigenvalues in the presence of symmetry, giving examples for each situa-
tion.

2. BASIC ASSUMPTIONS AND PRELIMINARIES

We need some preliminary notions and results.

Let u(r) € R", let A € R?, and let f=f(u, A) be a vector-valued
analytic function in a neighborhood of some u, and A, (it is not restrictive
to choose u, =0 and A, = 0), such that f(A,0) =0 for each A in a
neighborhood of A,. Let us denote the linear part of f by A(A\)u, where

A(A) =V, f(1,0), (2)

and assume that, for some “critical” value of the parameters (we can
assume that this value is just A, = 0) the matrix

Ay = A(0)

is semisimple, i.e., diagonalizable. Let us notice that, in the case A, is not
semisimple, it could be uniquely decomposed into a sum of a semisimple
and a nilpotent part: 4, = A + A", and the foregoing discussion could
be equally well applied to the semisimple part A, considering in particu-
lar normal forms with respect only to 4. The introduction of normal
forms with respect to a non-semisimple matrix requires a more difficult
procedure and will not be considered here (cf. [10, 11]).

Up to a linear change of coordinates (possibly after complexification of
the space), we will assume for convenience that the matrix A, is diagonal,
with eigenvalues oy, ..., ¢,. The first important assumption is that, for the
value A, = 0, the eigenvalues exhibit a resonance; i.e., there are some
nonnegative integers m, such that

Zmiaiza'j: Yom; =2 (3)
j i=1

for some index j € [1,...,nl
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Together with the given dynamical system (DS) (1), we need also to
consider its normal form (NF) (in the sense of Poincaré and Dulac [2-9)),
in a neighborhood of u, = 0, A, = 0. As is well known, the idea is that of
performing a near-identity coordinate transformation

u—>v=u+ ¢(u) (4)

in such a way that in the new coordinates v the given DS takes its
“simplest” form. To define this, consider the linear operator .« (the
“homological operator” [2-9]) defined on the space of vector-valued
functions A(v) by

(h) =Agw-Vh — Agh. (5)

Writing the NF in the form
v=g(v,A) =Aw + G(v, A) (6)
the nonlinear terms G(v, A) are then defined by the property [2-9, 11-14]
G(v,A) € Ker(%). (7)

Actually, to be more precise, one should also consider, together with (1),
the p equations
A=0

(as in the usual suspension procedure), extend the homological operator &/
adding to the matrix A4, the last p columns and p rows equal to zero, and
similarly extend G(v, A) as an (n + p)-dimensional vector-valued function
with the last p components equal to 0. It is important indeed to notice that
it is essential here to consider the A as independent variables; in this way,
in particular, one has that the bilinear terms in v and A are included in
G(v, A); see also Remark 1 below.

Let us now briefly recall the following important results. The proof of
these can be found, e.g., in [8, 11-14].

LEMMA 1. Given the matrix A, the most general NF is given by (6) with

G(v,A) = Zﬁi()" p(v))Biv where B; € €(A,), p = p(v) €754,

(8)

where @(A,) is the set of the matrices commuting with A,, and .7, is the set
of the constants of motion of the linear system

b= Ag. (9)
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The sum in (8) is extended to a set of independent matrices B,, the constants of
motion p(v) can be chosen in the form of monomials (possibly fractional),
and the functions B; are series or rational functions of the v; (see [13], for a
detailed statement, and below, for the cases of interest for our discussion).

It is now clear that the assumption (3) on the existence of some
resonance among the eigenvalues of A4, ensures that there are nontrivial
constants of motion of the linear problem (9) and then nontrivial terms in
the NF (8).

It is also well known that the coordinate transformations taking the
given DS into NF is usually performed using recursive techniques and that
in general the sequence of these transformations is purely formal: indeed,
only very special conditions can assure the convergence of the normalizing
transformation (NT).

Let us now recall the basic conditions, in the form given by Bruno and
called respectively Condition » and Condition A, which ensure this
convergence. The first condition is (see [4, 5] for details).

Condition w. Let w, =minl(q, o) — ;| for all j=1,...,n and all

n-tuples of nonnegative integers ¢, such that 1 < X7 ,q, < 2% and (¢, o)
= X,q,0; # 0;. Then we require

Y 2% In(wpt) < o,
k=1

This is a actually very weak condition, devised to control the appearance
of small divisors in the series of NT, and generalizes the Siegel-type
condition,

-V

[(q.0) — 0| > €

for some €, » > 0, or the much simpler condition [(g, o) — o3| > € > 0, for
all n-tuples g; such that (g, o) # o; (see [2-5)). We explicitly assume from
now on that this condition is always satisfied.

