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It has not been confirmed whether tight junctions (TJs) function as a paracellular permeability barrier in adult
human skin. To clarify this issue, we performed a TJ permeability assay using human skin obtained from
abdominal plastic surgery. Occludin, a marker protein of TJs, was expressed in the granular layer, in which
a subcutaneously injected paracellular tracer, Sulfo-NHS-LC-Biotin (556.59 Da), was halted. Incubation with
ochratoxin A decreased the expression of claudin-4, an integral membrane protein of TJs, and the diffusion of
paracellular tracer was no longer prevented at the TJs. These results demonstrate that human epidermis
possesses TJs that function as an intercellular permeability barrier at least against small molecules (B550 Da).
UVB irradiation of human skin xenografts and human skin equivalents (HSEs) resulted in functional
deterioration of TJs. Immunocytochemical staining of cultured keratinocytes showed that occludin was
localized into dot-like shapes and formed a discontinuous network when exposed to UVB irradiation.
Furthermore, UVB irradiation downregulated the active forms of Rac1 and atypical protein kinase C, suggesting
that their inactivation caused functional deterioration of TJs. In conclusion, TJs function as a paracellular barrier
against small molecules (B550 Da) in human epidermis and are functionally deteriorated by UVB irradiation.
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INTRODUCTION
Tight junctions (TJs) are cell–cell junctions that form paired
strands sealing the space between neighboring cells and
control the paracellular passage of small molecules. TJs are
highly developed in simple epithelia and separate the inside
from the outside. It has been reported that TJs consist
of transmembrane proteins such as claudins, occludin, and
junctional adhesion molecules, and plaque proteins such as
ZO-1, ZO-2, ZO-3, MUPP-1, and symplekin (Tsukita and
Furuse, 2002).

In contrast to simple epithelia, stratified epithelia such as
epidermis had been considered to be devoid of TJs
functioning as an intercellular permeability barrier in the
1990s. Freeze-fracture analysis of TJ structures using electron
microscopy found no continuous TJ strands (i.e., zonulae

occludentes) but could find discontinuous TJ strands (i.e.,
maculae occludentes) (Elias et al., 1977). These observations
suggest that the TJs in the epidermis would be too
fragmentary to function as an effective barrier. However, in
the mouse epidermis, TJs functioning as an effective barrier to
small molecules were identified by the application of a TJ
permeability assay in combination with the use of antibodies
recognizing occludin specifically localized at TJs (Furuse
et al., 2002). Sulfo-NHS-LC-biotin (B550 Da) injected into
mouse epidermis diffused through the paracellular space
from the basal toward the granular layer. However, this
diffusion was abruptly prevented at occludin expression sites,
because of the presence of TJs.

It has also been reported, in humans, that TJ proteins are
expressed in the stratum granulosum, a layer of skin in which
typical TJ structures (kissing points) have been detected
(Brandner et al., 2002, 2006). In skin disease, several studies
have shown that the localization of TJ proteins is altered in
the psoriatic epidermis (Watson et al., 2001; Yoshida et al.,
2001; Lemini-Lopez et al., 2006).

For adult human epidermis, however, it remains to be seen
whether TJs have a role in the intercellular permeability barrier
or undergo a functional change during cutaneous barrier
disruption. To examine the existence of TJs functioning as a
paracellular barrier in human skin, we injected Sulfo-NHS-LC-
biotin into human skin obtained from abdominal plastic
surgery and visualized it together with the marker protein,
occludin and/or ZO-1, localized in TJs (TJ permeability assay).
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Our experiments demonstrate that TJs can function as an
intercellular permeability barrier to small molecules
(B550 Da) in human epidermis. Irradiation with UVB in
human skin xenografts and human skin equivalent (HSE)
models was found to cause functional deterioration of TJs. In
addition, in vitro experiments using cultured keratinocytes
showed that UVB irradiation downregulated the active forms
of Rac1 and atypical protein kinase C, suggesting that their
inactivation caused functional deterioration of TJs.

