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Abstract

Let (Xn)n¿1 be a sequence of real random variables. The local score is Hn=max16i¡j6n (Xi+
· · ·+Xj). If (Xn)n¿1 is a “good” Markov chain under its invariant measure, the Xi are centered,
we prove that Hn=

√
n converges in distribution to B∗

1 when n → +∞, where B∗
1 =max06u61 |Bu|

and (Bu; u¿ 0) is a standard Brownian motion, B0 = 0. If (Xn)n¿1 a sequence of i.i.d. random
variables, E(X1) = �=

√
n and Var(X1) = �2 ¿ 0, we prove the convergence of Hn=

√
n to ���=�

where �� = max06u61 {(B(u) + �u) − min06s6u(B(s) + �s)}. We approximate the probability
distribution function of �� and we determine the asymptotic behavior of P(��¿ a); a → +∞.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

1.1. Known results

Let (Xn)n¿1 be a sequence of real-valued random variables. Let Sn =
∑n

k=1 Xk;
S0 = 0, the associated random walk. Let Hn =max06i¡j6n (Sj − Si) be the local score
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assigned to (Xn)n¿1. The aim of this paper is to study the asymptotic behavior of
Hn when n → +∞; (Xn)n¿1 being either a sequence of i.i.d. random variables or a
Markov chain.
The motivations come from biology. The local score is an important tool for DNA

sequences analysis. Since the length of DNA is large, the knowledge of the limit
behavior of Hn is actually useful.
Some authors have already studied the local score. In a context of queue theory,

Iglehart (1972) has investigated the convergence of random variables (i.e. virtual wait-
ing time) which looks like the local score.
When (Xn)n¿1 is a sequence of i.i.d. rv’s, Daudin and Mercier (1999) have obtained

P(Hn ¡x), for any x¿ 0 and n¿ 1. Let � be a transition matrix of size x; P0 =
(1; 0; : : : ; 0), and Pn = (0; 0; : : : ; 1). Then P(Hn ¡x) = P0�nP′

n. In practice, this result
is computationally available if n and x are not too large.
When the Xi are i.i.d. rv’s with E(X1)¡ 0, Dembo and Karlin (1992) have investi-

gated the asymptotic behavior of Hn. More precisely, they proved

lim
n→+∞P

(
Hn6

ln n
�

+ x
)
= exp(−K∗ exp(−�x)); (1.1)

where K∗ and � depend only on the probability distribution of X1.
When the Xi are i.i.d. with E(X1)¿ 0, the behavior of Hn is drastically diFerent. The

strong law of large numbers implies Sn ∼
n→+∞E(X1)n. Obviously, Hn=maxj6n Yj, where

Yj = Sj − mini6j Si. Since limn→+∞ Sn = +∞ a.s., then −(minj6n Sj) converges a.s.
to a Hnite r.v., when n goes to inHnity. So Yj ∼

j→+∞
Sj and Hn ∼

n→+∞ E(X1)n. Therefore,

E(X1) is the parameter which governs a phase transition phenomenon.

1.2. Main results

Here we investigate the case where (Xi)i¿1 is a sequence of r.v’s with null or “small”
expectation.
We start with the centered case. We suppose that (Xn)n¿1 is either a sequence of

centered i.i.d. r.v’s with variance �2 ¿ 0 or a “good” Markov centered chain under its
invariant probability with parameter � (see the details in Section 2). In this context,
we prove that

Hn√
n

(d)→
n→+∞ �B∗

1 ; (1.2)

where B∗
1 =max06u61 |Bu|, and (Bu; u¿ 0) denotes a standard Brownian motion started

at 0.
The distribution function of B∗

1 is deHned as a series (cf. Proposition 2).
Consider a family {(X (N )

k )k¿1;N¿ 1} of i.i.d. r.v’s depending on a parameter N
and assume that

lim
N→+∞

√
NE(X (N )

1 ) = �∈R; lim
N→+∞

Var(X (N )
1 ) = �2 ¿ 0: (1.3)
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If the sequence (Xk)k¿1 does not depend on N , then (1.3) implies that E(X1) = 0 and
Var(X1) = �2. So we obtain the centered case as an instance of the general one.
Eq. (1.3) implies that E(X (N )

1 ) → 0, when N → ∞.
We prove in Proposition 5 that

H (N )
N√
N

(d)→
n→∞���=�; (1.4)

where �� =max06u61{B(u) + �u−min06s6u (B(s) + �s)}.
Let us summarize the diFerent asymptotic behavior of Hn; n going to inHnity.

• If E(X1)¡ 0, following Dembo and Karlin (1992), the distribution of Hn is approx-
imated by the law of ln n=�+ � where � is a r.v. whose c.d.f. is

P(�6 x) = exp(−K∗exp(−�x)); x¿ 0:

• If E(X1)¿ 0; Hn is a.s. equivalent to E(X1)n.
• If E(X1) = 0, the p.d.f. of Hn can be approximated by the p.d.f. of (�B∗

1 )
√
n.

• Suppose that X1 has a Hnite variance �2 and E(X1) is “small” such that �=
√
nE(X1).

This means that we can Hnd n in a such way that
√
nE(X1) is bounded by a constant.

We obtain an approximation of the p.d.f. of Hn by the p.d.f. of (���=�)
√
n.

Numerical results about the scope of validity of each approximation is given in Chapter
5 of Etienne (2002).

1.3. More about the p.d.f. of ��

The distribution function of �� is diJcult to obtain explicitly. We prove that for any
Hxed a¿ 0, P(�� ¿a) is the sum of a series (cf. Theorem 9).

Let

��(t) = max
06u6t

{
B(u) + �u− min

06s6u
(B(s) + �s)

}
; t¿ 0 (1.5)

and

Ta = inf
{
t¿ 0; B(t) + �t − min

06s6t
(B(s) + �s)¿a

}
; a¿ 0: (1.6)

Obviously �� = ��(1).
Taylor (1975) and Williams (1976) have determined the Laplace transform of Ta:

E[e−�2Ta=2] =
�e�a

� cosh �a+ � sinh �a
; �¿ 0; (1.7)

where �=
√

�2 + �2.
The distribution of Ta and (��(t); t¿ 0) are linked by the relation

P(Ta ¡ t) = P(��(t)¿a); ∀t¿ 0: (1.8)
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Suppose that  is a r.v. independent of (Bt; t¿ 0) with exponential distribution, then

P(��( )¿a) = P(Ta ¡ ) = E[e−Ta ]; ∀a¿ 0: (1.9)

Therefore the p.d.f. of ��( ) is explicit:

1− P(��( )6 a) =
�e�a

� cosh �a+ � sinh �a
; ∀a¿ 0: (1.10)

1.4. Tail behavior of ��

The distribution of �� is not easy to handle. So we investigate the tail of ��. We
prove (cf. Theorem 4):

P(��¿ a) ∼
a→∞2

√
2
!
1
a
e−(�−a)2=2: (1.11)

We observe that a �→ P(��¿ a) decreases faster to 0, when �¡ 0. This seems natural
since Bt + �t goes to +∞ (resp. −∞) when �¿ 0 (resp. �¡ 0) and t → +∞.
This remark is connected to the phase transition associated with the sign of E(X1).