The other condition, instead, is a quite strong restriction on the form of
the NF. To state this condition in its simplest form, let us assume that
there is a straight line through the origin in the complex plane which
contains all the eigenvalues o; of A,. Then the condition reads

Condition A. There is a coordinate transformation u — v changing
f=Ayu + F to a NF g = g(v) of the form

g(v) =Aw + a(v)Ayw

where a(v) is some scalar-valued power series (with «(0) = 0).
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In the case that there is no line in the complex plane which satisfies the
above property, then Condition A should be modified [4, 5] (or even
weakened: for instance, if there is a straight line through the origin such
that all the o; lie on the same side in the complex plane with respect to
this line, then the eigenvalues belong to a Poincaré domain [2-5] and the
convergence is guaranteed without any other condition), but in all our
applications below we shall assume for the sake of definiteness that the
eigenvalues are either all real or purely imaginary; therefore, the above
formulation of Condition A is enough to cover all the cases to be
considered.

Remark 1. 1t can be useful to point out that it is essential in the
present approach to use the suspension procedure for the parameters A,
i.e., to consider A as additional variables. Indeed, let us consider, for
instance, a simple standard Hopf-type two-dimensional bifurcation prob-
lem with one parameter (p = 1),

u = Aqu + Au + higher order terms where A, = ( _(1) (1))

and [ is the identity matrix. If A is kept fixed # 0, the eigenvalues of the
linear part A, + Al are 0 = A + i and, as a consequence, there are no
(analytic or fractional) constants of motion of the linearized problem, and
the NF is trivially linear. Also, the NT would be convergent, as a conse-
guence of Condition A (or, more simply, of the Poincaré criterion [2-5]).
But no bifurcation can be found in this way. Instead, considering A as an
independent variable, the linear part of the problem is u = A,u and now
there are nontrivial constants of motion in the NF, i.e., the functions of
r2=u? +u3and A

Given the DS (1), it will be useful to rewrite its NF according to Lemma
1, observing that obviously 4, € #(A,) and in view of Condition A, in the
following “split” form (cf. (6), (8))

0=2g(v,A) =Agw + a(A, p(v))Aw + Z* Bi(A, p(v)) B

p(v) €7, (10)

where (hereafter) Y% is the sum extended to the matrices B; # A,.
Following Bruno [4, 5], we can say that the convergence of the NT is
granted if X¥B,(A, p(v))B;v = 0. Clearly, “convergence” stands for *“con-
vergence in some neighborhood of u, = 0, A, = 0.”

Let us remark, incidentally, that an algorithmic implementation of the
procedure for obtaining the NF step by step is possible (cf., e.g., [15, 16]);
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we stress, however, that actually, in this paper, we shall not need any
explicit calculation of NF's.

3. THE TWO-DIMENSIONAL CASE

For the sake of simplicity we consider first of all the case of a two-di-
mensional DS, with some other simplifying assumptions; more general
cases will be considered in subsequent sections.

THEOREM 1. Given a two-dimensional DS
u=A(Mu+F(u,\) ueR’AeR (11)

(i.e.,n =2, p = 1), assume that for A, = 0 the two eigenvalues o, o, of A,
are nonzero, are of opposite sign if real, and satisfy a resonance relation (3),
which in this case can be more conveniently written in the form of commensu-
rability of the two eigenvalues,

01 03

—=_—"=9,, 12
i (12)

where s, s, are two positive, relatively prime integers. Assume also that

d d
SZEAll( /\) + SlﬁAZZ(/\)L\:O * 0. (13)

Then there is a ‘“‘resonant bifurcating” solution u = u,(t) of the form

+ o0

iy, = cPexp(s,0(A)t) + Y c, exp(n,0(A)r)
nyg=—o
ny# s,

L (14)
i, = cPexp(—s,0(N)t) + Y c, exp(n,0(A)r),

ny=—®
ny# —S$,

where for A — 0
5:0(A) > oy, —s5,0(A) >0, Pc?® -0
and all terms in the two series are “higher order terms” (h.o.t.), i.e., terms

vanishing more rapidly than the two leading terms, and the series are conver-
gent in some time interval. There is also an analytic constant of motion along
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this solution, which, for small A, has the form
p(i1) = (¢)*(e?)" + h.o.t.

Proof. Consider the (possibly non-convergent) coordinate transforma-
tion u — v (4) which takes the given DS into NF (10). The assumption on
the resonance of the eigenvalues o; and Lemma 1 imply that the DS in NF
is expected to have the form

UV=g(Av) =Ag + a(A, p)Agv + B(A, p)Bv = (1 + a)Aw + BB,
(15)

where p = p(v) = v{zv3* is a (monomial) constant of motion of the linear
problem v = Ay, B is any diagonal matrix independent of A, (i.e., such
that s,B;, + s,B,, # 0), and A can be viewed as a constant of motion of
the enlarged system including A = 0. We now impose the Bruno Condition
A (in the form given above, indeed o are either real or purely imaginary)
to ensure the convergence of the NT: this amounts to imposing

B(A, p) =0. (16)

