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Abstract

We prove unconditional upper bounds for the second and fourth discrete moment of the first
derivative of the zeta-function at its simple zeros on the critical line.
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1. Introduction and statement of results

The Riemann zeta-function �(s) is for Re s > 1 defined by

�(s) =
∞∑

n=1

1

ns
=
∏
p

(
1 − 1

ps

)−1

,
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where the product is taken over all prime numbers p, and by analytic continuation
elsewhere except for a simple pole at s = 1. The famous yet unsolved Riemann
hypothesis states that all so-called non-trivial (non-real) zeros lie on the critical line
Re s = 1/2. The number N(T ) of non-trivial zeros with ordinates in the interval (0, T ]
is asymptotically given by the Riemann–von Mangoldt formula

N(T ) = T

2�
log

T

2�e
+ O(log T ). (1)

Conrey [2] proved (refining a method of Levinson) that more than two-fifths of the
zeros are simple and on the critical line. It is conjectured that all or at least almost all
zeros of the zeta-function are simple.

Hall [8] proved upper estimates for the second and fourth moment of the extreme
values of the Riemann zeta-function between its zeros on the critical line with respect
to the spacing of consecutive extrema. In this paper, we study the related discrete
moments of the values of the derivative of the zeta-function taken at simple zeros.

Denote the positive roots of the function �(1/2 + it) in ascending order by tn ac-
cording to their multiplicities. Let �n be the least t in the interval (tn, tn+1) for which
|�( 1

2 + it)| is maximal and let T and � be positive parameters. Finally, for k�0, define

Sk(T , �) =
∑
n �N

�n+1−�n � 2��/ log T

|�′(1/2 + itn)|2k,

where N is the number of ordinates tn not exceeding T. Note that the Riemann
hypothesis implies that the tn correspond to the positive ordinates of non-trival zeros
of the zeta-function, i.e., N = N(T ) ∼ T

2� log T by (1). If the Riemann hypothesis is
true, there is always one ordinate tn between �n and �n+1 and there is always a �n

between tn and tn+1 for sufficiently large n (see [4]). The average spacing between
consecutive zeros with ordinates of order T is 2�/ log T , which tends to zero as
T → ∞. Since a positive proportion of the zeros lies on the critical line (by Conrey’s
result mentioned above), we have N?N(T ) unconditionally. We write � = ∞ when
there is no restriction on the spacing of consecutive �n

Theorem 1. As T → ∞,

S1(T , ∞)�0.02513 . . . T (log T )4 + O(T (log T )3),

S2(T , ∞)�(0.00003 0036 . . . + o(1))T (log T )9.

On the basis of random matrix theory, Hughes, et al. [11] stated an interesting
conjecture on discrete moments of the zeta-function at its zeros subject to the truth
of Riemann’s hypothesis and the assumption that all zeros are simple. This conjecture
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includes that for fixed k > −3/2 the asymptotic formula

∑
0<��T

|�′(1/2 + i�)|2k ∼ G2(k + 2)

G(2k + 3)
a(k)

T

2�
(log T )(k+1)2

(2)

holds, where

a(k) =
∏
p

(
1 − 1

p2

)k2 ∞∑
m=0

(
�(m + k)

m!�(k)

)2 1

pm
,

G is the Barnes G-functions, defined by

G(z + 1) = (2�)z/2 exp

(
−1

2
(z(z + 1) + �z2)

)

×
∞∏

n=1

(
1 + z

n

)n

exp

(
−z + z2

n

)

and � is Euler’s constant; note that in the above definition of the numbers a(k), one
must take an appropriate limit if k = 0 or −1. Conjecture (2) is known to be true only
in the trivial case k = 0 and in the case of the second moment k = 1. Assuming the
truth of the Riemann hypothesis Gonek [6] proved

S1(T , ∞) = 1

24�
T (log T )4 + O

(
T (log T )3

)
. (3)

The constant 0.02513 . . . in the unconditional estimate of Theorem 1 does not fall much
beyond 1/(24�) = 0.01326 . . . in the asymptotic formula above. For the case k = 2
formula (2) gives (see [11] or [15])

S2(T , ∞) ∼ 1

2880�3
T (log T )9.

Note that 1/2880�3 = 0.00001 1198 . . . . Recently, Ng [15] proved, under assumption
of the truth of Riemann’s hypothesis,

(0.00000 2 . . . + o(1))T (log T )9 �S2(T , ∞)�(0.00016 6 . . . + o(1))(log T )9.

