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1. Introduction

Since Iijima’s original report [18], carbon nanotubes have been recognized as fascinating materials with nanometer di-
mensions promising exciting new areas of carbon chemistry and physics. From the viewpoint of fullerene science, carbon
nanotubes are forms of giant fullerenes [23]. In 1996 Smalley group at Rice university successfully synthesized the aligned
single-walled nanotubes [28], which are carbon nanotubes with the almost alien property of electrical conductivity and
super-steel strength. Carbon nanotubes have attracted great attention in different research fields such as chemistry physics,
artificial materials, and so on. For the details, see [14,15].

Each open-ended single-walled nanotube can be viewed as a mapping of a graphene sheet onto the surface of a cylin-
der [24]. In fact, open-ended nanotubes (tubules) are the basis for many research problems in physics and chemistry. For
example, it has been shown that recognizing the metallic carbon nanotubes and semiconducting nanotubes depends on the
size and geometry of the tubule [15].

For a graph G , let V (G) and E(G) denote its vertex set and edge set, respectively. The distance dG(u, v) between two
vertices u and v of G is the length of a u, v-geodesic (i.e. a shortest path between u and v). If the graph G is clear from
the context, then we will simply use d(u, v). For a connected graph G , dG is a distance function on G . For a given positive
integer λ, a mapping φ : V (G) → V (H) is called a λ-embedding from connected graphs G into H if, for any two vertices x, y
of G , we have dH (φ(x), φ(y)) = λdG(x, y). If λ = 1, then φ is called an isometric embedding of G into H .

The Cartesian product G � H of graphs G and H is the graph with vertex set V (G) × V (H) such that the vertex (a, x) is
adjacent to the vertex (b, y) whenever ab ∈ E(G) and x = y, or a = b and xy ∈ E(H).

An n-dimensional hypercube or n-cube Q n is defined as follows: The vertex set consists of all n-tuples b1b2 · · ·bn with
bi ∈ {0,1}, and two vertices are adjacent if and only if the corresponding n-tuples differ in precisely one place. A graph G is
called a partial cube (binary Hamming graph) [19], if G admits an isometric embedding into Q n for some positive integer n.
A connected graph G is called an l1-graph if it allows a λ-embedding into a cube Q k for some λ and k [1]. Shpectorov
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Fig. 1. Illustration for a (4,2)-type nanotube T . �a1 and �a2 are the basic lattice vectors.
−−→
O A = 4 �a1 + 2 �a2 is the chiral vector of T and

−−→
O B indicates the

direction of the axis of T .

[27] showed that a graph is an l1-graph if and only if it is isometrically embeddable into the Cartesian product of complete
graphs, half-cubes, and cocktail party graphs. Deza and Laurent [9] (even Blake and Gilchrist [4] had showed earlier) showed
that if G is a connected bipartite graph, then G is a partial cube if and only if G is an l1-graph. Hence bipartite l1-graphs
coincide with partial cubes.

Many topological indices of molecules based on the distances, such as the Wiener index, the Szeged index, the PI index,
etc., are related closely to their physico-chemical properties [3,25,30]. Distance between any two vertices in a hypercube is
the Hamming distance, i.e. the number of different places of the two tuples [19]. If a graph is a partial cube, we can easily
calculate the distances between any two vertices of the graph. So it is interesting to determine whether a graph is a partial
cube. The l1-embeddability of some chemical relevant graphs have been considered extensively.

A benzenoid system [17] (alias benzenoid graph or hexagonal system), is a finite connected plane graph with no cut vertices
in which every interior face is bounded by a regular hexagon of side length 1. For benzenoid systems, Klavžar, Gutman and
Mohar [22] showed that any benzenoid system is a partial cube. Deza and Shtogrin [10] generalized the above result to
all poly-6-cycles (i.e. graphs in the plane with the vertices being of degrees 2 or 3, all the internal vertices of degree 3,
and all interior faces hexagons). Zhang and Xu [32] showed that none of the coronoid system (i.e. benzenoid systems with
holes) is a partial cube. Deza et al. [7] investigated the list of l1-embeddable fullerenes and conjectured it consisting of
F20(Ih), F26(D3h), F44(T ), and C80(Ih). Here a fullerene is a 3-connected planar trivalent graph whose faces are pentagons
and hexagons. Recently, Deza and Shpectorov [11] determined all finite closed polyhexes (trivalent surface graphs with
hexagonal faces) which are l1.