The expression of this function is clearly not known (unless the NF itself is
known), but the manifold defined by g8 = 0 is analytic [4] and the relevant
behavior of the first-order terms (in A) of B(A, p) can be inferred from the
original DS &t = A(Mu + ---. Indeed the first-order terms (in A) of A(Mu,
i.e., Aou + MdA(N)/dMI,-ou, are not changed by the NT; therefore

«(0,0) = B(0,0) =0
and

d d B
SzﬁAu()\) + SIHAZZ(A)|A=0 = (5B + 51322)5 .
—0, p=

having also used s,o, + 5,0, = 0. Assumption (13) then shows that one
can satisfy the condition B(A, p) =0, thanks to the implicit-function
theorem, if A and p are related by a function

A=A(p)  with A(0) = 0. (17)
With 8 = 0, a solution of (15) is then

0(t) =exp((1+ a)Ayt)D,
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or, putting 8(A) = 0,(1 + a),

04(1) = Dy exp(s,0(A)t) (18)
Bo(1) = Ty €9 =5, 0(1)1)

with the constraints

(’Ukl([))sz(ﬁz(t))sl = (?}10)32(520)S1 =p €S, and A= A(p)
(19)

and where a = a(A(p)) = 0, 6(1) = 6, for A,v, p — 0. On the other
hand, in the analytic manifold defined by B(A, p) = 0 the NT is conver-
gent and this bifurcating solution corresponds to an analytic solution
u = u,(t) of the initial problem. The original coordinates u are in fact
related to the new ones v by an analytic transformation (the inverse of (4))

u=uv+y(v),

where ¢ is a power series in the v,, v,, and the convergence is granted on
some neighborhood of zero, say |v,| < R,, lv,| < R,. Notice now that the
condition p(v) = const does not ensure, if the eigenvalues are real (see
the examples below), that the variables are bounded for all ¢+ € R; in this
case, it will be sufficient to choose A, together with 7y, 7,,, sSmall enough
that the convergence is granted in some interval 7, <t < T,. |

ExavpLE 1. Let the matrix elements A4,;(A) of A(A) in (11) satisfy
Ap(A) =1, Ay(A) - =2, Ap(r)and A, (A) -0 fora — 0.

Then o, = 1, o, = —2, the constant of motion of the linear DS v = A
is p=uv?v,, and, assuming d(2A,; + A,,)/d Ao # 0, there is a reso-
nant bifurcating solution whose leading terms have the exponential behav-
ior

i = cPexp((1+ a)t) + -
i, =cPexp(—2(1 + a)t) + -

with a, c®, ¢® — 0. To give a more explicit case, let us assume that the
first terms of the DS (11) are
3
usu
o
U,

with A,,, A,, arbitrary vanishing functions of A. In this case, the first

14210 Ap())

+hot.
Ap(A) -2+ 1" °

u=
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nonlinear term is already in NF, with B = I = identity (cf. (10)), and one
easily gets 6(A) =1+ A/3 + -, a = A/3 + ---; whereas Eq. (16) takes
the form B =3 + p + -+ = 0, giving

— _3p2~
= —gUil, + -

The next example, even if apparently similar, is actually a generalization
of Theorem 1; indeed eigenvalues of the same sign will be involved. In this
case, the convergence of the NF would be guaranteed with no other
condition, thanks to the Poincaré criterion; however, we need even in this
case to impose that Condition A is fulfilled, to obtain a bifurcating
solution of the same form as discussed so far.

ExAMPLE 2. Let A, = diag(1,2) and d(2.A4,,(A) — A,,(1)/dAl,—o # 0.
Then p = v?/v, and the bifurcating solution is expected along a manifold
of the form Az, o @2 + ---, obtained as solution of the condition (16). The
discussion is now identical to the previous cases.

CoroLLARY 1 (Hopf Bifurcation).  If oy, o, areimaginary, o, , = *+iw,,
then the condition (13) becomes the standard “transversality condition™

dRea())
di

#0
A=0

and the bifurcating solution is the usual Hopf bifurcation.

Proof. The proof of Theorem 1 holds also in the case of imaginary
eigenvalues. In this case, s; =s, =1, p=0? + 03 =7r% (N = i(w, +
a(AMr?)) = iw(A), and a simple calculation shows indeed that

d(All + A22)
dA

dRe o
A=0 dA

A=0

Notice that in this case the condition p = r? = const ensures |v,| < r and
then the convergence is true for all t € R. ||

4. DS WITH DIMENSION 7n > 2: REDUCTION TO A
LOWER DIMENSIONAL PROBLEM

In this section, we will consider a general situation in which, given an
n-dimensional DS with n > 2, it is possible to reduce the problem to a
lower dimensional case. A quite simple but useful result is the following.

LEMMA 2. Consider an n-dimensional DS (n > 2), and assume that for
Ay = 0 there are r < n resonant eigenvalues, say o, ..., a,, such that no
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resonance relation of the form
r
Y m,o, = oy k=r+1,...,n (20)
h=1

exists. Then the DS—once in NF—can be reduced to an r-dimensional
problem, putting for the remaining n — r variables

(1) =0 k=r+1,...,n.

