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Abstract

Quality of data is one of the key issues in the domain of Volunteered geographic information (VGI). To this purpose, in literature

VGI data has been sometime compared with authoritative geospatial data. Evaluation of single contributions to VGI databases is

more relevant for some applications and typically relies on evaluating reputation of contributors and using it as proxy measures

for data quality. In this paper, we present a novel approach for reputation evaluation that is based on the well known PageRank

algorithm for Web pages. We use a simple model for describing different versions of a geospatial entity in terms of corrections

and completions. Authors, VGI contributions and their mutual relationships are modeled as nodes of a graph. In order to evaluate

reputation of authors and contributions in the graph we propose an algorithm that is based on the personalized version of PageRank.
c© 2016 The Authors. Published by Elsevier B.V.
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1. Introduction

Models for evaluating quality of data have been been proposed and widely discussed in the context of authoritative

geospatial data sources15. In the domain of Volunteered geographic information (VGI) this is considered one of the

key and most studied issues1,7,14. Various works have compared VGI datasets with authoritative geospatial ones on

the same spatial region in order to provide a general evaluations of the average VGI quality according to various

metrics (e.g., 7). However, quality estimation of single VGI contributions, like the description and location of a point

of interest, may be more relevant for typical end users which operate focusing on a single or few geospatial objects.

As well as, using traditional geospatial datasources for evaluating VGI data by comparison is not always viable or

convenient due to licensing fees and access restrictions. Therefore, in literature (e.g., 5) metrics have been defined for

measuring trust or reputation level of authors of VGI contributions based on feedbacks and these metrics have been

used as proxy measures for quality of VGI contributions. Alternatively, reputation of users is inferred by their activities

of feature editing and how these activities have been treated later on by other users10. Reputation evaluation of users

and descriptions of VGI objects have been also performed based on a model explicitly including production time and

history of versions of the geospatial object16. As well as, measuring the reputation of users, when they produce ratings
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Fig. 1. Positioning of the Corrections LOD Layer.

or when we need to weight their experience, is relevant in other domains, e.g., Web services4. Additional motivations

for dealing with VGI quality in a different way w.r.t. the approaches for quality of authoritative geospatial datasets,

are heterogeneity, contributors’ behavior, environment and their mutual interactions. For example, heterogeneity of

coverage occurs since contributions are not usually distributed in a uniform way on the map. This phenomena is well

discussed in literature and known as generating “cupcakes” of information, with zones well detailed and other ones

that are not covered or are covered partially2. Other heterogeneities are possibly due to non uniform motivations

of users. This brings to the production of datasets detailed and structured in a way that reflects the users’ personal

interests. In literature, the outcome of uneven production is known as “patchworks of geographic information”8.

Paper contribution and positioning. In this paper, we propose a novel approach for estimating reputation of VGI

data and authors based on the well known PageRank algorithm for ranking Web pages. Some other works deal with

the estimation of reputation in VGI. For example, Bishr and Khun5 describe a reputation model based on coherence

between volounter’s reports on drinkability of wells in developing countries. The drinkability status has only two

possible values: good and bad. Time is explicitly included in the model. In fact, trustworthiness in reports on wells

is reduced proportionally to the passed time. Our model considers more general VGI scenarios allowing for complex

descriptions for objects. Another approach is given in Zhao et al. 16 that bases the trustworthiness on contributor’s

reputation and on analyzing editing sequences of VGI versions, similarly to Keßler et al. 11 and D’Antonio et al. 6.

Each version is created by a contributor and describes the current status of a geospatial object. Level of trust for

a specific version depends on: (i) contributor’s reputation; (ii) distance between this version and the previous one

(smaller is better) for the same object; (iii) level of trust in the previous version. This approach looks actually inspired

by ideas in D’Antonio et al. 6 but comes with a complete data model. As per our model, these Authors distinguish

between implicit and explicit assessment of contributors. Ours is a light model (e.g., it does not include in the current

version, effects of information obsolescence) and focuses on potentialities and properties of using the PageRank

algorithm in VGI that, as far as we know, is something not before discussed in literature. Moreover in our approach

we explicitly consider the issue of defending the reputation assessment from undesired manipulations performed by

users.

Our paper is organized as follows. A simple model for describing versions of the same geospatial object in terms

of corrections and completions is given in Sect. 2, in the context of a linked data application scenario. Authors, VGI

contributions and their mutual relationships are then modeled as nodes of a graph. In order to evaluate reputation we

propose in Sect. 4 an adaptation of the personalized version of PageRank described in Sect. 3 to our problem. Finally,

we provide some experimentation based on a preliminary implementation of the approach in Sect. 5.

2. A linked data model for VGI

In this section, we briefly present in a linked data application scenario the reference framework9 for our proposal.

According to the model in16 a VGI version describes the state of a geospatial object. A state makes reference to
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attributes and their values of an object and can change during the object lifespan (e.g., the address has changed).