RESULTS
Existence of TJs functioning as a barrier to paracellular
tracer in human epidermis

Occludin and ZO-1 are highly concentrated at TJs. That is,
these proteins are the best general markers for TJs identified to

date (Saitou et al., 1997; Yoshida et al., 2001; Furuse et al.,
2002; Morita et al., 2002). In contrast, claudin-1 and claudin-4
are prerequisite to the paracellular barrier function of TJs
(Sonoda et al., 1999; Furuse et al., 2002). Double immuno-
fluorescence staining with occludin and claudin-1 revealed
the presence of occludin in small spots and the expression of
claudin-1 throughout whole layers of the epidermis (Figure 1a(A)
and (B)). The two proteins were overlapped in the granular
layer beneath the stratum corneum (Figure 1a(C)). Claudin-4
was also expressed in the epidermis and overlapped with
occludin (Figure 1a(D)–(F)). These results were consistent
with previous reports, suggesting that functional TJs form
a paracellular barrier beneath the stratum corneum in human
epidermis (Brandner et al., 2002; Langbein et al., 2002).
To determine whether TJs in the epidermis function as an
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Figure 1. Immunofluorescence staining for tight junction (TJ) components and a TJ permeability assay using an intact human epidermis. (a) (A) Occludin

(FITC) was expressed in the granular layer as dots. (B, C) Claudin-1 (RRX) was expressed at the plasma membrane in all layers of the epidermis and overlapped

at the occludin (FITC) in the granular layer. (D, E, F) Claudin-4 (Cy3) was expressed in the granular layer of the epidermis and co-localized with occludin

(FITC). (b) Sulfo-NHS-LC-Biotin was injected into human skin. Sulfo-NHS-LC-Biotin (B) and occludin (A) were made visible with anti-occludin mAb (FITC) and

streptavidin–Alexa546. Sulfo-NHS-LC-Biotin was stopped at the occludin expression sites (C). Bar¼ 80 mm.
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intercellular permeability barrier, we injected a membrane-
impermeable paracellular tracer (Sulfo-NHS-LC-Biotin, mo-
lecular weight 556.59 Da) into the dermis and visualized its
diffusion (TJ permeability assay). The injected Sulfo-NHS-LC-
Biotin diffused through the intercellular space from the
stratum basal to the stratum granulosum and was abruptly
halted at occludin-positive sites (Figure 1b(C)).

To determine the contribution of TJ proteins to the barrier
function of TJs, we performed a pharmacological blockade of
TJ functions using ochratoxin A with human skin. Ochratoxin
A is a mycotoxin known mainly to affect TJ barrier properties
(Maresca et al., 2001). Recent studies have demonstrated that
ochratoxin A decreases the intercellular permeability barrier
of TJs by removing claudin-4 from the TJ network without
affecting cell viability (McLaughlin et al., 2004; Lambert
et al., 2007; Yuki et al., 2007). Claudin-4 decreased in a dose
dependent manner in human skin samples incubated with
ochratoxin A, compared with the control (Figure 2a). The TJ
permeability assay revealed that skin incubated with 10 mM

ochratoxin A failed to prevent the diffusion of Sulfo-NHS-LC-
Biotin at occludin expression sites (Figure 2b). These findings
indicated that TJs in human epidermis functioned as a

primary barrier to the paracellular passage of Sulfo-NHS-
LC-Biotin.

The intercellular permeability barrier of TJs in human skin
xenografted onto severe combined immunodeficiency (SCID)
mice was deteriorated after UVB irradiation

UVB irradiation is an important inducer of biological changes
in skin, including cutaneous barrier deterioration. Using
human skin xenografted onto SCID mice (Hachiya et al.,
2009), we analyzed the TJ intercellular permeability barrier to
Sulfo-NHS-LC-Biotin after UVB irradiation. Previously, it has
been reported that the increase in transepidermal water loss
peaked after 24 hours following UVB irradiation at three
minimum erythema doses in healthy human skin (Frodin
et al., 1988). In human xenografted skin, transepidermal
water loss increased significantly following a single
200 mJ cm�2 dose of UVB irradiation, peaking at 24, 48,
and 72 hours after irradiation and returning to baseline levels
by 144 hours (Supplementary Figure S1 online). In non-
irradiated human skin, Sulfo-NHS-LC-biotin was diffusely
distributed throughout the paracellular space but was
completely halted in regions where ZO-1 was concentrated
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Figure 2. Western blot analysis for tight junction (TJ) components and a TJ permeability assay using organotypic culture of human skin with or without

ochratoxin A. Human skin samples were incubated with or without ochratoxin A. After 24 hours, western blot analyses (a) and a paracellular tracer assay