If this r-dimensional problem admits a solution 0,(t), h =1,...,r (e.g., a
bifurcating solution as in Theorem 1), then the original DS admits a solution
in which the n —r components u,(t), k =r +1,...,n, are “h.o.t.” with
respect to the first r components U,(t).

Proof. Let us consider the NF variables v, i =1,...,n, and let us
introduce the shorthand notation v' = (v4,...,v,) and v" = (v,, ,...,0,)
—and, correspondingly,

A/
A0=( 0 Ag) with 4, = diag(a,,..., )

and similarly for Aj. According to Lemma 1, the matrices B; commuting
with A, necessarily split in block form:

P
[ Bl{l .

Therefore the DS in NF will be
V=AW + ZB,.’B;U’ =1+ a)dy + Z* B/B]’.u’
J

(21)
l-/'” =A/6U/r + ZB,'"B;IUN — (1 + OZ)A%UH + Z* BJ{/B}/U//'
J

where B/ and B/ are functions (of A and) of all the constants of motion
p(v',v"). Considering in particular the terms B”, the assumption that there
are no resonances of the form (20) excludes the occurrence of fractional
constants of motion in .7, of the form g” = p'(v') /v, for some k =r +
1,...,n; then v" = 0 solves the second set of equations of the system in
NF. Transformation into the initial coordinates u shows the final state-
ment. |

Remark 2. A quite common situation, which is actually a special case
of Lemma 2, is that the n eigenvalues o; are such that the only analytic or
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fractional constants of motion p which can be constructed depend only on
r variables v', with the above notation (e.g., if o, = 2, —2,v2,V3). In this
case, no resonance of the form (20) is clearly admitted and Lemma 2 holds
true; notice in particular that in this case the NF (21) becomes automati-
cally “triangular” (cf. [13]). It is also clear that, given n eigenvalues o, it
can happen that several different reductions are possible: e.g., if o, =
1, —2,V2, — V2,V3, Lemma 2 can allow a reduction of the NF either into
a four-dimensional problem or equally well into two independent two-di-
mensional problems.

Remark 3. We can clearly combine Theorem 1 and Lemma 2 to obtain
a resonant bifurcating solution with n > 2, r = 2, p = 1. It can be noted
that the leading terms of the resonant bifurcating solution obtained in this
way can be characterized as the kernel of the linear operator T defined by

d

T-—— -4
dt 0

acting on the linear space of the vectors w = (w,,...,w,), where the w,
are formal series in powers of exp(6,?),

w; = C,m, EXP(m;01) i=1,...,n, (22)

where, using previously introduced notation (12),

0 )

Op= — = ——.
S1 S2

It is easily seen, indeed, that the hypothesis on o; is equivalent to the
property that 7 has precisely a two-dimensional kernel, generated by
w, = exp(s, 0,t) = exp(a,t) and w, = exp(—s,60,¢) = exp(o,t); see (14).

An especially interesting case occurs clearly when one of the eigenvalues
is zero. This can be considered as a particular case of Lemma 2; we have
indeed:

CoROLLARY 2 (Stationary Bifurcation). Assume that for A, =0 the
matrix A, of the given DS admits just one eigenvalue (say o) equal to zero.
Then, with the standard condition

dA;(A)

# 0, 23
|, (23)

there is a stationary bifurcating solution of the form i = u, + ---.
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Proof. With the notation introduced in the proof of Lemma 2 we put
here v = v, v" = (v,,...,0,), and now v, €.7; as o, = 0. Writing the
problem in the form (21), there cannot be terms of the form g8" = p'(v,) /V"
(indeed, o,,..., 0, # 0), and therefore v" = 0 solves the second set of
equations for v”. The remaining equation is then a one-dimensional
equation

Uy = Z* Bj’BJ/‘Ul = B*(Avy)vy
j

and the assumption (23) is easily seen to be equivalent to dB8* /Al = # 0,
which ensures the existence of a stationary bifurcation, solving v, = 0 with
A = Muv,), as in the usual situations. As in the previous cases, the proof is
completed by coming back to the original coordinates u. |

5. DS WITH DIMENSION n > 2: A GENERAL RESULT

We now consider an n-dimensional DS: according to the above section,
we can assume, for concreteness, that there is a resonance involving all the
n eigenvalues (see also Remark 4 below).

Before giving the main result of this section, the following property may
be useful (the proof is straightforward).

LEMMA 3. Given a DS in NF v = g(v) = Agv + G(v), the constants of
motion p € .7, of the linear part are in general not constants of motion of the
full DS, but thelr time dependence can be expressed as a function only of the p
themselves: (dp/dt), = ®(p), where (d/dt), is the Lie derivative along the
DS. If the DS satisfies Condition A, then these constants of motion p are also
constants of motion of the full DS in NF v = g(v).