1.5. Organization of the paper

In Section 2, we study the convergence of Hn when n goes to inHnity and E(X1)=0.
In Section 3, we investigate the asymptotic behavior of Hn when E(X1) depends on
N . We state the results and detail only short proofs. The more technical proofs are
postponed in Section 4.

2. Convergence of the local score in the centered case

Let (Xn)n¿1 be a sequence of real-valued random variables. (Sk)k¿0 denotes the
associated random walk:

S0 = 0; Sk =
k∑

i=1

Xi; k¿ 1: (2.1)

Let Hn denote the local score

Hn = max
06i6j6n

(Sj − Si) = max
06i6j6n

(Xi+1 + · · ·+ Xj): (2.2)

We deHne the sequence of score processes (H (N ))N¿1 which are piecewise linear
processes:


t �→ H (N )(t) is linear on each interval of the form

[
j
N
;
j + 1
N

]
;

H (N )
(

j
N

)
=

1√
N

Hj:

(2.3)



J.-J. Daudin et al. / Stochastic Processes and their Applications 107 (2003) 1–28 5

In this section the sequence (Xn)n¿1 will be either a sequence of i.i.d. centered variables
with Hnite second moment or a stationary and irreducible Markov chain on a Hnite
subset of R. In the Hrst case we set �2 = Var(X1), in the second one we suppose that
E�(X1) = 0 and

�2 = E�(X 2
1 ) + 2

∞∑
k=2

E�(X1Xk); (2.4)

where � is the invariant distribution of (Xn)n¿0.
�2 is well deHned for series (2.4) is convergent (Billingsley, 1968, p. 166).
We are now able to state the main result of this section:

Theorem 1. Let (Xn)n¿1 be a sequence of random variables as above.
Then the sequence of processes (H (N )(t); t¿ 0) converges in law to the process

(�max06u6s |Bu|; s¿ 0), as N tends to inBnity.

Proof. We just outline the proof, the complete developments are given in Section 4.1.
Let B(N ) be the piecewise linear process deHned by

B(N )
(

k
N

)
=

1

�
√
N

Sk ; k¿ 0 (2.5)

and

t �→ B(N )(t) is linear on each interval of the form [k=N; (k + 1)=N ]: (2.6)

It is well known (Billingsley, 1968) that (B(N )(s); s¿ 0) converges to the standard
Brownian motion. We easily check that (H (N )(s); s¿ 0) may be approached by a
continuous function of (B(N )(s); s¿ 0) up to a remainder term RN which converges
to 0. According to Paul Levy’s theorem (1948, Revuz and Yor, 1991, Chapter II,
Theorem 2.3) the process (Bt −min06s6t Bs; t¿ 0) has the same law as the process
(|Bt |; t¿ 0). This completes the outline of the proof of Theorem 1.

An important application of Theorem 1 is the convergence of the local score:

Proposition 2. (1) Hn=
√
n converges in distribution, as n → ∞, to �B∗

1 , where B∗
1 =

max06u61 (|Bu|).
(2) The cumulative distribution function (c.d.f.) of B∗

1 is

P(B∗
1 6 x) =

2
!

∑
k∈Z

(−1)k

2k + 1
exp
(
− (2k + 1)2!2

8x2

)
; x¿ 0: (2.7)

Proof. Theorem 1 implies the convergence in law of the random variable Hn=
√
n:

Hn√
n
= H (n)

(n
n

)
= H (n)(1); ∀n¿ 0:
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Equality (2.7) is well known and may be deduced from Borodin and Salminen (1996,
p. 146) see 4.6 by a short calculus.

Remark 3. Theorem 1 implies the convergence of Ta(H)=a2, as a tends to inHnity,
where Ta(H) = inf{k¿ 0; Hk ¿a}; a¿ 0. Given a∈R+, then

Ta(H)
a2

(d)→
a→∞

1
�2 (B∗

1 )2
: (2.8)

Proof. Hk is a non-decreasing process, so{
Tx

√
N (H)

N
¡t
}

⊂
{
H[Nt]√

N
¿x

}

and {
H[Nt]−1√

N
¿x

}
⊂
{
Tx

√
N (H)

N
¡t
}

:

We know also that H[Nt]−1=
√
N and H[Nt]=

√
N have the same limit: �

√
tB∗

1 . Then

P
(
Tx

√
N

N
¡ t
)

→
N→∞

P(�
√
tB∗

1 ¿x) = P
(

x2

�2 (B∗
1 )2

¡t
)

: (2.9)

Let a= x
√
N , (2.8) follows immediately.

3. Convergence in the non-centered case

(1) (Bt ; t¿ 0) denote a standard Brownian motion starting at 0. In this section we
suppose that (Xn)n¿0 is a sequence of i.i.d. random variables and that the law of X1

depends upon N; N being the order of approximation. More precisely, we assume

lim
N→∞

Var(X1) = �2 ¿ 0; lim
N→∞

√
NE(X1) = �∈R: (3.1)

It is easy to prove (cf. Proposition 5) that HN=
√
N converges in distribution, when N

goes to inHnity, to ���=�, where

�� = max
06u61

{
B(u) + �u− min

06s6u
(B(s) + �s)

}
: (3.2)

In the sequel we focus on the law of ��. It is convenient to introduce

#(�)(a) = e−�aP(�� ¿a); a¿ 0: (3.3)

Let us brieOy detail our approach. We state the main result (Theorem 4) at the end of
the subsection.
In Section 2 we have determined the distribution of �� when �=0. This brings us to

remove the drift term, using Girsanov’s transformation. Using the pathwise properties
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of Brownian motion we prove that (cf. Proposition 6 and Theorem 7):

#(�)(a) =
1
a

∫
[0;+∞[2

5{u61} exp{−�t − �2u=2}$a(u)F
(�)
t (1− u; 1=a) du dt; (3.4)

where F (�)
t can be expressed as an expectation of a positive r.v.:

F (�)
t (x; b) = E(5{06't6x; 06B∗

't
61=b}e−�2't =2); x¿ 0; b¿ 0; t¿ 0: (3.5)

The two random variables 't and B∗
't are deHned as follows:

• 't is the Hrst time where the local time at 0 of Brownian motion (Bu; u¿ 0) reaches
level t,

• (B∗
t ; t¿ 0) is the process: B∗

t = sup06u6t |Bu|.

For any positive number a, the function $a is known (cf. (3.16) and (3.17)).
This allows us to obtain the joint distribution of ('t ; B∗

't ).
The decomposition of the Brownian path up to time 't (namely (Bu; 06 u6 't)),

conditionally to B∗
't leads to some recursive structure. This generates two analytic coun-

terparts.

• The density function (t of ('t ; B∗
't ) satisHes an integral equation (Proposition 10).

• F (�)
t is solution of an integral equation (cf. (3.20)).

Moreover, relation (3.20) yields to express F (�)
t as sum of a series (Theorem 9).