(b) were performed. (a) Expression levels of claudin-4 were decreased. (b) Human skin was injected with Sulfo-NHS-LC-Biotin. Sulfo-NHS-LC-Biotin and

occludin were made visible using anti-occludin mAb (FITC) and streptavidin–TEXAS RED. Arrows indicate the portion in which diffusion of NHS-LC-Biotin

was prevented. Diffusion of Sulfo-NHS-LC-Biotin was not prevented at the occludin expression sites in human skin with 10 mM ochratoxin A. Bar¼40 mm.
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(Figure 3a). At both 24 and 48 hours after UVB irradiation,
injected Sulfo-NHS-LC-Biotin could pass through ZO-1
expression sites and reach the stratum corneum (Figure 3b
and c). At 144 hours after UVB irradiation, diffusion of Sulfo-
NHS-LC-Biotin was prevented at the region where ZO-1 was
concentrated, similar to what was observed in non-irradiated
skin (Figure 3d). These findings indicated that, in human
epidermis grafted onto SCID mice, TJs could also prevent the
diffusion of biotinylated tracer. However, this ability to
prevent solute diffusion was found to be severely damaged by
UVB exposure.

The intercellular permeability barrier of TJs in HSE models
was disrupted after UVB irradiation

Seven days after lifting HSE cultures to the air–liquid
interface, cultures were irradiated with a single UVB dose
of 40 mJ cm�2 and the TJ permeability assay was performed 6,
24, and 48 hours later. An assay of mitochondrial enzyme
activity indicated that UVB irradiation did not affect cell
viability under these experimental conditions (data not
shown). In non-irradiated control HSE, occludin expression
was localized beneath the stratum corneum and diffusion of
the Sulfo-NHS-LC-biotin was stopped at the occludin
expression sites (Figure 4a). Six hours after UVB irradiation,
TJs detected by occludin expression were found to retain the
intercellular permeability barrier function against the diffused
biotinylation tracer (Figure 4b). On the other hand, at 24 and
48 hours after UVB irradiation, the biotinylated tracer passed
through the sites of occludin expression and reached the
stratum corneum (Figure 4c and d). These findings demon-
strate that TJs in HSE can also prevent the diffusion of a
paracellular tracer, but the ability to prevent diffusion is
severely aggravated by UVB exposure.

The arrangement of TJ proteins was severely disrupted in
UVB-irradiated cultured normal human keratinocytes

After documenting the disruption of TJ function following
UVB exposure in human skin xenografts and HSE, the
mechanisms underlying the deterioration of TJs was investi-
gated using cultured human keratinocytes. In our previous
studies, immunofluorescent staining showed that keratino-
cytes had initiated the formation of TJs at 48 hours and
formed continuous mature TJs at 96 hours after Ca2þ -induced
differentiation (Yuki et al., 2007). To investigate whether
UVB irradiation impairs the ability to form mature TJs,
keratinocytes were exposed to UVB irradiation at 48 hours
after Ca2þ -induced differentiation at doses from 10 to
40 mJ cm�2. Immunofluorescent staining was performed at
48 hours after UVB irradiation to evaluate the arrangement of
TJ proteins. An assay of mitochondrial enzyme activity
indicated that UVB irradiation did not affect cell viability
under these experimental conditions (data not shown).

