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WHAT THIS PAPER ADDS

� A recent genome wide association study has demonstrated a highly significant association between abdominal aortic aneurysm
(AAA) and the LRP1 (low density lipoprotein receptor related protein 1) gene. This review outlines how this cell surface transport
molecule may influence the establishment and propagation of aneurysmal disease, essentially introducing LRP1 as a new potential
candidate gene for AAA.
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Objectives: A recent GWAS demonstrated an association between low density lipoprotein receptor related
protein 1 (LRP1) and Abdominal Aortic Aneurysm (AAA). This review aims to identify how LRP1 may be
involved in the pathogenesis of abdominal aortic aneurysm.
Design and materials: A systematic review of the English language literature was undertaken in order to
determine whether LRP1 and associated pathways were plausible candidates for contributing to the
development and/or progression of AAA.
Methods and results: A comprehensive literature search of MEDLINE (since 1948), Embase (since 1980)
and Health and Psychological Instruments (since 1985) was conducted in January 2012 identified 50
relevant articles. These studies demonstrate that LRP1 has a diverse range of biological functions and is
a plausible candidate for playing a central role in aneurysmogenesis. Importantly, LRP1 downregulates
MMP (matrix metalloproteinase) activity in vascular smooth muscle cells and regulates other key
pathways involved in extracellular matrix remodelling and vascular smooth muscle migration and
proliferation. Crucially animal studies have shown that LRP1 depletion leads to progressive destruction of
the vascular architecture and aneurysm formation.
Conclusions: Published evidence suggests that LRP1 may play a key role in the development of AAA.

� 2012 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved.
Introduction

A recent genome wide association study (GWAS) has demon-
strated a genetic association between LRP1 (Low density lipopro-
tein receptor related protein 1) and abdominal aortic aneurysm
(AAA).1 This association between LRP1 and AAA was independent
of risk factors for generalized cardiovascular disease, suggesting
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that the association is specific for AAA. The lead SNP (single
nucleotide polymorphism) at the LRP1 locus was associated with
altered LRP1 expression in aortic adventitial tissues.

LRP1 has multiple ligands (Fig. 1)2,3 with a wide variety of bio-
logical activity, which include diverse processes previously impli-
cated in AAA disease. Although the pathological process that leads
to AAA is not fully understood, several key hallmarks have been
identified such as extracellular matrix degradation and vascular
smooth muscle cell (VSMC) depletion.4,5 LRP1 is implicated in
VSMCmigration and proliferation via the binding of specific growth
factors,6 and LRP1 also binds matrix metalloproteinase 9
(MMP9),2,3 a protease capable of degrading collagen. Finally,
compelling evidence that LRP1 is involved in AAA arises from
d by Elsevier Ltd. All rights reserved.
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Figure 1. Schematic of LRP1 and annotated sites of ligand binding. Where site of ligand binding is not known, inferred locations are displayed, or else they are listed on the right
hand side of the diagram.
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animal knockout studies, where mice with VSMC specific LRP1
knockout had a diversely altered vascular histology and ultimately
developed AAA.6 This evidence highlights LRP1s involvement in
AAA.

The aim of this systematic review of the literature was therefore
to determine if the known functions and interactions of LRP1 form
a plausible basis for its involvement in the initiation and progres-
sion of AAA.

Methods

This review was conducted according to established guidelines7

(Fig. 2). Initially an electronic search of MEDLINE (since 1948),
Embase (since 1980) and Health and Psychological Instruments
(since 1985) was conducted using OVID Online (2000e2012 Ovid
Technologies, Inc. New York, USA). The search terms used were the
synonyms for LRP1 (http://www.genecards.org/), ‘LRP1’, ‘Low
density lipoprotein receptor related protein 1’, ‘LRP’, ‘Alpha-2-
macroglobulin receptor’, ‘A2MR’, ‘CD91’, ‘apolipoprotein E
receptor’, ‘APOER’, ‘type V tgf-beta receptor’ and also ‘vascular’ and
‘aneurysm’. Additional articles were identified from reference lists.
Following combination of the database and reference list cohorts of
articles, duplicates were removed. Articles were included if they
related to LRP1 and its involvement in vascular biology, arterial wall
structure or atherosclerosis. Two reviewers (JBW, PWS) indepen-
dently selected appropriate studies based on abstract content.
Studies that met the inclusion criteria were reviewed in full text,
along with those for which it was unclear whether inclusion was
warranted. Research methodology was also scrutinized as an
assessment of article quality. Discrepancies between reviewers’
opinions were resolved by discussion.