THEOREM 2. Consider the DS (1) and assume that for the value Ay = 0
the eigenvalues o; of A, are distinct, are real or purely imaginary, and satisfy
a resonance relation (3). Assume also that p = n — 1, i.e., that there are
n — 1 real parameters A = (A, ..., A,_,) and finally that putting

) = ———— i=1,...,n,k=1,...,n—-1 (24)

the n X n matrix D constructed according to the following definition (notice
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that only the diagonal terms A,(\) of A()\) are involved) is not singular:

1 1 1
op a @y - a,
(2)
o, a
det D =det| 2 ! + 0. (25)
a, a(ln) a;"_)l

Then there is, in a neighborhood of u, =0, Ay =0, t =0, a bifurcating
solution of the form

2,(t) = (exp(@(A) Agt))o(A) + hoot.  i=1,...,n, (26)

where a(A) is some function of the X's such that @(A) — 1 for A — 0.

Proof.  As in the particular cases examined in the previous sections, let
us consider the given problem transformed into NF: 0 = Ayv + G(v, A) in
the new coordinates v. Let us write G(v, A) in the more convenient form

G0 ) = ¥ k(o) K

where K, = diag(0,...,1,...,0) is the diagonal matrix with 1 at the ith
position, or also

v; = o + k(A p(0))y; (nosumoveri=1,...,n), p(v) €7 .
(27)

Now recall that the functions p(v) and (A, p) can be fractional in the
components v;, but in such a way that each term «,K,v is a polynomial, so
that the only admitted fractional terms necessarily have the form, e.g.,
(v32++--v) /v, and so on; the assumption that the o; are distinct
ensures that the functions « cannot be of zero degree in the v, (i.e., of the
form v, /v,, e.g.); then when v — 0 all terms «,v; vanish more rapidly than
v and one finds

%(Ki()\,/)(v))vi)|v:0 = Kk;(A,0) (no sum over i).

Then Eq. (27) can be written, at the lowest order,

n—1
0= o + k(A0 + = g+ X Ay o+, (28)
k=1
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where ¢, are the elements of a constant matrix with n rows and (n — 1)
columns. On the other hand, considering the original DS

it = A(N)u + -

its diagonal bilinear terms (in u and A) a{’A, u; (using the definition (24))
are just NF terms and are not changed by the normalizing procedure;
therefore, a{”’ = g,,. Now according to Condition A, the NF is convergent
(or, better, is obtained by a convergent NT) if one can rewrite (27) in the
split form as in (10),

0 =Aw + a( A, p(v)) A + Z* Bi(A, p(v))Bv, (29)

where «, B; are suitable combinations of the «; and can satisfy the (n — 1)
conditions

,Bj(’\v p) = 0. (30)

In fact, the hypothesis (25) ensures precisely that one is able to do this and
also to satisfy Bj()\, p) = 0, by means of the implicit-function theorem,
giving some (n — 1) relations (here the p are considered as independent
variables)

A =A(p). (31)

Once these n — 1 conditions are satisfied, i.e., on the manifold defined
just by (31) (which is an analytic manifold—see [4]), the convergence of the
NT taking the initial DS into

UV=Ag + a(A) A = a(A)Aw (32)
is granted. This DS can be easily solved, giving
0(t) = exp((@( ) Aqt))D, (33)
with the n — 1 relations
N=X(p(B)  p=p(B(1) = p(To) €, (34)

The desired result is then obtained, with remarks similar to those in the
proof of Theorem 1, coming back to the initial coordinates by means of the
inverse (convergent) transformation v —» u = v + (v), where (v) are
series of monomials of the v, i = 1,...,n). |

It is immediately seen that, in particular, condition (13) of Theorem 1 is
nothing but a special case of (25). As a generalization of Corollary 1, the
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case of purely imaginary eigenvalues is particularly interesting, because it
corresponds to the case of coupled oscillators with multiple frequencies
and gives, with the above hypotheses, the existence of multiple-periodic
bifurcating solutions. We have indeed [17]:

CoRoOLLARY 3. With the same notation as before, let n =r =4 and
o= —0,=1i, 03=—0g,=mi (With m=2,3,...); then, with A=
(A, Ay, 45 € R® and det D # 0, there is a double-periodic bifurcating solu-
tion preserving the frequency resonance

W, w,=1:m.