Unfortunately, the coeJcients are not explicit and are determined by a recursive algo-
rithm.
However relation (3.20) is rich enough since we determine the decay rate of

a �→ P(�� ¿a); a → ∞. More precisely

Theorem 4. For all � in R:

P(��¿ a) ∼
a→∞2

√
2
!
e−�2=2 1

a
e�a−a2=2 = 2

√
2
!
1
a
e−(�−a)2=2: (3.6)

Two proofs of Theorem 4 will be given. The Hrst one is a consequence of Theorem
7 and is postponed in Section 4.4. The second one suggested by the referee will be
developed at the end of this section.
(2) We now prove the main results of this section (Theorems 7 and 9).
Only short and easy proofs are given here, the more technical points are postponed

in Section 4.
Recall that (Xn)n¿0 will denote a sequence of i.i.d. random variables such that the

law of X1 depends upon a parameter N . We suppose that (3.1) holds. For instance,
we can choose

P(Xi = 1) = pN =
1
2
+

�

2
√
N

and P(Xi =−1) = qN =
1
2
− �

2
√
N

;
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for N large enough so that |�=√N |¡ 1. Then

E(X1) = pN − qN =
�√
N

and Var(X1) = 1− �2

N
:

We set aN = E(X1). DeHne B(N ) as

B(N )
(

k
N

)
=

1

�
√
N

(Sk − E(Sk)) =
1

�
√
N

(Sk − kaN ); k¿ 0 (3.7)

and

t �→ B(N )(t) is linear on each interval of the form
[
k
N

;
k + 1
N

]
: (3.8)

The process (H (N )(t); t¿ 0) is deHned by the same procedure as in the centered case,
i.e. expression (2.3). It can be shown (Billingsley, 1968, p. 68) that (B(N )(t); t¿ 0)
converges in distribution to (B(t); t¿ 0). (H (N )(t); t¿ 0) is a continuous functional of
(B(N )(t); t¿ 0), this implies the convergence of H[Nt]=

√
N .

Proposition 5. (1) Let t ¿ 0. As N tends to ∞,

H[Nt]√
N

=
1√
N

max
16i6j6[Nt]

(Sj − Si)
(d)→ ���=�(t);

where

��(t) = max
06u6t

{
B(u) + �u− min

06s6u
(B(s) + �s)

}
: (3.9)

(2) In particular Hn=
√
n converges in distribution, as n → ∞, to ���=�, where �� =

��(1).

Proof. See Section 4.2 for a complete proof.

Remark. The classical scaling property of Brownian motion (i.e. (Bs; s¿ 0)
(d)
=

(
√
tBs=t ; s¿ 0), for any t ¿ 0) implies that

��(t)
(d)
=
√
t��

√
t ; for any t ¿ 0: (3.10)

This allows us to obtain the distribution of ��.

Proposition 6. For all a¿ 0 and �∈R, we set

#(�)(a) = e−�aP(�� ¿a): (3.11)

Then

#(�)(a) = E
[
5{'Z+Ta¡1} exp

{
−�Z − �2

2
('Z + Ta)

}
|B∗

'Z ¡a
]
; �∈R; (3.12)
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where

• 't denotes the Brst time where the local time at 0 of Brownian motion (Bt ; t¿ 0)
reaches t,

• Ta is the Brst time where a Bessel process of dimension 3, starting at 0, hits a,
• Z is an exponential random variable of parameter a (i.e. its density function is
(1=a)e−x=a5{x¿0}).

• (B∗
u ; u¿ 0) is the process: B∗

u = sup06s6u |Bs|; u¿ 0.
• for any a¿ 0; (Bt ; t¿ 0); Z and Ta are independent.

Proof. We make use, on one hand, of Girsanov’s transformation to reduce to the
Brownian case and, on second hand, of some sample path properties. See Section
4.3.

We only need to handle #(�). However #(�) is equal to #(�)
� , the function #(�)

� being
deHned as follows:

#(�)
� (a) = E

[
5{'Z+Ta¡1} exp

{
−�Z − �2

2
('Z + Ta)

}∣∣∣∣B∗
'Z ¡a

]
; �∈R: (3.13)

In our approach it is not more diJcult to deal with #(�)
� instead of #(�).

Formula (3.12) gives a simple stochastic interpretation of #(�)
� , but we have to express

#(�)
� under a more convenient form for computation purpose.
The analytic transcription of (3.12) is the following:

Theorem 7. Let �∈R be Bxed, then for any a¿ 0

#(�)
� (a) =

1
a

∫
[0;+∞[2

5{u61} exp{−�t − �2u=2}$a(u)F
(�)
t (1− u; 1=a) du dt; (3.14)

where

F (�)
t (x; b) = E(5{06't6x; 06B∗

't
61=b}e−�2't =2); x¿ 0; b¿ 0; t¿ 0 (3.15)

and $a is the density function of Ta:

$a(t) =
1
a2

$1

( t
a2

)
(3.16)

and

$1(t) =
1√

2!t3=2

∑
k∈Z

(
−1 +

(1 + 2k)2

t

)
exp− (1 + 2k)2

2t
: (3.17)

Furthermore $1 may be expressed as (Biane et al., 2001, p. 8 and 24):

$1(t) =
d
dt

∞∑
n=−∞

(−1)ne−(n2!2t)=2: (3.18)
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Remark 8. Let T ∗
a = inf{t ¿ 0; |Bt |¿a}. L0

T∗
a

is an exponential random variable of
parameter a.
Since {B∗

't ¡a}= {L0
T∗
a
¿ t}, obviously P(B∗

't ¡a) = e−t=a.

Proof of Theorem 7. The random variables involved in Eq. (3.12) being independent,
we have

#(�)
� (a) =

1
a

∫
[0;+∞[2

E[5{'t+u¡1}e(−�t−(�2=2)('t+u))|B∗
't ¡a]$a(u)e−t=a du dt; (3.19)

where $a denotes the density function of Ta.
Using Remark 8, Eq. (3.14) follows immediately.

We focus our attention on F (�)
t . The decomposition of the Brownian path (Bu; 06

u6 't), conditionally to B∗
't leads to some recursive structure. This has an analytic

consequence: F (�)
t is solution of an integral equation.

Theorem 9. Let �∈R and t¿ 0 be two Bxed parameters.

(1) F (�) satisBes the integral equation

F (�)
t (x; a) = F (�)

t (x; 0)− t(A(�)F (�)
t )(x; a); (x; a)∈R2

+; (3.20)

with

(A(�) )(x; a) =
∫
[0;+∞[2

5{u6a;y6x}$
(2)
1=u(y)e

−�2y=2 (x − y; u) dy du; (3.21)

F (�)
t (x; 0) =

t√
2!

∫ x

0
exp
(
−�2z

2
− t2

2z

)
dz
z3=2

; (3.22)

and $(2)
a (u) = ($a ∗ $a)(u) = (1=a2)$(2)

1 (u=a2).
Recall (cf. (Biane et al., 2001)) that

$(2)
1 (t) =

d
dt

(
8
√
2√

!t3=2

+∞∑
n=1

n2e−2n2=t

)
: (3.23)

(2) Furthermore F (�)
t can be expressed as a series

F (�)
t (x; a) =

+∞∑
k=0

(−1)k tk (k)t (x; a); (3.24)

where

 (0)t (x; a) = F (�)
t (x; 0); (3.25)

 (k+1)
t (x; a) = (A(�) (k)t )(x; a): (3.26)
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The convergence of (3.24) holds uniformly for (x; a)∈R+ × [0; M ], for any
M¿ 0.