LRP1 Structure

The structure of LRP1 permits the binding of a wide variety of
ligands (Fig. 1). It is through structural similarities with the LDL
(low density lipoprotein) receptor that LRP1 was classified as
a member of the LDL receptor family. In 1988 Herz and colleagues
first described a 500 kDa liver cell surface protein whose sequence
closely resembled LDL receptor and epidermal growth factor
(EGF).8 They proposed this protein, LDL-receptor related protein
(LRP) functioned not only as a lipoprotein receptor but also had
possible functions in modulating cell growth. LRP was located at
the cell surface, had high levels of tissue expression in liver, lung
and brain and significant levels in intestine and muscle. LRP1, as
LRP is now known, is initially synthesised as a 600 kDa precursor
that then undergoes furin cleavage within the golgi apparatus,
resulting in the 85 kDa intracellular and intramembrane fragment
and the 515 kDa extracellular fragment.9,10 These two fragments
form a non covalently bonded heterodimer spanning the cell
membrane; with both domains featuring structural motifs capable
of binding a diverse range of over 40 ligands.2,3 LRP1 is a member
of a gene family of low density lipoprotein receptors, including
LRP1B, LRP5, LRP6, low density lipoprotein receptor (LDLR), very
low density lipoprotein receptor (VLDLR) and megalin.11 Structural
homology exists between the different members of the family;
however LRP1, LRP1B and megalin are the 3 largest members. All
members of the LRP protein family have at least one NPxY motif
(asparagine-proline-x-tyrosine, where x can be any amino acid) in
their intracellular tail. LRP1 has 2 NPxY motifs within its intra-
cellular region, and a variety of ligands are known to bind
specifically to these motifs.12 The extracellular domain contains
a variety of binding sites, cysteine-rich complement type binding
domains, EGF receptor like cysteine repeats and YWTD (Tyrosine-
Tryptofan-Threonine-Aspartic acid) domains. LRP1 acts as
a membrane receptor for a wide variety of ligands thanks to the 4
cysteine-rich complement binding domains. As it is capable of
binding such a wide variety of ligands LRP1 is involved in multiple
processes and several of these have potential to affect the arterial
wall. For example, the proteases MMP2, MMP9 and the growth
factor PDGF can all bind to the extracellular portion of LRP1.2,3

LRP1 is essential for embryonic implantation and LRP1 knockout
in mice is an early embryonic lethal variant, demonstrating its
importance.13 In summary, LRP1 has structural similarity to other
members of the lipoprotein receptor family and several distinct
binding regions that facilitate adhesion to multiple ligands, some
of which have potential to affect the arterial wall and lead to
aneurysm formation.

http://www.genecards.org/
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Figure 2. Literature Search Flow diagram according to the PRISMA guidelines [Moher 2009]. n ¼ number of articles.
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LRP1 and extracellular matrix degradation

The regulation of proteases by LRP1 may impact on aneurysmal
development, via degradation of the extracellular matrix (ECM),
a key feature of aneurysm development.4 MMP9 is a member of the
matrix metalloproteinase family, a group of proteinases that have
been widely implicated in AAA. MMP9 was localized to within
macrophages of the wall of AAA14 and found to be elevated in the
plasma of patients with AAA.15 Subsequently MMP9 gene poly-
morphisms were significantly associated with AAA in a meta-anal-
ysis.16 MMP9 has been shown to directly bind to LRP1 with high
specificity, with LRP1 depleted cell lines having reduced capacity to
internalize and degradeMMP9, proving LRP1 is a regulator of active
MMP9 levels.17 This experimental evidence was achieved in a cell
line of mouse embryonic fibroblasts, where LRP1 activity was
depleted by addition of the receptor associated protein, a ligand
antagonist, to culture media. LRP1 is essential for MMP9 upregula-
tion, as LRP1 depleted microglial cells have upregulated MMP9 in
response to ischaemia; however a further study showed that both
LRP1 and MMP9 were upregulated in response to hypoxia in renal
cells.18,19 This conflicting evidence may be due to the interaction
between LRP1 and MMP9 being cell dependent or due to a lack of
knowledge of the underlying mechanism of LRP1’s interactionwith
MMP9. This interactionmay be through transport ofMMP9 through
the cell membrane via LRP1 or through its interaction with other
matrix proteins that regulate MMP9 activity. Despite the relation-
ship between LRP1 and MMPs not being clear, crucial data from
aortic tissue and animal models demonstrate LRP1 loss increases
levels of MMP and ultimately leads to AAA formation.6,20