In non-irradiated keratinocytes, a continuous network of
occludin was found along the plasma membrane (Figure
5a(A)). In contrast, keratinocytes irradiated with UVB
exhibited dispersed, fragmented occludin expression in a
dose-dependent manner. A discontinuous network of occludin
enclosing cells suggested the sporadic formation of TJs
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Figure 3. Tracer experiments illustrate disruption and recovery of

intercellular permeability barrier of tight junction (TJ) after UVB irradiation

in human skin xenograft. Normal human skin grafted onto severe combined

immunodeficiency mice was irradiated with a single UVB exposure at a

dose of 200 mJ cm�2 and harvested 24, 48, or 144 hours later. Non-irradiated

grafted human skin was used as a control. Sulfo-NHS-LC-Biotin was

intradermally injected and tissue sections were double stained with a mAb

specific for ZO-1 (FITC) and streptavidin–TEXAS RED. Merged images

of the two fluorescent stains are shown, as seen in non-irradiated skin (a),

at 24 hours (b), 48 hours (c), and 144 hours (d) after UVB irradiation. Arrows

indicate the portion in which diffusion of NHS-LC-Biotin was prevented.

Bar¼40 mm.

www.jidonline.org 747

T Yuki et al.
Tight Junctions in Human Skin

http://www.jidonline.org


(Figure 5a(B)–(D)). The expression of claudin-1 was also
detected as a distinct line at the cell–cell borders of non-
irradiated keratinocytes, consistent with the expression of
occludin (Figure 5b(A) and (B)). In contrast, keratinocytes

irradiated with a UVB dose of 20 mJ cm�2 expressed
fragmented claudin-1 in a discontinuous membranous
pattern (Figure 5b(D)). Similar results were also found for
claudin-4 expression between non-irradiated and UVB-
irradiated keratinocytes (Figure 5b(E)–(H)). In concert with
the observed expression patterns of TJ components, transe-
pithelial electrical resistance of the keratinocyte sheet was
decreased by UVB irradiation in a dose-dependent manner
(Supplementary Figure S2 online). This indicated a weaken-
ing of the permeability barrier of the keratinocyte sheet to
electrolytes. Taken together, the findings suggest that UVB-
irradiated keratinocytes lose the ability to form mature TJs
and are characterized by a discontinuous membranous
pattern of TJ proteins.

UVB irradiation downregulated the active forms of Rac1
and atypical protein kinase C, crucial molecules for
continuous TJ formation
It has been reported that continuous TJ formation is regulated
by the polarity protein complex Par3/Par6/atypical protein
kinase C and that this signaling complex is activated by Rac-
induced protein phosphorylation (Hirose et al., 2002;
Macara, 2004; Chen and Macara, 2005). In addition,
dominant-negative Rac1 and kinase-dead atypical protein
kinase C have been reported to inhibit TJ maturation in
mouse keratinocytes (Mertens et al., 2005; Helfrich et al.,
2007). Therefore, we examined the activation state of Rac1
and atypical protein kinase C in UVB-irradiated keratino-
cytes. The Rac1 activation assay demonstrated that guanosine
triphosphate–Rac1 (activated forms of Rac1) was markedly
decreased by UVB exposure in a dose-dependent manner
(Figure 6a(A)), whereas total Rac1 protein expression was not
suppressed after UVB irradiation (Figure 6a(B)). In addition,
the level of phosphorylated atypical protein kinase C was also
reduced by UVB exposure in a dose-dependent manner
(Figure 6a(C)), although total atypical protein kinase C was
not changed by UVB irradiation. In contrast to guanosine
triphosphate–Rac1 and phosphorylated atypical protein kinase C,
protein expression levels of occludin, claudin-1, and claudin-
4 were not altered after UVB irradiation (Figure 6b(A)–(C)).
On this basis, we concluded that the downregulation of Rac1
and atypical protein kinase C activities is one possible
explanation for the defects in TJ maturation.

DISCUSSION
Furuse et al. (2002) have reported that claudin-based TJs form
a paracellular barrier in mouse epidermis. Many reports have
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Figure 4. Tracer experiments used to determine tight junction (TJ) barrier

integrity in human skin equivalents (HSEs). Mature HSEs were irradiated with

a single UVB of 40 mJ cm�2 and harvested 6, 24, and 48 hours after exposure.