ExampLE 3. Consider a four-dimensional DS, with u € R*, A € R?,
describing two coupled oscillators with unperturbed frequencies w; = 1,
w, =2,

u=A(Nu + F(u, A)

MFAA —(L+A) A0
1+d  AN—A 0 X\
A, 0 Ay =2
0 —A, 2 A

where A(A) =

For A = 0, the eigenvalues of A, are +i, + 2i, and it is easily seen that
condition (25) is satisfied (the above procedure and notation can be
extended without difficulty to the complex space). The NF will have the
form, denoting by w, = v, + iv,, w, = v; + iv, the new coordinates, in
complex form

W, = iw, + (A + BO(A, p) +i(A, + BEP(A, p)))w,
Wy, = 2iw, + (A3 + BEY(A, p) +iBP(A p))w,,
where we have put
Bi(A, p) = B(A,0) + (A p)

and the B are real functions of the three (functionally independent)
constants of motion

2 2
b= vt = uf +uE =l = bl = e o] =1,

ps = (wiw, +c.c.) = 2rir, cos2e¢,

where ¢ is the time phase-shift between the two components w, and w,.
Notice that fractional constants of motion p(w) may appear in this
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problem, e.g., w?/w, or ww, /w, (which are functionally—but not polyno-
mially—dependent on the three above), but this would not alter the result,
as shown in the proof of the theorem. The above NF can be transformed
into the split form (29)

w, = w, +ia(X, p(w))w, + B,(A, p(W))w,
wy = 2iw, + 2ia (X, p(w))w, + By(A, p(W))w,
with
a=—x — B+ B
B =M + BV + (2, + 285 — BY)
By = Ay + B +i(2A, + 2BV — BY).

One can impose the convergence of the NT solving for A, = A,(p) the
conditions B, = B, = 0, which actually give three real conditions, and
obtain a bifurcating double-periodic solution, with frequencies

w, =1+ a(A) and w, =2(1 + a(A)).
Just to give a concrete example, let us imagine that the NF is such that

B = —p  BE=0. B =-p  BP=p,

Then the leading terms of the solution, in the original real variables u,, are
i, =r,Cos wt, i, =r,sin t, Uy =r,C082w(t + @),
U, =r,sin2w(t+ ¢)
with the constraints
A =72, Ay =1, A, =r2r, cos2e, o=1+),

producing (see especially the role of A,) a sort of amplitude—phase—fre-
guency locking in the solution.

Remark 4. As already remarked, it can happen that, among the n
resonant eigenvalues o;, as considered in Theorem 2, one can find some
r < n eigenvalues o, in such a way that the assumption of Lemma 2 is
satisfied; therefore the problem can be reduced—as explained in the
above section—to an r-dimensional problem. In this case, if one can also
find r — 1 parameters A, in such a way that the corresponding r X r
matrix D is not singular, then the existence of another bifurcating solution
is ensured by the same Theorem 2 (see the end of the final Example 6 for
a (quite simple) case).
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6. DEGENERATE EIGENVALUES AND THE PRESENCE
OF SYMMETRIES

We now consider the case of multiple eigenvalues of the matrix A,.
This situation is a little bit more involved: indeed, the presence in this case
of constants of motion p €.7, of the form p = v,/v; prevents the direct
application of the argument ‘used in the previous theorems. Another
difficulty is related to the greater number of matrices B, € #(A4,) (if an
eigenvalue o; has multiplicity d, then any d X d matrix acting on the
subspace of the corresponding eigenvectors clearly commutes with A,):
this would require the presence of a greater number of parameters A, to
satisfy the Condition A.

However, the presence of degenerate eigenvalues is usually connected to
the existence of some symmetry property of the problem, and we will
restrict to consider this simpler—and probably more realistic and physi-
cally interesting—case.

We refer here to the case of “‘geometric” or Lie point-symmetries [18,
19]: a vector function s(u) = Lu + S(u) is said to be (the infinitesimal
generator of) a symmetry for the given DS if s(u) is not proportional to
f(u) and the vector fields X, =f-V and X, =s-V commute,

[Xf,XS] =0 (35)
or, introducing the Lie—Poisson bracket {-, - } between two vector functions
hO(u), h®(u) defined by

{h(l), h(Z)}l_ = (h(l) . V)hSZ) — (h(Z) . V)hgl) (36)

if, equivalently,
{f,s} =0. (35)
The symmetry is linear if S = 0. Notice that linear and nonlinear symme-
tries are changed into the other under (nonlinear) coordinate transforma-

tions u — v. It can also be remarked that a DS in NF always admits a
linear symmetry [8, 11, 12]:

LEMMA 4. Any NF admits the linear symmetry s, = Agv:

{on,g(u)} =0.
This is in fact a restatement of (7) and (5) using the above definition
(36), indeed «(g) = {Ayv, g}.
We need the following important properties of Lie—point symmetries of
a DS.

LEMMA 5.  Assume that the given DS admits a symmetry s(u) = Lu +
S(u), where L is semisimple and not zero. Then one has in particular

[Ao, L] =0
and there is a NF of the DS which admits the linear symmetry s, = Lu.
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The proof is well known and can be found, e.g., in [8, 11, 12].