(3) For �∈R and a¿ 0; P(�� ¿a) has the following expansion:

P(�� ¿a) =
e�a

a

∑
k¿0

(−1)k
∫
[0;+∞[2

5{u61}e−�t−�2u=2

×$a(u)tk 
(k)
t (1− u; 1=a) du dt: (3.27)

Proof. See Section 4.5.

Using Theorem 9 (especially expression (3.20)) we prove that the two-dimensional
random variable ('t ; B∗

't ) has for any t ¿ 0 a density function (t which follows an inte-
gral equation (3.28). As we notice in 3.1, (t is unknown, therefore (3.28) is interesting.
As expression (3.14) shows, #(�)

� can be written as an integral of an explicit function
of four variables (u; t; x; y) with respect to the positive measure on R4

+ : (t(x; y) du dt
dx dy. However this expression is not practically useful. In particular, the asymptotic
development (3.24) of F (�)

t cannot be deduced from it. This justiHes our choice: F (�)
t

is the right parameter.

Proposition 10. Let t ¿ 0. The random variable ('t ; B∗
't ) has a density function (t .

Moreover (t veriBes

(t(x; a) =
t
a2

∫
[0;+∞[2

5[0; x]×[0; a](y; b)$(2)
a (x − y)(t(y; b) dy db: (3.28)

Proof. Let f be the distribution of ('t ; B∗
't ).

Then f([0; x]× [0; a]) = F (0)(x; 1=a). We choose �= 0 and replace a by 1=a in Eq.
(3.20), we get

f([0; x]× [a;+∞[) = t
∫ 1=a

0
du
(∫ x

0
$(2)
1=u(y)f([0; x − y]× [0; 1=u]) dy

)
: (3.29)

Let �v be the positive measure �v(dy)= 5{y¿0}�̃v(y) dy, where �̃v(y)=$(2)
v (y)5{y¿0}.

But

(f(:; [0; v]) ∗ �v)([0; x]) =
∫ x

0
$(2)
v (y)f([0; x − y]× [0; v]) dy;

=
∫ x

0
{(f(:; [0; v]) ∗ �̃v)(y) dy:

The new relation obtained by setting v=1=a in (3.29) implies that ('t ; B∗
't ) has a density

(t and

(t(x; a) =
t
a2

∫ x

0
$(2)
a (x − y)f(dy; [0; a]);
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=
t
a2

∫
[0;+∞[2

5[0; x]×[0; a](y; b)$(2)
a (x − y)(t(y; b) db dy:

To end up this section, we give a direct proof of Theorem 4 suggested by the referee.

Proof of Theorem 4. Let us introduce some notations. We state

Xs = Bs + �s; It = inf
06s6t

Xs; Yt = Xt − It ; Ta = inf{t¿ 0: Yt = a}:

Then

P(�� ¿a) = P(Ta ¡ 1): (3.30)

Williams (1976) and Taylor (1975) have determined the Laplace transform of Ta:

E[e−(�2=2)Ta] =
�e�a

� cosh �a+ � sinh �a
; (3.31)

where �=
√

�2 + �2.
We are able to invert this expression (cf. step 1 below), i.e. to determine the

density function of Ta. Then using (3.30), we obtain the asymptotic behavior of
P(�� ¿a); a → ∞.
(1) By an easy computation we have

E[e−(�2=2)Ta] =
2�e(�−�)a

�+ �
1

1 + [(�− �)=(�+ �)]e−2�a ;

= 2�e�a
(∑

k¿0

(−1)k
(�− �)k

(�+ �)k+1 e
−(2k+1)�a

)
:

Let Lk be the Laguerre polynomial of order k (Williams, 1976, p. 168). Its Laplace
transform is known (Williams, 1976, (7) p. 170):∫ +∞

0
e−sxLk(x) dx =

(s− 1)k

sk+1 ; s¿ 0:

This yields to

E[e−(�2=2)Ta] = 2e�a
(∑

k¿0

(−1)k
∫ +∞

0
�e−�(t+(2k+1)a)−�tLk(2�t) dt

)
: (3.32)

Let us recall the integral representation of K5 (Watson, 1995, (15), p. 183):

K5(z) =
1
2

( z
2

)5 ∫ +∞

0

1
y5+1 e

−(y+z2=4y) dy:

K1=2 and K3=2 are known (Watson, 1995, (12), (13) p. 80):

K1=2(z) =

√
!
2z

e−z ; K3=2(z) =

√
!
2z

e−z
(
1 +

1
z

)
:
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In particular,

5e−5(t+(2k+1)a) =
1√
2!

∫ +∞

0
e−�2x=2 (t + (2k + 1)a)2 − x

x5=2
e−(�2x+(t+(2k+1)a)2=x)=2 dx:

Therefore we are able to invert (3.23): Ta has a density #a and

#a(x) =

√
2
!
e�a

e−�2x=2

x5=2

(∑
k¿0

 a;k(x)

)
; (3.33)

where

 a;k(x) = (−1)k
∫ +∞

0
((t + (2k + 1)a)2 − x)e−�tLk(2�t)e−(t+(2k+1)a)2=2x dt: (3.34)

(2) We say that h1a(x) is uniformly equivalent to h2a(x), as a → ∞; x belonging to
[0; 1], if

lim
a→∞

(
sup

x∈[0;1]

h1a(x)
h2a(x)

)
= 1:

We write h1a(x)
u∼

a→∞ h2a(x).

We then prove that

 a;0(x)
u∼

a→∞ xae−a2=2x: (3.35)

Let t + a=
√
xu in (3.34) (with k = 0):

 a;0(x) = x3=2e�a
∫ +∞

a=
√

x
(u2 − 1)e−u2=2e−�

√
xu du: (3.36)

But

(−ue−u2=2)′ = (u2 − 1)e−u2=2; (3.37)

then integrating by part in (3.36) we obtain

 a;0(x) = x3=2e�a
(

a√
x
e−a2=2xe−�a − �

√
x
∫ +∞

a=
√

x
ue−u2=2e−�

√
xu du

)
:

Since u6 (
√
x=a)u2 for any u∈ [a=

√
x; +∞[ and x∈ [0; 1]

xae−a2=2x

1 + �=a
6  a;0(x)6 xae−a2=2x:

Eq. (3.35) follows immediately.
(3) We claim that∑

k¿0

 a;k(x)
u∼

a→∞ a;0(x): (3.38)

Suppose k¿ 1; a¿ 1 and x∈ [0; 1].
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Then

(t + (2k + 1)a)2¿ a2¿ 1¿x; ∀t¿ 0: (3.39)

Recall (Widder, 1941, Theorem 17a, p. 168):

|Lk(x)|6 ex=2; x∈R: (3.40)