Thirty minutes before each harvest, the culture medium was changed to

phosphate-buffered saline containing Sulfo-NHS-LC-Biotin. In non-irradiated

sections (a), Sulfo-NHS-LC-Biotin was blocked at the occludin expression

sites. Sections from HSE harvested 6 hours after UVB treatment (d) retained

the ability to block the tracer. At 6 (b) and 24 hours (c) after UVB treatment,

the tracer was able to break through and reach the SC. Arrows indicate

the portion in which diffusion of Sulfo-NHS-LC-Biotin was prevented.

Bar¼20 mm.
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suggested that functional TJs are present in human epidermis
(Brandner et al., 2002; Langbein et al., 2002; Schluter et al.,
2004). However, there has been no direct evidence of TJ
function as an intercellular permeability barrier in human
epidermis. To clarify this issue, we performed immunohisto-
chemical studies for TJ components and a TJ permeability
assay using human epidermis. A subcutaneously injected
paracellular tracer (Sulfo-NHS-LC-Biotin; B550 Da) was
halted because of the presence of TJs marked by occludin
staining between the cells beneath the stratum corneum.
Incubation of human skin with ochratoxin A in organotypic
cultures decreased the expression level of claudin-4 and
deteriorated the TJ intercellular permeability barrier to
biotinylation tracer. It has been reported that ochratoxin A

induces a reduction in transepithelial electrical resistance
with a concomitant increase in the paracellular permeability
of membrane impermeant tracers in human intestinal cells
and epidermal keratinocytes (Lambert et al., 2007; Yuki et al.,
2007). This loss of epithelial barrier function has been found
to be due to removal of TJ proteins from the TJ network. In
MDCK I cells incubated with C-CPE, claudin-4 is also
selectively removed from TJs, concomitant with TJ barrier
downregulation (Sonoda et al., 1999). To our knowledge it is
previously unreported that TJs function as a primary barrier to
the paracellular diffusion of small molecules (B550 Da) in
human epidermis.

The stratum corneum just above TJs clearly provides a
strong barrier to the movement of water (Madison, 2003).
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Figure 5. Alterations in the organization of tight junction (TJ) proteins in normal human keratinocytes following UVB irradiation. (a) Immunofluorescence

analysis was performed to examine the localization of the TJ-specific marker, occludin (FITC), after UVB irradiation. Panels depict non-exposed cells

(A) and cells irradiated with UVB doses of 10 (B), 20 (C), and 40 (D) mJ cm�2. Bar¼ 20 mm. (b) Double immunostaining of occludin (FITC) with claudin-1

(RRX) or claudin-4 (Cy3). (A), (C), (E), and (G) show occludin staining. Claudin-1 and Claudin-4 staining is shown in (B), (D) and (F), (H), respectively.

(A), (B), (E), (F) and (E), (D), (G), (H) indicate non-irradiated and UVB-irradiated cells, respectively. UVB irradiation dose¼20 mJ cm�2. Bar¼ 10mm.
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Our findings here demonstrated that epidermal TJs prevented
the movement of Sulfo-NHS-LC-Biotin. No studies, however,
have ever shown whether epidermal TJs can prevent the
movement of water and/or ions. To better understand TJ
function in the epidermis, it would be very useful to clarify
the barrier properties (the cutoff size and ion selectivity for
free diffusion across TJs) of TJs in the epidermis.

The intercellular permeability barrier of TJs was decreased
at 24 and 48 hours after UVB irradiation. Similar results were
obtained in UVB-irradiated mouse skin (Yamamoto et al.,
2008). It will be very important to consider the mechanism
underlying the TJ dysfunction induced by UVB irradiation.
Epithelial junction formation can be dissected into multiple
steps in a sequential manner during the cell polarization