An (unpleasant) consequence of the degeneracy of the eigenvalues o; of
A, is a larger arbitrariness in the choice of the matrices B, € #(A4,) to
express the NF (8): consider, e.g., the case in R®

A, = diag(1,1, —2),

then the same resonant term can be written in two apparently different
forms (the notation is obvious),

x%yz 0 1 0
o | =x*2[{0 0 o|=pBp
0 0 0 0
1 0 O
=xz|0 0 0| =pBv  p1.p, €5, B B, € E(Ay).
0 0 O

Assume now that the symmetry “removes the degeneracy”; that is,
recalling that 4, and L commute, assume that there is a simultaneous
basis of eigenvectors for 4, and L such that any two eigenvectors with the
same eigenvalue under A, are distinguished by a different eigenvalue
under L. Then there are precisely n independent matrices, which we now
denote by B;, commuting with both A4, and L:

B, e #(A,) NZ(L). (37)

These matrices E also commute with each other (they in fact can be taken
to be diagonal: this is true upon complexification of the space, in the case
the eigenvalues of A, or of L are not real; see Example 4 below). We can
then express the NF by using precisely these n matrices B;,

Gen) = LB (oD Be (B ew(a) ne(n)

a(X, p(v)) A + L*B(A, p()) B (39)

using previously introduced notation. The convenience of this choice is
immediately evident. Indeed, recalling Lemma 5, the NF admits the
symmetry s, = Lv, i.e.,

{Lv,G(v)} =0, (39)
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which implies

n
Y. Lv-VBBv =0
i=1

or, due to the independence of the §iu,
a(A p(v)), B(Ap(v) € (J=1...,n—1),  (40)

where .7 is the set of the constants of motion of the linear problem
v = Lo, and this means that the functions B; in (38) (and the p as well)
can be chosen as simultaneous constants of motion of the two linear
problems v = Ayv and v = Lu:

p(0), B A p) €55, N7 (38)

The assumption that L has removed the degeneracy has the other conse-
quence that no constants of motion of the form v,/v; are admitted in
4, N (and then in the NF (38)); therefore, the functions ; appearing
in the ¥¥ in (38) can be written in the form

.Bj()" p) = Bj(/\’o) + Bj(l)(A! p) (41)

with Bj(”()\, 0) = 0. On the other hand, considering the first-order terms
(in u) of the DS in its initial form, and writing

i =Aqu + AY(X)u + higher order terms

=Agu + Y. b(N)Bu+ Y c,(\)Cu+hot.
i /
=Agu +a(N)Aqu + Y ¥ bj(/\)gju + Y. c,(N)C,u+hot., (42)
j ’

where AY(0) = 0, the sum X, includes all linear terms which are not
resonant (i.e., [4,,C,]# 0) and therefore disappear after the NT. The
remaining terms are instead not changed by the NT and therefore one gets

a(A) = a(A,0), b;(A) = B;(A,0) (j=1,....,n—=1). (43)

Then, assuming that there are n — 1 parameters A, and that the (n — 1)
X (n — 1) matrix D, introduced by means of the following definition, is
not singular, i.e., that

~ b,
— J _ —
det D = det—k #0 b =b(A) = B(A,0), (44)
A=0
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one can proceed exactly as in Theorem 1 and conclude with the existence
of a convergent NT and of a bifurcating solution on some manifold
A=A (p).

We can then state:

THEOREM 3. Let i = A(Mu + F(A, u) be a DS with n — 1 real parame-
ters A;; assume that A, has degenerate resonant eigenvalues and that the DS
admits a Lie point-symmetry generated by s(u) = Lu + S(u), where L # 0 is
semisimple, such that L removes the degeneracy of the eigenvalues of A,. Let
B; be n independent matrices in €(A,) N €(L), and write the linear part (in
u) of the DS in the form (42). Then, if the matrix D defined in (44) is not
singular, there is a resonant bifurcating solution of the same form (26) as in
Theorem 2.

This result can be well illustrated by two examples (notice that in the
second one we will consider also the possibility of extending the above
procedure in the presence of a discrete symmetry (i.e., not a continuous
Lie point-symmetry)).

ExampLE 4. Introducing the 2 X 2 matrices

I R CO

consider the four-dimensional DS, describing two coupled oscillators with
the same unperturbed frequency o = 1.

J
i=f(u, ) =Aoqu+ Y o(rZ,rf,r,xr,, \)Mu  with 4, = ( ? 7 ),
2
(46)
where the eigenvalues of A, are o; = +i (doubly degenerate), r> = u? +

us, r,=uj+uj, r, Xr, =uu, —u,us, and the M, are matrices of the
form

N'J, N'"J,
LN I,N

) with N', N” arbitrary 2 X 2 matrices.

This DS admits the linear symmetry generated by Lu - V, where

L=(Jz ’2).
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There are four matrices B, € #(A,) N Z(L), namely

A L I L H L
0 1 - 12 1 - 12 .