In this article, we consider open-ended single-walled nanotubes (nanotubes for short), which can be formed by rolling
up a two-dimensional hexagonal sheet. More precisely, we define nanotubes as follows. Choose any lattice point in the plane
hexagonal lattice as the origin O . Let �a1 and �a2 be the two basic lattice vectors (see Fig. 1). Choose a vector

−−→
O A = n �a1 +m �a2

such that n and m are two integers and at least one of them is not zero. Draw two straight lines L1 and L2 passing through
O and A perpendicular to O A, respectively. By rolling up the hexagonal strip between L1 and L2 and gluing L1 and L2 such
that A and O superimpose, we can obtain a hexagonal tessellation H of the cylinder. L1 and L2 indicate the direction of
the axis of the cylinder. Using the terminology of graph theory, a nanotube is defined to be the finite graph induced by all
the hexagons of H that lie between c1 and c2, where c1 and c2 are two vertex-disjoint cycles of H encircling the axis of
the cylinder, denoted by T . The vector

−−→
O A is called the chiral vector of T , usually denoted by Ch . The cycles c1 and c2 are

the two open-ends of T .
For any nanotube T , if its chiral vector is Ch = n �a1 + m �a2, T will be called an (n,m)-type nanotube. For example, a

(4,2)-type nanotube is shown in Fig. 1. A zigzag nanotube is an (n,0) or (0,m)-type nanotube (see Fig. 2(a)). An armchair
nanotube is an (n,n)-type nanotube (see Fig. 2(b)).

In this article, we show that all nanotubes are not partial cubes except the (1,0)-type, (0,1)-type and (1,1)-type nano-
tubes. Our main theorem is described as follows.

Theorem 1.1. Let T be an open-ended nanotube. Then T is a partial cube if and only if T is one of the nanotubes of the following three
types: (1,0)-type, (0,1)-type and (1,1)-type (refer to Figs. 11(a) and 12(a)).

Since open-ended nanotubes are bipartite graphs [26], combining with Theorem 1.1, we can easily obtain that among all
the open-ended nanotubes only the (1,0)-type, (0,1)-type and (1,1)-type nanotubes are l1-graphs.

The Wiener index of a graph G is defined as the sum of all distances between pairs of vertices, denoted by W (G).
From this definition, John et al. [20] and Diudea et al. [12] derived explicit formulas for the Wiener indices of zigzag
nanotubes and armchair nanotubes, respectively. In [21], Klavžar obtained a general method to calculate W (G) of any
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Fig. 2. Two special type nanotubes.

Fig. 3. A cyclic chain H is drawn on the plane with vertices in Wuv colored black and vertices in W vu colored white.

connected graph G according to the canonical metric representation of G . If G is a partial cube, the computation of W (G)

can be greatly simplified. For example, as an application of partial cubes the Wiener index of a benzenoid system can be
computed in linear time [6]. We have known that W (Pn) = n3−n

6 and W (G � H) = W (G) · |V (H)|2 + W (H) · |V (G)|2 [16].

From these, the Wiener indices of (1,0)-type, (0,1)-type and (1,1)-type can be easily obtained as W (P∗
2m) = 8m3−2m

6 and

W (Pm � K2) = 2
3 m3 + m2 − 2

3 m. If a molecular graph is not a partial cube, the calculation of the Wiener index will be more
complicated. For general (n,m)-type nanotubes, there is no result on the Wiener index.

2. Cyclic chains

In this section we introduce the concept of a cyclic chain and explore some properties of cyclic chains. For convenience,
we assume that a nanotube T is drawn in such a way that its (central) axis is vertical.

Definition 2.1. A cyclic chain of a nanotube consists of some cyclically concatenated hexagons with each hexagon adjacent
to exactly two other hexagons, and encircles the axis of the nanotube. For example, see the graph shown shaded in Fig. 1.

It is easy to see that a cyclic chain of a nanotube T always exists.
Since any hexagonal tessellation of the cylinder is an infinite bipartite graph [26,31], and a cyclic chain H is its subgraph,

H is also a finite bipartite graph. Let c1 and c2 be the top and bottom perimeter of H . We draw H in the plane such that
the face F1 surrounded by c1 is infinite and the face F2 surrounded by c2 is an inner face (see Fig. 3).

For an edge uv of G , let W uv be the set of vertices of G that are closer to u than to v . In symbols,

Wuv = {
x
∣∣ d(u, x) < d(v, x)

}
.

Notice that for any edge uv of a bipartite graph G , the set {W uv , W vu} is a partition of V (G). Now we color the vertices in
Wuv black and the vertices in W vu white.