LRP1 may also regulate ECM degradation and AAA propagation
via thrombospondins, TSP1 and TSP2 which both bind to LRP1.21,22
TSPs 1 and 2 inhibit the gelatinases MMPs 2 and 9 by preventing
the conversion of inactive precursor into the active form of the
molecule. LRP1 is responsible for the endocytosis that leads to
degradation of TSPs.23 If a cell had reduced levels of LRP1 then TSP
levels would be increased, decreasing the levels of active MMP2
and 9. TSP2 polymorphisms have previously been associated with
thoracic aortic aneurysms (TAA) in hypertensive patients, but not
AAA.24 The NPxY motif within the intracytoplasmic region of LRP1
has been shown to be essential in the regulation in MMP2 levels,
with knock out of this region leading to increased MMP2 activity of
up to 3 times the normal level in mouse aortic tissue, implicating
this motif as a potential binding region for TSP or another MMP
regulatory protein.20 In addition TSP2 knockout mice demonstrate
increased blood vessel density, highlighting a regulatory role for
TSP2 in angiogenesis, which may also impact on AAA.25 Therefore
LRP1 depletion may act both directly and indirectly on the activity
of MMPs.

The interaction between LRP1 and MMPs illustrates the diver-
sity of LRP1 function, with LRP1 affecting levels of MMPs via
different pathways in different tissue types. As it has already been
shown that members of the MMP family play a role in the devel-
opment of AAA, the fact that their level of activity is regulated by
LRP1 indicates this may be the avenue by which LRP1 modulates
aneurysmogenesis.

LRP1 and vascular smooth muscle cell depletion

Depletion of VSMCs is a hallmark of AAA.26 Boucher et al
demonstrated that LRP1 regulates smooth muscle cell migration
and proliferation via interaction with PDGFRb (platelet derived
growth factor receptor beta).6 A strain of mice was created that
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were LDLR knockout with smooth muscle depletion of LRP1
(smLRP1�). The LDLR�smLRP1� mice had a significantly altered
vascular phenotype, although they appeared superficially normal.
Macroscopically the mice had aortas that were consistently dis-
tended and dilated, a feature that worsened with increasing age,
together with progressive thickening of the aorta due to VSMC
proliferation and eventually suprarenal aneurysm formation.
Microscopically there was gross disruption of the elastic laminae of
the aorta. These animals, whether fed a raised cholesterol diet or
normal chow, did not have increased serum triglycerides or
cholesterol, however there was an increase in the activity of MMPs
2 and 9 in the smLRP1� animals suggesting that LRP1 has an overall
negative regulatory affect on MMPs. Furthermore smLRP1� arterial
smooth muscle cells were a actin depleted when compared to wild
type cells of the same nature, reducing the ability of the vessels to
contract.27 Boucher postulates that the mechanism by which LRP1
regulates smooth muscle cell proliferation and migration is via
PDGF dependant phosphorylation of the LRP1 tail leading to Shc
binding and activation of the Ras pathway. Tyrosine kinase inhib-
itors (TKI) not only suppress LRP1 and PDGFRb (PDGF receptor b)
phosphorylation in bovine smooth muscle cells but also reduce
aortic thickness and improve elastic layer stability in
LDLR�smLRP1� mice. PDGFRb co-precipitates with LRP1 and
comparison of LRP1 deficient and LRP1 expressing mouse aortas
demonstrated that LRP1þ mice have decreased levels of PDGFRb,
with PDGFRb signalling known to precede atherosclerotic lesion
formation. This demonstrates that LRP1 can suppress pro-
atherosclerotic PDGFRb activation. As TKIs can rescue the LRP1
knockout to a degree, reducing aortic thickness and improving
elastic layer stability, this may have potential as a future thera-
peutic strategy in AAA. These key experiments demonstrate that
LRP1 depletion is a stage in AAA development. This work, and
subsequent experiments, produced invaluable insight in to the
importance of LRP1 to arterial wall structure, however themainstay
of these publications all arise from the same group of
researchers.6,27,28 LRP1 knockout not only raised MMP levels but
impaired smooth muscle cell proliferation and migration. Finally it
is apparent that the deleterious effects of LRP1 depletion can be
improved with the addition of a tyrosine kinase inhibitor, which
may prove to be a future treatment for AAA.