Setting t + (2k + 1)a=
√
xu, we obtain

| a;k(x)|6 x3=2
∫ +∞

(2k+1)a=
√

x
(u2 − 1)e−u2=2 du:

By (3.37) the integral can be computed explicitly:

| a;k(x)|6 (2k + 1)xae−(2k+1)2a2=2x:

But x∈ ]0; 1[, then

| a;k(x)|6 (xae−a2=2x)((2k + 1)e−(2k2+2k)a2 ):

Since k¿ 1 and a¿ 1,

| a;k(x)|6 (xae−a2=2x)((2k + 1)e−2k2e−2a2 ): (3.41)

This demonstrates (3.38).
(4) Let us end the proof of Theorem 4. Using both (3.30), (3.33), (3.35) and (3.38)

we have

P(��¿ a) ∼
a→∞

√
2
!
ae�aI(a);

where

I(a) =
∫ 1

0

1
x3=2

e−�2x=2e−a2=2x dx:

Let x = a2=(a2 + y), we obtain

I(a) =
e−a2=2

a2

∫ +∞

0

√
a2

a2 + y
e−�2a2=2(a2+y)e−y=2 dy:

Therefore

I(a) ∼
a→∞ 2

e−(�2+a2)=2

a2
:

This proves Theorem 4.
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4. Technical proofs

This section is devoted to the proofs of Theorems 1, 9, 4, Propositions 5, 6 and
expressions (2.7), (3.17), (3.18) and (3.23).

4.1. Proof of Theorem 1

Let (Xn)n¿1 be a sequence of r.v.’s and (Sn)n¿0 the random walk:

S0 = 0; Sn =
n∑

k=1

Xk; n¿ 1:

We consider two cases:
(a) (Xn) are i.i.d. centered random variables with Hnite second moment and �2 =

Var(X1).
(b) (Xn) is an irreducible Markov chain taking its values in a Hnite subset of R. We

denote by � its invariant distribution. �2 is the parameter deHned by (2.4).
Given an integer N¿ 0, we consider the piecewise linear process B(N )(t)


B(N )

(
k
N

)
=

1

�
√
N

(Sk − E(Sk)) =
1

�
√
N

Sk ; k¿ 0;

t �→ B(N )(t) is linear on each interval of the form
[
k
N

;
k + 1
N

]
:

(4.1)

Our approach is based on the two following results.

Theorem 11 (Billingsley, 1968, pp. 68, 166, 174). The process (B(N )(t); t¿ 0) con-
verges in law, as N tends to +∞, to the standard linear Brownian motion (B(t); t¿ 0).

Theorem 12 (Skorokhod’s theorem (Ikeda and Watanabe, 1981, p. 9)). Let (S; �) be
a complete separable metric space, P and Pn; n = 1; 2; : : : be probability measures
on (S;B(S)) so that Pn ⇒

N→∞
P. Then, we can construct, on a probability space

(7;B; P); S-valued random variables Xn; n= 1; 2; : : : and X such that

(1) Pn =L(Xn); n= 1; 2; : : : and P =L(X ).
(2) Xn converges to X almost everywhere.

Proof of Theorem 1. The proof is divided into two steps.
Recall that

Hk = max
06i6j6k

(Sj − Si); k¿ 0:

Let us introduce the linear interpolation of (Hk)k¿0. This function (H (N )(t); t¿ 0)
depending on the parameter N is deHned as follows:

H (N )(t) =
1√
N
{H[Nt] + (Nt − [Nt])(H[Nt]+1 − H[Nt])}; t¿ 0: (4.2)
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(1) Relation (4.1) implies

Sk = �
√
N B(N )

(
k
N

)
: (4.3)

Then

H[Nt] = �
√
N max

06i6j6[Nt]

{
B(N )

(
j
N

)
− B(N )

(
i
N

)}

= �
√
N max

06i=N6j=N6[Nt]=N

{
B(N )

(
j
N

)
− B(N )

(
i
N

)}
:

B(N ) being piecewise linear, then the maximum on {06 i=N6 j=N6 [Nt]=N} is equal
to the maximum on {06 u6 v6 [Nt]=N} and

H[Nt] = �
√
N max

06u6v6[Nt]=N
{B(N )(v)− B(N )(u)}:

Finally H (N )(t) can be written as follows:

H (N )(t) = �
(

max
06u6v6[Nt]=N

{B(N )(v)− B(N )(u)}+ RN (t)
)

; (4.4)

RN (t) = (Nt − [Nt])
(

max
06u6v6([Nt]+1)=N

{B(N )(v)− B(N )(u)}

− max
06u6v6[Nt]=N

{B(N )(v)− B(N )(u)}
)

: (4.5)

(2) We apply Theorems 11 and 12 with S=C([0; T ];R) and � the Wiener measure,
T being Hxed. Then there exist (7;B; P); B(N ) and B such that B(N ) converges almost
surely to B a standard Brownian motion on (7;B; P).
Let RN (resp. H (N )) be the process deHned by (4.5) (resp. (4.4)) where B(N ) is

replaced by B(N ).
But B(N ) and B(N ) have the same law, then

(H (N )(t); t¿ 0)
(d)
=(H (N )(t); t¿ 0):

If we prove that H (N ) converge a.s., then the previous identity implies the convergence
in distribution of H (N ).
Since the convergence of B(N ) holds in the space of continuous functions, for any

t ∈ [0; T ]:

max
06u6v6([Nt]+1)=N

{B(N )(v)− B(N )(u)} a:s→
N→∞

max
06u6v6t

{B(v)− B(u)};

max
06u6v6[Nt]=N

{B(N )(v)− B(N )(u)} a:s→
N→∞

max
06u6v6t

{B(v)− B(u)}:

Moreover as 06Nt − [Nt]6 1, then

RN (t)
a:s:→

N→∞
0 uniformly in t ∈ [0; T ]:
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Hence

(H (N )(t); 06 t6T ) a:s→
N→∞

(
� max

06u6v6t
{B(v)− B(u)}; 06 t6T

)
: (4.6)

We denote �(t) = max06u6v6t {B(v)− B(u)}=max06v6t {B(v)− I(v)} where I(v) =
min

06u6v
B(u).

Recall that Paul LSevy’s theorem (1948, Revuz and Yor, 1991, Chapter II, Theorem
2.3) gives us the following identity:

(B(v)− I(v); v¿ 0)
(d)
=(|Bv|; v¿ 0):

This ends the proof of Theorem 1.

4.2. Proof of Proposition 5

This proof is similar to the previous one (see Section 4.1). Let H (N ) be the piecewise
linear function deHned by (4.2). Eq. (4.3) has to be replaced by

1√
N

Sk = �NB(N )
(

k
N

)
+

kaN√
N

= �NB(N )
(

k
N

)
+

k
N

(
√
NaN ); (4.7)

where aN =
√
NE(X1) and �N =Var(X1).

Suppose t ¿ 0. Then

H[Nt]√
N

= max
06u6v6[Nt]=N

{�NB(N )(v) + v(
√
NaN )− �NB(N )(u)− u(

√
NaN )}: (4.8)

But
√
NaN (resp. �N ) tends to � (resp. �2), the convergence follows easily.