process in a mouse epithelial cell line, MTD1-A cells
(Yonemura et al., 1995; Ando-Akatsuka et al., 1999).
Immunofluorescence analyses have demonstrated that at
the initial phase of cell polarization, fibroblastic spot-like
junctions containing E-cadherin and ZO-1 are formed as a
nascent junctional complex (Vasioukhin et al., 2000),
followed by ZO-1 dissociation from E-cadherin that sepa-
rately forms epithelium-specific belt-like junctions (Ando-
Akatsuka et al., 1999). In this process, atypical protein kinase
C activity is required for the maturation of junctions from the
spot-like formation of adherence junctions and TJs to the final
belt-like structure seen in MTD1-A cells and HaCaT cells
(Suzuki et al., 2001, 2002; Aono and Hirai, 2008). In
addition, Mertens et al. (2005) have demonstrated that lower
endogenous Rac1 levels and less atypical protein kinase C
activity, as determined by Rac1 activation and atypical
protein kinase C autophosphorylation assays, could suppress
maturation of belt-like adherence junctions and TJs. In our
experiments, lower levels of guanosine triphosphate–Rac1
and phosphorylated atypical protein kinase C were observed
and occludin was localized discontinuously in UVB-irradiated
cells, suggesting that UVB irradiation disrupted Rac1 and
atypical protein kinase C signaling, which then inhibited the
maturation of TJs.

The downregulation of TJ proteins is another possible
cause of TJ dysfunction. Occludin, claudin-1, and claudin-4
in cultured keratinocytes were all unchanged after UVB
irradiation in our experiments. However, we cannot rule out
the possibility that the TJ dysfunction results from decreases
of other TJ components expressed in the epidermis (Brandner
et al., 2002; Amasheh et al., 2005).

Lemini-Lopez et al. (2006) reported an intriguing phenom-
enon in psoriatic skin by using epidermal sheets to allow
observation of a simple horizontal plane of the epidermis. In
normal skin, occludin, a specific marker of TJs, is tethered to
the cell membrane in a continuous linear pattern. However,
in lesional skin, occludin shows a discontinuous pattern
along the periphery of the cells, which is similar to the
staining pattern that we observed in UVB-irradiated cells
(Figure 5a and b). This result, in combination with our in vitro
experiments, suggests that the intercellular permeability
barrier of TJs might be decreased because of downregulation
of endogenous Rac1 and atypical protein kinase C activity in
psoriatic skin.

In conclusion, we demonstrated that TJs could function as
an intercellular permeability barrier to small molecules
(B550 Da) in human epidermis. Furthermore, irradiation
with UVB into human skin xenografts and HSEs results in
functional deterioration of TJs. These results led to our
presumption that dysfunction of the cutaneous barrier is
related to impaired TJ function. In the future, it will be very
important to clarify the relationship between the epidermal TJ
function and integrity of the stratum corneum. Our research
findings provide new insights into the fundamental under-
standing of the regulatory mechanisms underlying human
cutaneous barrier function. In addition, targeting Rac1 and
atypical protein kinase C could be a promising treatment
strategy for xerotic skin disorders.
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irradiation at these doses did not alter the expression of these TJ proteins.
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MATERIALS AND METHODS
Human donors and organotypic culture

Human skin was obtained from Caucasian subjects who underwent

abdominal plastic surgery at The Christ Hospital or University

Hospital (Cincinnati, OH). Collection of discarded tissue was

approved by the Institutional Review Board of Cincinnati Children’s

Hospital Medical Center and informed consent was obtained from

the volunteers before surgery. The study was conducted according to

the declaration of Helsinki Principles. Some experiments were

performed immediately after surgery. For organotypic cultures,

punch biopsies 6 mm in diameter were taken and placed dermis-

side down in culture dishes and immersed in medium. Only the

dermis was in contact with the medium, whereas the epidermis

remained exposed to air. Complete Epilife with HKGS-V2 plus

penicillin, streptomycin, and amphotericin (Cascade Biologics,

Portland, OR) was used for the culture medium, with or without

the claudin-4 inhibitor, ochratoxin A (Sigma-Aldrich, Dorset, UK).