For an object state, a user may produce a VGI version and another user may correct (e.g., proposing a change to

an attribute value) or complete (e.g., adding one or more pairs attribute-value) thus originating another version. A

user can also give a positive or a negative feedback to corrections and completions in order to express her agreement

or disagreement. In our framework, we consider corrections and completions of both VGI data and authoritative

geospatial data exposed as linked data. The collection of corrections and completions is stored as Linked Open Data

(LOD). According to a conceptual perspective, this data can be considered as an additional VGI LOD layer in the

architecture of geospatial linked data, which is set between the layer of the linked data sources and the applications

one. In this way, geospatial applications can use and query the additional layer and the original sources in a joint

way as depicted in Fig. 1. Basic requirements for the framework are that the maintained data collection has to be

complementary to the existing sources and compliant to the LOD practices: (i) the VGI LOD layer is published

as LOD as the original data; this means that, each VGI version includes as well the original URI(s) which can be

resolved to access the original description of the geospatial object in the corresponding source; (ii) the VGI LOD
layer constitutes a mediation layer built over the original sources and linked to them; (iii) Applications and users

can browse this layer by using either specific applications or linked data querying tools (e.g., RDF data browsers and

SPARQL/GeoSPARQL query languages).

3. The Personalized PageRank algorithm

In the Google PageRank algorithm the relevance of a web page B is recursively determined by the total number of

links pointing at it 3. Where each of these links has a weight proportional to the relevance of the web page A, source

of the link, divided by the number of the links outgoing from A. The resulting relevance is also called rank of the

page. Linked pages define a directed graph where pages are represented as nodes and links as edges. In the original

formalization of PageRank the rank measures the authority of a web page and is meant as probability of visiting a the

page by a web surfer. The rank of a page is calculated as:

PR(pi) =
1 − α
|N| + α ·

∑

p j∈M(pi)

PR(p j)

L(p j)
(1)

where PR(p j) is the page p j rank, N is the number of pages, α a factor usually set to 0.85, called damping factor,

M(pi) the number of pages with links to pi and L(p j) is the number of outgoing links from page p j. Initially, all pages

are assigned with the same probability, that is, PR(pi) = 1/N. The approach actually used to compute the recursive

Equation (1) is the following. First, a N × N transition matrix P is defined with elements pi j = 1/L(p j) if there is

a link from page j to page i, otherwise pi j = 0. Then the matrix P is modified to deal with rows of 0s associated

with dangling pages, i.e., pages with no outgoing links. These rows are replaced with vectors (1/n)eT , where eT is a

vector of length n with 1s elements and n is the order of the matrix. The resulting matrix is denoted as P. In order to

compute the PR(pi) values it is required a further manipulation of the matrix (to make it irreducible). This consists of

computing a matrix P = αP + (1 − α)eeT /n with α the damping factor above mentioned. Finally, PR(pi) is found as

i-th component of the eigenvalue π∗, where π∗ is the solution of the system:

πP = π (2)

This solution can be obtained by applying simple and effective iterative procedure3.

The personalized version. In our framework we rely on a version of the PageRank algorithm that is known as Per-

sonalized PageRank12. The difference between the standard algorithm and the personalized one is the presence of

a vector, called personalization vT , that modifies the irreducible matrix P = αP + (1 − α)eeT /n of PageRank. The

matrix eeT /n is called teleportation matrix and intuitively it permits to set for each page A the probability that the web

surfer dumps the current page and without following any link she chooses arbitrarily to visit page A. In the standard

version, each page is assigned with the same probability to be visited. In the Personalized version we want that the

probabilities that a user teleports any web page are not uniform so the teleportation matrix is redefined as evT . The

i-th element of vT is the probability to teleport to node i and higher this probability, higher will be the rank of the page
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Table 1. User’s actions and impact on the personalization vector vT .

Type Subject Object Author of the object Result

Correction U j Iik Ui • Decrease the element associated with Vi in vT

• Decrease the element associated with Iik in vT

Completion U j Iik Ui • Increase the element associated with Vi in vT

• Increase the element associated with Iik in vT

Feedback + U j Iik Ui • Increase the element associated with Vi in vT

• Increase the element associated with Iik in vT

Feedback - U j Iik Ui • Decrease the element associated with Vi in vT

• Decrease the element associated with Iik in vT

i. Therefore, v can be used to influence the rank of a page, increasing or decreasing it. This approach has been used in

web engines to personalize search results based on user requirements (e.g., ranking better pages about sport for users

that expressed this prefence) or to penalize that pages which try to increase illegally their rank (also known as, link

farms technique).

4. PageRank-based reputation evaluation

In order to apply the PageRank technique to the VGI data model presented in Section 2, we describe VGI data as

a graph and evaluate each node using an adapted version of Personalized PageRank algorithm. Stated in other terms,

we use PageRank to assign a reputation value to VGI contributors and versions of data based on the computed rank.