4.3. Proof of Proposition 6

(1) Let #(�)(a) be equal to e−�aP(��¿ a). In a Hrst step we establish the following
stochastic representation for #(�):

#(�)(a) = E
[
5{T∗

a ¡1} exp
(
−�L0

T∗
a
− �2

2
T ∗
a

)]
: (4.9)

Let f be a Borel bounded function, we have

E[f(�(�))] = E
[
f
(

max
06u61

{
Bu + �u− min

06s6u
(Bs + � s)

})]
:

Let us apply Girsanov’s theorem (Revuz and Yor, 1991, Chapter VIII), we get

E[f(�(�))] = E
[
f
(

max
06u61

(
Bu − min

06s6u
Bs

))
exp

{
�B1 − �2

2

}]
: (4.10)

But Levy’s theorem (Revuz and Yor, 1991, Chapter II) gives(
Bt − min

06s6t
Bs;− min

06s6t
Bs; t¿ 0

)
(d)
=(|Bt |; L0

t ; t¿ 0):
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Then

E[f(�(�))] = E
[
f
(

max
06s61

|Bs|
)
exp

{
�(|B1| − L0

1)−
�2

2

}]
: (4.11)

Let (Mt; t¿ 0) be the process,

Mt = exp
{
�(|Bt | − L0

t )−
�2

2
t
}

; t¿ 0:

M is an exponential martingale since (|Bt | − L0
t ; t¿ 0) is a Brownian motion.

We restrict ourself to f = 1]a;+∞[, Eq. (4.11) reduces to

P(�� ¿a) = E
[
5{B∗

1 ¿a}exp
{
�(|B1| − L0

1)−
�2

2

}]
= E[1{B∗

1 ¿a}M1]:

We have {B∗
1 ¿a} = {T ∗

a ¡ 1} (recall that B∗
1 = maxu61 |Bu| and T ∗

a = inf{t¿ 0;
|Bt |¿a}).
Let us introduce U=T ∗

a ∧1. U is a bounded stopping time and {T ∗
a ¡ 1}={U ¡ 1}.

Then {T ∗
a ¡ 1}∈FU , so that we may apply the stopping time theorem:

P(�� ¿a) = E[5{T∗
a ¡1}M1] = E[5{T∗

a ¡1}MU ]

= E
[
5{T∗

a ¡1} exp
{
�(a− L0

T∗
a
)− �2

2
T ∗
a

}]
:

This shows (4.9).
(2) We are now able to prove (3.12). The proof is based on decomposition of

Brownian path (Vallois, 1991b, Proposition 4). Let us recall this decomposition:
For a¿ 0. DeHne

g= sup{t6T ∗
a ; Bt = 0}:

Then

(i) T ∗
a − g and (Bu; 06 u6 �) are independent,

(ii) T ∗
a − g

(d)
= Ta,

(iii) conditionally to L0
T∗
a
= t, (Bu; 06 u6 g) is distributed as (Bu; 06 u6 't) condi-

tioned by {B∗
't ¡a}.

We decompose T ∗
a as the sum of g and T ∗

a −�, (3.12) is a straightforward consequence
of (4.9).

4.4. Second proof of Theorem 4

For simplicity F (�)
y will be noted Fy in this section.

Let us start with a preliminary result.



J.-J. Daudin et al. / Stochastic Processes and their Applications 107 (2003) 1–28 19

Lemma 13. Let  be the function,

 (v) =
∫
R+

e−�yFy

(
v

1 + v
; 0
)

dy; v¿ 0: (4.12)

Then

 (v) =
2√
2!

√
v

v+ 1
+  1(v); | 1(v)|6C

v
1 + v

:

Proof. Since Ft(x; 0) = E(5{06't6x;}e−�2't =2) and the density of 't is well known (see
for example Borodin and Salminen, 1996),

P('t ∈ dz) =
t√
2!z3

exp
(
− t2

2z

)
5{z¿0} dz:

Then Ft(x; 0) may be written as

Ft(x; 0) =
t√
2!

∫ x

0
exp
(
−�2z

2
− t2

2z

)
dz
z3=2

:

Therefore,

 (v) =
1√
2!

∫ v=(1+v)

0

1
z1=2

e−�2z=2
∫ +∞

0
ue−(u2=2+�u

√
z) du dz: (4.13)

We have

e−x = 1 + 5(x);

where |5(x)|6C|x|e|x|.
In particular e−�u

√
z = 1 + 5(�u

√
z);  =  2 +  3 where

 2(v) =
1√
2!

∫ v=(1+v)

0

1
z1=2

e−�2z=2
(∫ +∞

0
ue−u2=2 du

)
dz; (4.14)

 3(v) =
1√
2!

∫ v=(1+v)

0

1
z1=2

e−�2z=2
(∫ +∞

0
ue−u2=2 5(�u

√
z) du

)
dz: (4.15)

Clearly

 2(v) =
1√
2!

∫ v=(1+v)

0

1
z1=2

e−�2z=2 dz:

But 0¡ 1− e−�2z=2 ¡�2z=2 for any z¿ 0, therefore

 2(v) =
2√
2!

√
v

v+ 1
+  ̃ 2(v); | ̃ 2(v)|6C

(
v

1 + v

)3=2
6C

(
v

1 + v

)
:

But

|5(�u√z)|6C|�|u√ze|�|u
√

z6C|�|(ue|�|u)√z:
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By the same way

| 3(v)|6C
(

v
1 + v

)
:

Proof of Theorem 4. Let us recall the expression of #(�)
� given in Eq. (3.14).

#(�)
� (a) =

1
a

∫
[0;+∞[2

5{u61} exp{−�y − �2u=2} $a(u)F (�)
y (1− u; 1=a) du dy:

(1) Let us Hrst prove that #(�)
� (a) ∼

a→∞51(a), where

51(a) =
1
a

∫
R2

+

5{u61} exp
{
−�y − �2

2
u
}

$a(u)F (�)
y (1− u; 0) du dy: (4.16)

Recall that

F (�)
y (1− u; 1=a) = E[5{06'y61−u;06B∗

'y
6a}e−�2'y=2];

so that lima→∞ F (�)
y (1 − u; 1=a) = E[5{06'y61−u}e−�2'y=2] = F (�)

y (1 − u; 0). Since the
convergence is uniform in u, taking the limit over a gives (4.16).
(2) In this step we prove that 51(a) ∼

a→∞52(a), with

52(a) =
2a2√
2!

∫
R2

+

5{u61}e−�y−�2u=2−a2=2u F (�)
y (1− u; 0)

du
u5=2

dy: (4.17)

We use the explicit form of $a given by Eq. (3.17), the scaling property, and (3.16)
then

$a(u) =
1
a2

a3√
2!u3=2

∑
k∈Z

(
−1 + a2

(1 + 2k)2

u

)
exp

{
−a2

(1 + 2k)2

2u

}

=
a√
2!