For grafting human skin onto SCID mice, skin from abdominoplasty

was transplanted onto 5- to 7-week-old SCID mice as described

elsewhere (Sriwiriyanont et al., 2006). On confirmation of complete

healing, UVB irradiation experiments were performed. Animals were

handled according to the ethical principles of animal experimenta-

tion established by the Institutional Animal Care and Use Committee

of Cincinnati Children’s Hospital Medical Center. For cell cultures,

normal human epidermal keratinocytes were handled by the

methods described previously (Yuki et al., 2007). HSEs were

purchased from TOYOBO (Osaka, Japan) and used according to

the manufacturer’s recommendations.

UVB irradiation

UVB irradiation was performed using fluorescent sun lamp tubes

(Toshiba FL 20SE, Toshiba Electric, Tokyo, Japan) as the UVB source.

Three different experimental models were used to test the functional

alteration of TJs. The first model was the xenografted human skin

model. After complete healing of xenografts, the human skin was

irradiated with a single UVB exposure (200 mJ cm�2). The second

model was a commercially available HSE that was irradiated with a

single UVB at a dose of 40 mJ cm�2. The third model was an in vitro

model using keratinocytes that were cultured as described above.

Forty-eight hours after the induction of differentiation by the elevated

Ca2þ concentration, cells were irradiated with UVB at doses that

ranged from 10 to 40 mJ cm�2 to examine the effect of UVB

irradiation on the formation of TJs. Cells were cultured for another

48 hours before the function and organization of TJs were examined.

Immunofluorescence microscopy

Immunofluorescence microscopy was performed by the method

described previously (Furuse et al., 2002; Yuki et al., 2007) using the

following antibodies: anti-occludin mAb (MOC37 mAb) was

kindly gifted from Professor Mikio Furuse (Department of Cell

Biology, Graduate School of Medicine, Kobe University) (Saitou

et al., 1997); anti-ZO-1 mAb, anti-claudin-1 polyclonal antibody,

and anti-claudin-4 mAb were purchased from Zymed Laboratories

(San Francisco, CA).

SDS-PAGE and immunoblotting

Protein extraction and SDS-PAGE gel electrophoresis were per-

formed by the methods described previously (Yuki et al., 2007). For

assessment of TJ proteins, anti-occludin polyclonal antibody, anti-

claudin-1 polyclonal antibody, and anti-claudin-4 mAb (Zymed

Laboratories) were used. For examination of atypical protein kinase

C activity, anti-atypical protein kinase C polyclonal antibody (Cell

Signaling, Danvers, MA) and anti-phospho-atypical protein kinase C

(Cell Signaling) antibody were used.

Rac activation assay

Rac activity was determined using a Rac activation assay biochem-

ical kit (Cytoskeleton, Denver, CO), according to the manufacturer’s

recommendations.

TJ permeability assay

The TJ permeability assay was performed to assess TJ function using

a surface biotinylation technique according to the method devel-

oped by Furuse et al. (2002). Briefly, B50 ml of 10 mg ml�1 EZ-Link

Sulfo-NHS-LC-Biotin (Pierce, Rockford, IL) in phosphate-buffered

saline containing 1 mM CaCl2 was injected into the dermis of human

skin, which had been grafted onto SCID mice. As for HSE, HSE was

incubated with 2 mg ml�1 EZ-Link Sulfo-NHS-LC-Biotin from the

dermal side. After a 30-minute incubation, the skin samples were

removed and frozen in liquid nitrogen. Frozen sections, 5-mm thick,

were fixed in 95% ethanol at 4 1C for 30 minutes and then placed in

100% acetone at room temperature for 1 minute. The sections were

soaked in 1% BSA/phosphate-buffered saline for 15 minutes,

incubated with either anti-occludin mAb or anti-ZO-1 mAb for

1 hour, washed three times with blocking solution, and incubated

with a mixture of secondary antibody-conjugated FITC and

streptavidin–Texas Red (Calbiochem, Darmstadt, Germany) for

1 hour.

Transepidermal water loss

Transepidermal water loss was determined over a 196-hour interval

following UVB irradiation by measuring water evaporation from the

surface of xenografted human skin using a DermaLab device (Cortex

Technology, Hadsund, Denmark).
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