Thus the unconditional constant 0.00003 0036 . . . from Theorem 1 improves the upper
bound in Ng’s result.
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Estimates of the predicted size are known for some more cases, most of them
conditional to some unproved conjectures. Assuming the Riemann hypothesis and that
all zeros of the zeta-function are simple, Gonek [7] obtained the lower bound

S−1(T , ∞)?T .

The only known unconditional estimate is due to Garaev [5] (implicitly) and Lau-
rinčikas, Šleževičienė and the second author [12,17] (independently), namely

S1/2(T , ∞)>T (log T )9/4. (4)

Furthermore, we shall consider Sk(T , �) with respect to small values of � > 0.

Theorem 2. As T → ∞,

S1(T , �)� �3�3

2688
T (log T )4 + O(T (log T )3),

S2(T , �)�
(

��3

73920
+ o(1)

)
T (log T )9.

The estimates are uniform in �.

The above upper bounds can be compared with estimates due to the second author
[18] (obtained with a different method) where the condition on gaps of consecutive �n

is replaced by tn+1 − tn �2��/ log T . For instance,

∑
n �N

tn+1−tn � 2��/ log T

|�′(1/2 + itn)|4 �
(

17��3

221 760
+ o(1)

)
T (log T )9.

As Hall [10] pointed out for his discrete moments on extremal values, estimates like
those above give some numerical evidence for the truth of Montgomery’s pair corre-
lation conjecture [14] which claims under assumption of the Riemann hypothesis that,
for fixed �, � satisfying 0 < � < �,

lim
T →∞

1

N(T )
�

{
0 < �, �′ < T : �� (� − �′) log T

2�
��

}
=
∫ �

�

(
1 −

(
sin �u

�u

)2
)

du,

where � and �′ are ordinates of zeros of �(s). This open conjecture implies that the
number of tn with n�N and tn+1 − tn �2��/ log T is asymptotically equal to

(
�2�3

9
+ O(�4)

)
N(T ).
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The estimates of Theorem 2 provide information about large gaps between consec-
utive extreme values on the critical line. Define

S−
k (T , �) = Sk(T , �) and S+

k (T , �) =
∑
n �N

�n+1−�n>2��/ log T

|�′(1/2 + itn)|2k.

Then

Sk(T , ∞) = S−
k (T , �) + S+

k (T , �).

In view of Gonek’s asymptotic formula (3) and Theorem 2, under assumption of the
Riemann hypothesis,

S+
1 (T , �)�c(�)T (log T )4 + O

(
T (log T )3

)
, (5)

where

c(�) := 1

24�
− �3�3

2688
.

The quantity c(�) is positive for � < 2 × 141/3/�4/3 = 1.04762 . . . . It follows that,
assuming Riemann’s hypothesis,

lim sup
n→∞

�′(1/2+itn) �=0

�n+1 − �n

2�/ log �n

�1.04762 . . . . (6)

With respect to the average spacing of consecutive zeros any value larger than one is
non-trivial. A refined analysis would lead a lower bound 1.273 . . ., however, methods
designed for such estimates lead to much better lower bounds; e.g. Selberg [16], Conrey
et al. [3], and Hall [9]. However, here it follows that (6) holds for quite many zeros
of the zeta-function. By the Cauchy–Schwarz inequality,

S+
1 (T , �)2 �S+

0 (T , �) S+
2 (T , �).

The right-hand side is bounded above by

S+
0 (T , �) S2(T , ∞) and S0(T , ∞) S+

2 (T , �),

respectively. Note that S+
0 counts simple zeros on the critical line with respect to

the distance between consecutive extrema. Taking into account Theorems 1, 2, and
inequality (5) we obtain
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Corollary 3. Assume the truth of the Riemann hypothesis. Then, for any � ∈
(0, 1.04762 . . .), as T → ∞,

S+
0 (T , �)�(33 292.8 . . . + o(1))

(
1

24�
− �3�3

2688

)2
T

log T
,

S+
2 (T , �)�(2� + o(1))

(
1

24�
− �3�3

2688

)2

T (log T )7.

2. Preliminaries: mean values for Hardy’s Z-function

Hardy’s Z-function Z(t) is defined by

Z(t) = exp(iϑ(t))�(1/2 + it), (7)

where

exp(iϑ(t)) := �−it/2 �(1/4 + it/2)

|�(1/4 + it/2)| . (8)

The functional equation for the zeta-function implies that Z(t) is an infinitely often
differentiable function which is real for real t. Moreover,

|�(1/2 + it)| = |Z(t)|.