Let us then write down explicitly the linear part (in u) of the DS (46) as in
(42), i.e.,

Vilizo = A(X) = Ay + AD(A)
=Ay+a(A) Ay + (by(A) I + by(A)L +by(A)H) + i c.(AN)C,,
/=1

where a, b;, ¢, are combinations of the ¢,(0,0,0, A). When in NF the last
sum disappears, whereas the other terms remain unchanged, and the NF
will have the form

0=A + adg + (By(A, p)I + By(A, p)L + Bs(A, p)H)v, (47)
where p(v) = v + v5 + v§ + vf, Vw3 + v, €5 NS, and
B;(A,0) = b;(A) j=12,3.
The assumption (44) det(&bj/a/\k)IA:o # 0 then ensures, as already dis-
cussed, the existence of a resonant bifurcating solution, which in this case

is a periodic solution with frequency @ = 1 + --- and preserving the strict
frequency resonance 1: 1.

ExampLE 5. As an even simpler example, let us consider the case of a
three-dimensional DS with real eigenvalues: let

=Agu + ¢ (r% z, \)Lu + ¢,(r?, z, A) Iu, (48)

where u € R3, A € R?, r?2 = u? + u3, z = u,, and, using the 2 X 2 matri-
ces introduced in (45),

el R IR L |

This DS admits_the linear symmetry SO, generated by Lu - V. There are
three matrices B; in #(A,) N (L), namely 4,, L, I (notice that, actually,
in this case, #(A4,) c #(L), but the DS (48) is not in NF, because r? and
z are not in .#, ). Proceeding as before, the NF will have the form

DV=Aw + adgw + B, Lv + B,1v, (49)
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where now ; (and «, of course) are functions of p = (v + v})v, and A
only. Then we need two real parameters A,, and—with the assumption
(44)—a bifurcating solution is obtained

~

i, = tyexp(l + a)t + ho.t.

~

U, =u,exp(l+ a)t+ho.t.

Uy =Uzyexp(—2(1+ a))t + ho.t.
along with some conditions
A = A\(7%2), A, = Ay (r2z).

This example can be useful to show that also the presence of discrete
symmetries (e.g., exchange or reflection symmetries) can be of some help
in this approach: a DS admits a discrete symmetry R, where R is a
nonsingular matrix, if

f(Ru) = Rf(u) (50)

and it is known that the NF also admits the same symmetry [5]. The
possible role of this fact in our argument can be illustrated by the
following modification of the above example.

ExampLE 5. The situation is same as Example 5, but now assume the
DS admits the discrete symmetry
0 1
10 .
1

Then, in both the initial DS (48) and its NF (49), the term containing the
matrix L disappears; therefore, Condition A requires the vanishing of only
one term in the NF and a bifurcating solution can be obtained with the
presence of just one real parameter A.

R =

7. FINAL REMARK ON THE ROLE OF CONDITION A

To stress and illustrate the relevance of the role played in our argument
by Condition A, let us consider this final example, which is essentially an
adjustment (in view of the present discussion) of an example given, with
quite different purposes, in [20].
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ExXAMPLE 6. With u € R® and A € R?, let

—(r* + 3z%)u,
u=A(MNu+ | —(r* +3z%)u, |,
(3r* +z%)z

A+A, 100
where A(A)=| -1 A O (51)
0 0 -—a

with 72 = u? + u3, z = u,. Itis not difficult to see (cf. [20]) that, if A, = 0,
this system admits a family of heteroclinic orbits connecting the origin to
the circle 2> = A, and another family of heteroclinic orbits, living on the
manifold r% + z2 = A,, connecting the circle r> = A, to the point P =
(0,0, A)). When A, # 0, this heteroclinic structure breaks down, and an
application of the Melnikov theory [20-23] shows the occurrence of
transversal intersections of stable and unstable manifolds, with the conse-
guent appearance of the chaotic behavior described by the classical
Birkhoff-Smale horseshoe-like structure (actually, we need here a simple
three-dimensional version of the standard Melnikov theorem; see, e.g.,
[20D.

On the other hand, the NF of the above DS (51) exhibits a perfectly
regular (i.e., nonchaotic) behavior: indeed, the NF, according to Lemma 4,
must possess the linear symmetry generated by A,, which implies that the
NF is symmetric under rotations around the z-axis; then the NF is
essentially a two-dimensional problem and therefore no chaos is admitted.
This clearly implies that the NT cannot be convergent.

If one now imposes Condition A on the NF of the DS (51), it can be
easily seen that this condition is satisfied only along the circle defined by

A =3(vf +vd) +vi A, =4(vs —vf - 03),

where in fact a (Hopf-type) periodic solution occurs. Then, in conclusion,
we are here in the presence of a regular solution (where Condition A is
indeed satisfied), which is completely surrounded by chaotic solutions: this
clearly confirms the crucial role played by Condition A in the argument.

Just for completeness, and in agreement with Lemma 2 and Corollary 2,
let us remark that this example admits (quite trivially) a reduction accord-
ing to Remark 4: indeed, in correspondence with the eigenvalue o5 = 0,
we also get the stationary bifurcating solution A, = z? with u; = u, = 0.
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