If medications are going to be used to stabilise the expansion of
small AAA, then utilising medications that are already in use for the
treatment of other diseases will be desirable in order to reduce time
and developmental costs. Aside from TKI treated LRP1 knockout
mice demonstrating a reduction in arterial wall destruction, the
addition of rosiglitazone to smLRP1�, one of the thiazolidinedione
class of insulin sensitizers, reduced atherosclerosis and features
such as elastic layer disruption and smooth muscle proliferation.28

With partial correction of effects of LRP1 knockout, rosiglitazone
may also have clinical potential in modulating AAA progression.
Rosiglitazone has been withdrawn due to negative effects seen in
patients with heart failure, acute coronary syndrome, ischaemic
heart disease and peripheral vascular disease; however another
thiazolidinedione, pioglitazone, has not beenwithdrawn. Therefore
the use of drugs from the thiazolidinedione class may be of use in
reducing the impact of LRP1 loss on arterial structure. This exper-
iment also demonstrated the potential importance of TGFb
(transforming growth factor beta) in AAA pathogenesis.28 TGFb is
a cytokine and an LRP1 ligand, it has also been implicated in AAA
pathogenesis, the TGFbR2 (TGFb receptor 2) gene is found to have
significant deletions in AAA wall biopsies with a proposed reduc-
tion of the antiproliferative effect of TGFb.29

Data from LRP1 smooth muscle knockout mouse experiments
suggest that loss of normal LRP1 results in destruction of the
arterial wall associated with increased MMP levels which may have
been responsible for the tissue damage. The use of tyrosine kinase
inhibitors and an insulin sensitizer, rosiglitazone, were able to
ameliorate some of the negative feature of LRP1 depletion and may
prove to have potential for treatment.
LRP1 and inflammation

The role of LRP1 in inflammation is unknown with evidence
demonstrating pleiotropic effects. The association between AAA
and local chronic inflammation is well established, with transmural
infiltration of the arterial wall in AAA by macrophages and
lymphocytes a prominent histological feature,30 additionally mast
cells, regulators of inflammation, are key to AAA development with
mast cell deficient mice resistant to AAA formation.31 Mast cells
contain granules that store a wide variety of proteases, cytokines
and growth factors including PDGF and TGFb, known LRP1
ligands.32 Macrophages are known to express LRP1 and after
adipocytes, monocytes show the highest level of expression.33

Experimental work from a rat microglial cell model has demon-
strated that LRP1 functions as a pro-inflammatory molecule. 20-
hydroxycinnamaldehyde is an anti-angiogenic, anti-proliferative
and pro-apoptotic compound that binds to LRP1. When LRP1 is
bound to 20-hydroxycinnamaldehyde it induces an anti-
inflammatory state in microglial cells, by the inhibition of cell sig-
nalling pathways suggesting LRP1 is pro-inflammatory.34 This
study utilised novel and established cell lines and defined protein
level and activity under a variety of experimental conditions to
from a robust argument for their findings. However, LRP1 depletion
has been shown to increase the levels of MMP9 and tissue necrosis
factor a, INOS (inducible nitric oxide synthase), activated comple-
ment proteases and IL-6 (interleukin-6), indicating that LRP1 may
have innate anti-inflammatory properties.35,36 The article from
Overtan et al. utilised a mouse model with LRP1 depleted macro-
phages.35 Through Western blotting, real time PCR and gel elec-
trophoresis they demonstrated that MMP activity was increased.36

However Gaultier et al. utilised an LRP1 deficient mouse fibroblast
cell line and similar experimental techniques to prove increased
expression of several inflammatory mediators takes place when
LRP1 is absent. Therefore it has been shown that LRP1 can exhibit
both pro and anti-inflammatory behaviour, however with greater
understanding of the specific ligand binding regions of the mole-
cule it may be possible to inhibit the pro-inflammatory effects
whilst maintaining the anti-inflammatory potential of LRP1.
LRP1 Regulation

In understanding the mechanisms regulating LRP1 function it
may be possible to identify potential therapeutic targets for LRP1
that could be used to slow the progression of small AAA. LRP1 is
regulated by several factors; one of these is angiotensin II (AngII). It
is well characterised that continuous infusion of AngII leads to the
development of aneurysms in apolipoprotein-E deficient mice.37