Thus, the zeros and extrema of Z(t) correspond to the zeros and extrema of the zeta-
function on the critical line, respectively. Differentiation of (7) yields

Z′(t) = i exp(iϑ(t))
{
ϑ′(t)�(1/2 + it) + �′(1/2 + it)

}
. (9)

In order to prove our results we shall use asymptotic formulae for derivatives of
Hardy’s Z-function. Hall [8] proved, for any k ∈ N ∪ {0},

∫ T

0
Z(k)(t)2 dt = 1

22k(2k + 1)
T P2k+1

(
log

T

2�

)
+ O

(
T 3/4(log T )2k+1/2

)
, (10)

where P2k+1 is a monic polynomial of degree 2k + 1,

∫ T

0
Z′(t)4 dt = 1

1120�2
T (log T )8 + O

(
T (log T )7

)
(11)
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and

∫ T

0
Z′(t)2Z′′(t)2 dt = 19

604 800�2
T (log T )10 + O

(
T (log T )9

)
. (12)

In addition, the second author [18] obtained

∫ T

0
Z′′(t)4dt ∼ 17

1 774 080�2
T (log T )12. (13)

However, we will also need an asymptotic formula for the mean-square of Z′(t)Z′′′(t).
Conrey [1] proved an asymptotic formula for the fourth moment of derivatives of

the zeta-function. For some polynomials Pj , j = 1, 2, let

Aj(s) = Pj

(
− 1

L

d

ds

)
�(s),

where L := log(T /(2�)). Then,

∫ T

1
|A1A2(1/2 + it)|2 dt ∼ c(P1, P2)

6

�2
T L4, (14)

where

c(P1, P2) :=
∫
R

(P1(� + �)P2(� + �)P1(� + �)P2(� + �) + P1(1 − � − �)

×P2(1 − � − �)P1(1 − � − �)P2(1 − � − �)) d� d� d� d�

with

R = {0��, �, �, ��1 : � + � + � + ��1}.

We apply this asymptotic formula to A1 = Z′(t) and A2 = Z′′′(t).
In view of (9),

Z′′′(t) = exp(iϑ(t))
{
(iϑ′′′(t) − 3ϑ′ϑ′′(t) − iϑ′(t)3)�(1/2 + it)

−3(ϑ′′(t) + iϑ′(t)2)�′(1/2 + it)

− 3iϑ(t)′�′′(1/2 + it) − i�′′′(1/2 + it)
}

. (15)
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By Stirling’s formula,

ϑ(t) = t

2
log

t

2�e
− �

8
+ O

(
1

t

)
, ϑ′(t) = 1

2
log

t

2�
+ O

(
1

t

)

and

ϑ′′(t), ϑ′′′(t)>1

t
,

all estimates valid for sufficiently large t. Then, for t �T , we may rewrite (9) and (15)
as

Z′(t) = i exp(iϑ(t))

{(
1

2
L + O(1)

)
�(1/2 + it) + �′(1/2 + it)

}
,

Z′′′(t) = −i exp(iϑ(t))

{(
1

8
L3 + O(L2)

)
�(1/2 + it) +

(
3

4
L2 + O(L)

)

×�′(1/2 + it) +
(

3

2
L + O(1)

)
�′′(1/2 + it) + �′′′(1/2 + it)

}
.

Putting

P1(X) = −X + 1

2
and P2(X) = −X3 + 3

2
X2 − 3

4
X + 1

8
,

we get

∫ T

0
Z′(t)2Z′′′(t)2 dt ∼ L8

∫ T

0
|A1A2(1/2 + it)|2 dt.

After a short computation, Conrey’s asymptotic formula (14) implies

∫ T

0
Z′(t)2Z′′′(t)2 dt ∼ 19

1 774 080�2
T (log T )12. (16)

3. Proofs of the theorems

From (9) it follows that

|Z′(tn)| = |�′(1/2 + itn)|. (17)

Thus, if and only if the first derivative Z′(t) does not vanish in the ordinate tn of a
zero of the zeta-function on the critical line, the zero 1/2 + itn is simple.
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By definition, the �n are positive distinct zeros of Z′(t). Denote by �̃m the positive
roots of the function Z′(t) in ascending order (counting multiplicities); then for any �n

there is a positive integer m such that �n = �̃m. Define

Fm = max
�̃m<t<�̃m+1

|Z′(t)|.