R(u; a)
u3=2

with

R(u; a) =
∑
k∈Z

(
−1 + a2

(1 + 2k)2

u

)
exp

{
−a2

(1 + 2k)2

2u

}
: (4.18)

We split R(u; a) into two parts:

R(u; a) = 2
(
a2

u
− 1
)
e−a2=2u +

a2

u
e−a2=2u


 ∑

k∈Z−{−1;0}
;k(u; a)


 ;

=
2a2

u
e−a2=2u +

a2

u
e−a2=2u


−2u

a2
+

∑
k∈Z−{−1;0}

;k(u; a)
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with

;k(u; a) =
(
− u

a2
+ (1 + 2k)2

)
exp

{
− a2

2u
((1 + 2k)2 − 1)

}
:

We prove that the sum, k running over Z− {−1; 0} goes to 0, as a → ∞.
If a¿ 1 and u6 1, we have∣∣∣− u

a2
+ (1 + 2k)2

∣∣∣6 (1 + 2k)2 + 16Ck2;

exp
{
− a2

2u
((1 + 2k)2 − 1)

}
6 exp{−2k(k + 1)}:

This yields

|;k(u; a)|6Ck2e−2k(k+1):

The dominated convergence theorem implies that

lim
a→+∞

∑
k∈Z−{−1;0}

;k(u; a) = 0;

uniformly in u.
Furthermore lima→∞ u=a2 = 0 uniformly with respect to u∈ [0; 1], then

R(u; a) ∼
a→∞

2a2

u
e−a2=2u:

(3) Finally, we check that 52(a) ∼
a→∞ 2

√
(2=!)e−�2=2 (1=a)e−a2=2.

We have

52(a) =
2a2√
2!

∫ 1

0

1
u5=2

exp
{
−1
2

(
a2

u
+ �2u

)}(∫
R+

e−�yF (�)
y (1− u; 0) dy

)
du:

We set u= 1=(1 + v), we obtain

52(a) =
2a2√
2!

e−a2=2
∫ +∞

0
e−a2v=2e−�2=2(1+v)

√
1 + v (v) dv; (4.19)

Let us set u= a2v=2 in Eq. (4.19), then

52(a) =
4√
2!

e−a2=2
∫ +∞

0
e−ue−�2a2=2(a2+2u)

√
1 +

2u
a2

 
(
2u
a2

)
du:

Lemma 13 implies that

52(a) =
4√
2!

e−a2=2

[
2
√
2√

2!

1
a

∫ +∞

0
e−ue−�2a2=2(a2+2u)√u du+ 53(a)

]
; (4.20)

where

53(a) =
∫ +∞

0
e−�2a2=2(a2+u2)e−u

√
1 + 2u=a2 1

(
2u
a2

)
du:
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The integral on the right-hand side of (4.20) converges as a goes to inHnity to

e−�2=2
∫ +∞

0
e−u√u du= e−�2=2

√
!
2

:

We claim that |53(u)| is upper bounded by C=a2; a → +∞.
Using the upper bound for  1, we obtain

|53(u)|6C
(∫ +∞

0
ue−u du

)
1
a2

:

Finally

52(a) ∼
a→∞

2
√
2√
!

e−�2=2 1
a
e−a2=2:

As P(�� ¿a) = e�a#(�)
� (a), we have proved relation (3.6).

4.5. Proof of Theorem 9

We divide the proof into two steps.
(1) Let F (�)

t be the function deHned by (3.15):

F (�)
t (x; b) = E(5{06't6x; 06B∗

't
61=b} e−�2't =2); x¿ 0; b¿ 0: (4.21)

Here � and t are Hxed. We have

F (�)
t (x; b) = E(5{06't6x}e−�2't =2)− E(5{06't6x; B∗

't
¿1=b}e−�2't =2): (4.22)

Let B∗
't = u. Let us deHne � = inf{s6 't ; |Bs| = u}; g = sup{s6 �; Bs = 0}, d =

inf{s¿ �; Bs = 0}. Vallois (1991a) proved that conditionally to B∗
't = u,

• g+ ('t − d); (�− g) et (d− �) are three independent random variables.
• g+ ('t − d) is distributed as the Hrst time when the local time of Brownian motion
conditioned to stay in [− u; u], reaches t.

• �− g and d− � are distributed as the Hrst time when a Bessel process of dimension
3, started at 0, reaches u. So (�− g) + (d− �) have same law as Tu + TTu where TTu

is an independent copy of Tu.

Since 't = g+ ('t − d) + (�− g) + (d− �) and P(B∗
't ¡u) = e−t=u (cf. Remark 8),

we get

F (�)
t (x; b) = F (�)

t (x; 0)

− t
∫ +∞

1=b

e−t=u

u2

∫ +∞

0
E[1{'t+y¡x}e−(�2't)=2|B∗

't ¡u]

×e−�2y=2$(2)
u (y) dy du;
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= F (�)
t (x; 0)

− t
∫ +∞

1=b

du
u2

(∫ +∞

0
E[1{'t+y¡x;B∗

't
¡u}e−�2't =2]e−�2y=2$(2)

u (y) dy
)

:

We set v = 1=u, (3.20) follows immediately since we have already established (3.15)
in the proof of Lemma 13.
(2) Let K be a positive number and EK the set of Borel functions  deHned on

R+ × [0; K] such that

sup
x¿0;y6K

| (x; y)|¡+∞:

EK is equipped with the uniform norm.
Let  be in EK ; x¿ 0 and a6K . Then

|A(�) (x; a)|6
∫ a

0
du
(∫ x

0
$(2)
1=u(y) e

−�2y=2 | (x − y; u)|dy
)

6 max
s¿0; 06u6a

| (s; u)|
∫ a

0
du
(∫ x

0
$(2)
1=u(y) dy

)
;

$(2)
1=u being a density function:

|A(�) (x; a)|6K max
s¿0; 06u6K

| (s; u)|:

A(�) is thus a continuous linear operator from EK to EK .
Clearly (x; a) �→ F (�)

t (x; 0) belongs to EK , because

06F (�)
t (x; 0)6 1: (4.23)

Let us consider the series

>t(x; a) =
+∞∑
k=0

(−1)k tk (k)t (x; a) (4.24)

with

 (0)t (x; a) = F (�)
t (x; 0)

and

 (k+1)
t (x; a) = (A(�) (k)t )(x; a):

In order to establish the convergence in EK , we Hrst prove that

max
x¿0;y6a

| (k)t (x; y)|6 ak

k!
max

x¿0;y6a
| (0)t (x; y)|6 ak

k!
: (4.25)

We check (4.25) by induction on n.
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If n = 0, obviously (4.25) holds. We suppose that (4.25) is veriHed for n and we
prove that (4.25) is still true, having replaced n by n+ 1.
Let x¿ 0; 06y6 a, using again the fact that $(2)

1=u is a density function, we obtain

|A(�) (x; y)|6
∫
[0;+∞[2

5{u6y}$
(2)
1=u(v)max

x¿0
| (x; u)| dv du;

6
∫ y

0
max
x¿0

| (x; u)| du6
∫ a

0

(
max

x¿0; u16u
| (x; u1)|

)
du:

Therefore

max
x¿0;y6a

|A(�) (x; y)|6
∫ a

0

(
max

x¿0; u16u
| (x; u1)|

)
du: (4.26)

Therefore (4.25) implies

max
x¿0; u6a

| (n+1)(x; u)|6 1
n!