We consider four different types of nodes representing: user, VGI versions, correction and completion. When a new

user registers, she is assigned with a default value in the personalization vector and she receives a new rank after a

first iteration of the algorithm. Moreover, a new node is added to the graph in order to represent the new user. When

a user generates a new VGI version, this action creates a new node linked from the user node. Each VGI version can

be completed or corrected more times. Conceptually, a completion is a set of new pairs < attribute, value > added

to an existing VGI version (e.g., adding <phone2,+390303333020> to the version). A correction consists of a new

value for an existing pair < attribute, value > (e.g., the pair <opening, Monday-Friday> corrects <opening,Monday-

Saturday>). Completion nodes are connected to the VGI version (the link is oriented from the VGI version to the

completion node) and to the author (the link is oriented from the author to the completion node). Correction nodes

are connected to either a VGI version or a completion node and to the author. For example, in Fig. 2, nodes 1,3,4,5,6

represent users. Node 2 is a VGI version created by user 1. Node 7 is a completion produced by user 3 to this

VGI version (node 2). Note that corrections of corrections are not included in the current version of the model. We

distinguish between explicit and implicit feedbacks. A user can give an explicit positive or a negative feedback to a

VGI version, correction, completion. This is not represented in the graph organization but it impacts on the ranking

process as explained in the following. Moreover, a correction is also considered as an implicit negative feedback,

since it reveals something wrong about the corrected information, and a completion as an implicit positive feedback,

since it confirms the correctness of the information by completing it.

Operationally, our approach is divided into two steps. In the first step, the personalization vector vT is modified

according to users’ actions. As we said, changes in vT set the precondition for changing ranks of nodes. For example,

if a version receives a correction, both the rank of information and the rank of user which generated it are decreased

since this is an implicit negative feedback. Table 2 represents all the admitted user’a actions and their effects on vT .

Every change (increase or decrease) in vT depends on the rank of the subject performing the action. Obviously, every

change in vT is such that the sum of all its elements remains equal to one by normalizing the vector.

In the second step, the PageRank algorithm is applied to the graph using as input the personalization vector vT

updated by the first step. This has the effect of actually changing the rank of the graph nodes in order to reflect a

possible new value of reputation for users, VGI versions, correction and completions . As said before, a user can also

give a feedback to a versions, a correction or a completion and we permit a user to give at most one feedback per each

node.

Some properties of the node ranking are the following:
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1: 0.13448

2: 0.248787: 0.36082

6: 0.06398

5: 0.06398

3: 0.06398

4: 0.06398

Fig. 2. Initial graph configuration.

• The initial rank of a VGI version is proportional to the rank of the author. So better the author’s rank, more

reliable is considered the version. As well as, initial rank of a VGI version is inversely proportional to the

number of versions produced by an author.

• Rank of a version is changed based on received feedbacks (explicit or implicit). The impact of a feedback on

the version rank is proportional to the feedback author’s rank. So better the author’s ranking, more powerful the

feedback effect.

5. Preliminary experimentation

In this section we provide some preliminary experimentation of the approach based on a Matlab implementation.

In particular, we consider how the approach performs when we have a mix of cooperative and non cooperative users

on a simple case study. Cooperative users give a positive feedback to VGI versions that we assume correct and non

cooperative ones assume a vandalistic attitude giving a negative feedback to the same version in order to damage its

reputation13.

We consider a version A that is truthful and has been confirmed by a number x (in this case we use x = 5) of users

through positive feedback or completion. Initial situation in represented as graph in Fig. 2, where inside nodes we

report the node identificator followed by the node rank.

We analyzed the behavior of the version rank as the number of non cooperative users increases. Fig. 3(a) shows

how the ranks of a version (represented by node 2 in the graph) and of the author (node 1) as the the data evolve.

In Fig. 3(b) the authors’ rank variation is represented as percentage. We observe that it decreases by 30% when the

number of non cooperative users equals the number of the cooperative ones, that is 5.

We analyzed also the case of two users trying to give each other positive feedbacks for all the information they have

produced in order to raise artificially their ranks. Our results show that this type of manipulation is not very effective

for its authors because the redistribution of ranks implemented in our approach bounds the rise of the ranks. Indeed,

even if the sum of ranks of the users may increase (e.g., by 30%) the sum of the ranks of all the versions, correction

and completions they have produced decreases by a value such that the sum of all values gives 1.

6. Conclusions

In this paper we presented a first version of a model for evaluating reputation of VGI users and data. Users and

VGI contributions are modeled as nodes and authoring relationships between them as direct edges. A approach based
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Fig. 3. Resistance to non cooperative users: (a) absolute ranks. (b) relative user’s rank.

on an adaptation of the personalized PageRank algorithm, which is used for ranking web pages, is applied to the graph

in order to compute reputations associated with nodes. The proposal is part of a wider framework we developed for

dealing with VGI Linked Open Data. The model has to be further studied and improved. For example, currently

it does not distinguish between corrections to errors and corrections describing updates required by the evolution of

geographic objects. In this sense, an update action should have an effect on reputation different from a completion. We

also plan to include the effect of aging on VGI data and on feedbacks as well as studying the possibility of integrating

evidence from the editing history of a version as in11, 6, 16. Finally, a further possible refinement concerns dealing

with some complexity indexes (e.g., density in the working area or type of objects classes) in order to evaluate the

user reputation also proportionally to her ability to deal with complex situations.
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