Then

Sk(T , ∞) =
∑
n�N

|�′(1/2 + itn)|2k �
∑

m�M

F 2k
m ,

where M is the number of zeros �̃m of Z′(t) not exceeding T. Matsumoto and Tanigawa
[13] proved that the number of zeros of the kth derivative Z(k)(t) of Hardy’s Z-function
in the interval (0, T ) is less than or equal to

T

2�
log

T

2�e
+ Ok(log T ).

In comparison with (1) it follows that N �M �N(T )+O(log T ), so the above quantity
is an upper bound for M too.

The heart of the proofs is the following lemma due to Hall [8].

Lemma 4. Let y(x) be real-valued on [a, b], y(a) = y(b) = 0. Suppose that y is twice
differentiable, y′′ ∈ L2[a, b], and that

∫ b

a

y(x)2 dx = A,

∫ b

a

y′(x)2 dx = B,

∫ b

a

y′′(x)2 dx = C.

Put F = max{|y(x)| : a < x < b}. Then, for arbitrary 	 > � > 0, we have

F 2 � �2	2A + (�2 + 	2)B + C

2(	2 − �2)

(
1

�
tanh

�L

2
− 1

	
tanh

	L

2

)

in which L = b − a.

We start with the

Proof of Theorem 1. First we consider the second moment. As in Hall [8] we apply
Lemma 4 with � = u log T , 	 = v log T , �m = L = �̃m+1 − �̃m, and

w(u, v; �m)−1 = 1

2(	2 − �2)

(
1

�
tanh

�L

2
− 1

	
tanh

	L

2

)
.
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Then by Lemma 4 with y = Z′,

F 2
mw(u, v; �m) �

∫ �̃m+1

�̃m

(
u2v2Z′(t)2 log T + 1

log T
(u2 + v2)Z′′(t)2

+ 1

(log T )3
Z′′′(t)2

)
dt.

Summing up we obtain via (10)

∑
m�M

F 2
mw(u, v; �m) �

∫ T

0

(
u2v2Z′(t)2 log T + 1

log T
(u2 + v2)Z′′(t)2

+ 1

(log T )3
Z′′′(t)2

)
dt + F 2

Mw(u, v; �M)

�
(

u2v2

12
+ u2 + v2

80
+ 1

448

)
T (log T )4

+O
(
T (log T )3

)
. (18)

The function w(u, v; �) is decreasing in � and

w(u, v; ∞) = 2uv(u + v).

Thus we need to minimize the function

g(p, s) := 1

2ps

(
p2

12
+ s2 − 2p

80
+ 1

448

)
,

where p = uv, s = u + v, and p� s2

4 , and this minimum will be the coefficient in our
upper estimate.

It turns out that g(p, s) has an extreme value for p = 5/28 and s = ±√
15/21,

however, for these values the condition p�s2/4 is not satisfied. Thus we look for the
minimal value of g(p, s) under the condition p = s2/4. After a short computation we
find that this value is equal to

1

6 615 000
(735 + 420

√
14)3/2 + 11

63 000

√
735 + 420

√
14 = 0.02513 . . . .

This proves the upper bound for the second moment.
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Next we consider the estimate for the fourth moment. For this purpose we apply
Lemma 4 with y = Z′2. In view of (11), (13), and (16)

∑
m�M

F 4
mw(u, v; �m)� 1

1120�2

(
u2v2 + 19(u2 + v2)

135
+ 1

11
+ o(1)

)
T (log T )9. (19)

In this case we need to minimize the function

f (p, s) := 1

2240�2ps

(
p2 + 19(s2 − 2p)

135
+ 1

11

)

for p = s2/4. The minimal value is

19

15 004 350 900 000�2
(34 485 + 165

√
645 106)3/2

+ 46 733

90 935 460 000�2

√
34 485 + 165

√
645 106

= 0.00003 0036 . . . .

This proves the upper bound for the fourth moment. �

It remains to give the

Proof of Theorem 2. It follows from (18) that

∑
m �M

�m � 2��/ log T

F 2
m � w

(
u, u; 2��

log T

)−1 (
u4

12
+ u2

40
+ 1

448

)
(T (log T )4

+O(T (log T )3)).

Putting u = 0 we obtain the assertion on the second moment. In view of (19) we get

∑
m �M

�m � 2��/ log T

F 4
m � w

(
u, u; 2��

log T

)−1 1

1120�2

(
u4 + 19u2

135
+ 1

11
+ o(1)

)
T (log T )9.

Putting u = 0 we obtain the estimate for the fourth moment. The uniformity in �
follows from Hall’s method. �
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