∫ a

0
un du=

an+1

(n+ 1)!
:

Therefore the series in (4.24) converge in EK ; A(�) is a continuous operator, then

F (�)
t (x; a) =

+∞∑
k=0

(−1)k tk (k)t (x; a); (x; a)∈R2
+:

(3) Recall the expression of #(�)
� in terms of F (�)

t .

#(�)
� (a) =

1
a

∫
[0;+∞[2

5{u61} e−�t−�2u=2F (�)
t (1− u; 1=a) $a(u) du dt

We are allowed to interchange the sum with respect to k and the double integral if:∑
k¿1

;k ¡+∞

with

;k =
1
a

∫
[0;+∞[2

5{u61}e−�t−�2u=2$a(u)tk 
(k)
t (1− u; 1=a) du dt:

It is well known that 't
(d)
=t2=B2

1, then if x6 1; t ¿ 0,

06  (0)t (x; a)6P('t6 x)6P('t6 1) = 2P(B1 ¿t)6
2√
2!t

e−t2=2:

Obviously (4.26) can be modiHed as follows:

max
06x61;y6a

|A(�) (x; y)|6
∫ a

0

(
max

06x61; u16u
| (x; u1)|

)
du:

Reasoning by induction, we obtain

max
06x61;u6a

| (k)t (x; u)|6 2√
2!t

e−t2=2 ak

k!
:
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Therefore

;k 6
2

a
√
2!

∫ +∞

0
e−�t−t2=2

( t
a

)k 1
k!

dt√
t
;

∑
k¿1

;k 6
2

a
√
2!

∫ +∞

0
e−�t−t2=2(et=a − 1)

dt√
t
¡+∞:

This implies identity (3.27).

4.6. Proof of expression (2.7)

Recall that (Bt; t¿ 0) is a standard Brownian motion, and B∗
1 =max06s61 |Bs|. The

cumulative function of B∗
1 is known (cf. Borodin and Salminen, 1996, p.146):

P(B∗
1 ¡x) =

1√
2!

∫ x

−x

∑
k∈Z

(e−(y+4kx)2=2 − e−(y+2x+4kx)2=2) dy: (4.27)

Jacobi’s theta function identity (Bellman, 1961) gives us

1√
!t

∑
k∈Z

e−(v+k)2=t =
∑
k∈Z

cos(2k!v)e−k2!2t ; v∈R; t ¿ 0: (4.28)

Setting v= y=4x and t = 1=8x2, (4.28) becomes

4x√
2!

∑
k∈Z

e−(4kx+y)2=2 =
∑
k∈Z

cos(k!y=2x)e−k2!2=8x2 : (4.29)

Then

1√
2!

∑
k∈Z

e−(4kx+y)2=2 =
1
4x

∑
k∈Z

cos(k!y=2x)e−k2!2=8x2 : (4.30)

Similarly, setting v= (y + 2x)=4x and t = 1=8x2 in (4.28), we obtain

1√
2!

∑
k∈Z

e−(4kx+2x+y)2=2 =
1
4x

∑
k∈Z

(−1)k cos(k!y=2x)e−k2!2=8x2 : (4.31)

Integrating in y, we obtain the cumulative distribution for B∗
1 :

P(B∗
1 ¡x) =

2
!

∑
k∈Z

(−1)k

2k + 1
e−(2k+1)2!2=8x2 : (4.32)

4.7. Proof of expression (3.17)

Let us denote by (Rx(s); s¿ 0) a Bessel process of dimension 3 starting at x and
T (x)
a the Hrst time where (Rx(s))s¿0 reaches a(T (x)

a = inf{t¿ 0;Rx(t) = a}).
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We claim that T (0)
a admits $a as a density function, where

$a(t) =
1
a2

$1

( t
a2

)
;

$1(t) =
1√

2!t3=2

∑
k∈Z

(
−1 +

(1 + 2k)2

t

)
exp− (1 + 2k)2

2t
: (4.33)

In (Borodin and Salminen, 1996, p. 339, 2.02) we Hnd the density function of T (x)
a ,

for 0¡x¡a:

P(T (x)
a ∈ dt) =

a
x
?(a)

x (t)5{t¿0} dt = ’(a)
x (t)5{t¿0} dt; (4.34)

where

?(a)
x (t) =

1√
2!t3

∑
k∈Z

(a− x + 2ka) exp− (a− x + 2ka)2

2t
: (4.35)

Let us prove that ?(a)
0 (t) = 0.

For all t ¿ 0, we have

?(a)
0 (t) =

a√
2!t3

∑
k∈Z

(1 + 2k)e−(1+2k)2a2=2t

=
a√
2!t3

{
+∞∑
k=0

(1 + 2k)e−(1+2k)2a2=2t

+
+∞∑
k=0

(1 + 2(−k − 1))e−(1+2(−k−1)k)2a2=2t

}
;

= 0:

Then

$a(t) = lim
x→0

’(a)
x (t) = lim

x→0

a
x
(?(a)

x (t)−?(a)
0 (t)): (4.36)

DiFerentiating term by term, we obtain

$a(t) =
a√

2!t3=2

∑
k∈Z

(
−1 +

a2(1 + 2k)2

t

)
exp− a2(1 + 2k)2

2t
: (4.37)

4.8. Proof of (3.18)

We make use of Poisson expression (Feller, 1966, Chapter XIX, p. 620).∑
k∈Z

’(a+ 2kb) =
!
b

∑
k∈Z

f
(
k!
b

)
exp
(
ik!a
b

)
(4.38)
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with

’( ) =
∫
R
ei xf(x) dx:

We choose

f(x) =

√
t
2!

exp− t
2

(
x − !

2

)2
:

f is the density function of !=2 + B1=
√
t; t being a Hxed number, then

’( ) = ei !=2e− 2=2t :

We set a= 0 and b= 1 in (4.38), we obtain∑
k∈Z

(−1)ke−2k2=t =

√
!t
2

∑
k∈Z

exp− t
8
(2k − 1)2!2:

We set t = 4=u!2:∑
k∈Z

(−1)ke−k2!2u=2 =

√
2
!

1√
u

∑
k∈Z

exp− (2k − 1)2

2u
: (4.39)

DiFerentiating in respect to u, we obtain (3.18).

4.9. Proof of expression (3.23)

We keep the notations introduced in the beginning of 4.7.
Let us recall that $(2)

1 is the density function of Z = T (0)
1 + T̃ (0)

1 ; T̃ (0)
1 being an

independent copy of T (0)
1 .

The Laplace transform of T (0)
1 is well known (Kent, 1978):

E(e−�T (0)
1 ) =

√
2�

sh
√
2�

:

So that

E(e−�Z) =

( √
2�

sh
√
2�

)2
:

According to Proposition 1, in Biane et al. (2001, p. 7), this is equivalent to√
!
2
Z
(d)
= Y;

where

P(Y 6y) =
4!
y3

∑
n¿1

n2e−!n2=y2
:

A straightforward computation implies (3.23).
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