AngII induces overexpression of LRP1 in the arterial wall and also
increased its activity, resulting in increased uptake of aggregated
LDL in cultured human VSMC.38 These effects can be negated with
administration of the angiotensin receptor blocker, losartan.
Additionally in mouse models of TAA, the thoracic aorta of mice
treated with losartan were found to have improved structural
integrity and elastic fibre organisation and reduced levels of MMP 2
and 9 activation when compared to untreated mice.39 These data
suggests that reduction of LRP1 expression is beneficial in aneu-
rysms, which conflicts with the other data we have presented. The
exact mechanisms are still unclear but from these data, it is likely
that AngII related development of aneurysms is LRP1 independent
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or any aneurysmogenic effects of AngII induction override the
protection achieved from increased LRP1 expression.
Implications for the treatment of small AAA

Aside from inducing LRP1 expression with known medications
in order to halt small AAA progression it may be possible to
modulate AAA growth via novel methods involving the LRP1
pathways. LRP1 is regulated by systemic lipoprotein levels; in
response to aggregated LDL (agLDL) in VSMC LRP1 is upregulated.
This upregulation is coexistent with downregulation of SREBP
(sterol regulatory binding protein).40 Experimental silencing of
SREBP isoforms increased LRP1 levels whereas SREBP over-
expression reduced LRP1 expression. Furthermore, agLDL prevent
the SREBP-2 isoform from efficiently binding to the promoter
region of LRP1 gene. This demonstrates that silencing of specific
SREBP isoforms may be utilised to increase LRP1 expression in AAA
patients, without having to increase systemic lipoprotein levels
which would be associated with other deleterious effects. Recent
hepatocyte cell culture experimental evidence indicates that LRP1
is upregulated in the presence of the cholesterol lowering medi-
cation, hydroxymethylglutaryl-coenzyme A (HMG co-A) reductase
inhibitor, Atorvastatin.41 This is coupled with data that the aortic
diameter of AAA patients treated with a HMG co-A reductase
inhibitor expand at a reduced rate when compared to patients not
receiving this group of medications.42

Possible methods of regulating LRP1 at the level of transcription
is via miR-205, a microRNA, which down-regulates the expression
of LRP1 mRNA, therefore miR-205 blockade may increase LRP1
activity.43 Similarly a short interfering RNA has been shown as an
effective silencer of LRP1 expression in smooth muscle cells leading
to inhibition of VSMC migration.44 Modulation of LRP1 expression
may be achieved by the selective inhibition of both these negative
regulatory elements; however this form of molecular medicine is
a long way from mainstream practice. If high LRP1 levels reduce
AAA growth then this may form the basis of small AAA treatment.
Modulation of LRP1 expression may be achievable in a laboratory
setting, however these examples show that although theoretically
possible the systemic administration of an agent that would
interfere with one of these regulatory elements would need
rigorous investigation in order to determine safety before a treat-
ment could be utilised.
Conclusion

LRP1 and its associated pathways are biologically plausible
candidates that may have a role in the development of AAA. These
effects go beyond the ability of LRP1 to bind a wide variety of
ligands that interact with the arterial wall such as the matrix
metalloproteinases. LRP1 knockout studies in mice implicate the
importance of the regulatory relationship between LRP1 and
PDGFRb, with loss of LRP1 leading to a pro atherosclerotic state,
extracellular matrix disruption and even aneurysmal formation.

LRP1 has already been implicated in several diverse diseases,
notably Alzheimer’s disease45 obesity.46 myocardial infarction,47

bicuspid aortic valve48 and in cancers such as medulloblastoma,49

although modulation of LRP1 activity is yet to be utilised as
a therapeutic target in clinical practice.

This reviewwas prepared using a systematic approach; however
despite the literature search utilising a recognised framework it is
very difficult to apply a quality assessment to basic scientific
studies. We acknowledge that the majority of the evidence pre-
sented arises from animal studies; however the methodology uti-
lised appears to be scientifically appropriate.
This review highlights the current knowledge on LRP1 and its
potential role in AAA pathophysiology, further investigation is
required to fully elucidate the LRP1 pathway and the exact mech-
anism by which it plays a role in the pathogenesis of AAA. LRP1
mutation is likely to part of a collaboration of genetic and envi-
ronmental factors. The most significant environmental factor is
smoking50 and it is likely that the damage to the cellular structure
from cigarette smoking will interact with several underlying
genetic aberrations, such as LRP1 mutation, allowing an aneurysm
to form. LRP1 and its associated pathways appear to be a potential
candidate target for the treatment of AAA, but further work is
required to define the specific role of LRP1 in aneurysmogenesis.
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