An edge e = uv of H is called transversal if u ∈ ci and v ∈ c j such that {i, j} = {1,2}. Obviously, if H has at least two
hexagons, then each hexagon of H has two transversal edges and each transversal edge is shared by exactly two hexagons.
A transversal edge both of whose ends are colored white (black) is called a white (black) transversal edge.

A hexagon f of H is called I-type (resp. III-type) if | f ∩ c1 = 1| and | f ∩ c2| = 3 (resp. | f ∩ c1 = 3| and | f ∩ c2| = 1),
otherwise it is called II-type.
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Fig. 4. A cyclic chain drawn on the plane being cut along one transversal edge uv .

The inner dual of a plane graph: place a vertex in the center of each interior face, and connect the centers of two interior
faces by an edge when they share an edge.

Proposition 2.2. For any cyclic chain H of a nanotube T , |E(c1)| = |E(c2)|.

Proof. Suppose that H is a cyclic chain of a nanotube T with n hexagons. It is evident for n = 1. So suppose that n � 2.
For any transversal edge uv of H , let A and B be the two hexagons of H sharing the edge uv . If H is cut along uv , then
it can be unrolled onto the plane and it becomes a part of some benzenoid system B. Let u′v ′ and u′′v ′′ be the two edges
corresponding to uv with u′v ′ ∈ A and u′′v ′′ ∈ B . Then u′v ′ is parallel to u′′v ′′ in B (see Fig. 4).

Draw a radial L with tail at the center of A orthogonal to u′v ′ and draw a radial L′ with head at the center of B
orthogonal to u′′v ′′ . Since u′v ′ and u′′v ′′ are parallel, L and L′ have the same direction. The inner dual of the part of B
corresponding to H is a path P (see Fig. 4).

If we have no turns from L to L′ along P , the number of edges in c1 is 2n and the number of edges in c2 is also 2n.
If there are some turns from L to L′ along P , the angle of each turn is π

3 . Then the number of clockwise turns must be
equal to the number of anticlockwise turns from L to L′ . Only in this way can we arrive at L′ . Without loss of generality,
assume that at every clockwise turn the hexagon has three edges of c1 and one edge of c2, then at every anticlockwise turn
the hexagon has one edge of c1 and three edges of c2. Each of the other hexagons has two edges of c1 and two edges of c2.
By direct calculations, |E(c1)| = |E(c2)|. �

From the proof of Proposition 2.2, it is immediate to induce the following corollary.

Corollary 2.3. For any cyclic chain of a nanotube, the number of I-type hexagons equals that of III-type hexagons.

Define the length of a cyclic chain to be the number of hexagons of it. A connected subgraph H of a graph G is said to
be isometric, if dH (u, v) = dG(u, v) for every pair of vertices u and v of H .

Theorem 2.4. Each cyclic chain with minimum length in a nanotube T is an isometric subgraph of T .

Proof. Suppose that T is a nanotube and H is a cyclic chain of T with minimum length. If H itself is the nanotube T , we
are done.

Suppose, to the contrary, that H is not an isometric subgraph of T . Then there exist two vertices x and y of H such that
dH (x, y) > dT (x, y).

Let S := {(x, y) ∈ V (H) × V (H) | dH (x, y) > dT (x, y)}. Choose (u, v) ∈ S such that dT (u, v) = min(x,y)∈S {dT (x, y)}. Then
the vertices u and v lie on the same perimeter of H . If not, assume that u and v lie in two different perimeters of H
and P is a shortest path between u and v in T . Then uv cannot be an edge of T . If u and v are adjacent in T , by our
choice, uv is a transversal edge of H . So dH (u, v) = dT (u, v), which contradicts that (u, v) ∈ S . Further there exists a vertex
w ∈ V (P ∩ H)\{u, v} such that

dH (u, w) + dH (w, v) � dH (u, v) > dT (u, v) = dT (u, w) + dT (w, v). (1)

Since

dH (u, w) � dT (u, w), (2)

and

dH (w, v) � dT (w, v), (3)

inequality (1) induces that at least one inequality of (2) and (3) strictly holds. Without loss of generality, assume that
dH (u, w) > dT (u, w). This indicates that (u, w) ∈ S , but dT (u, w) < dT (u, v), which contradicts the minimality of dT (u, v)

in S .
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Fig. 5. Illustration for the proof of Theorem 2.4.

Without loss of generality, assume that both u and v lie on the top perimeter of H . Similarly we can show that

(∗) Every shortest path P connecting u and v in T intersects H only at u and v .

Otherwise, we can choose a common vertex w of P and H not coinciding with u and v satisfying that

dH (u, w) + dH (w, v) � dH (u, v) > dT (u, v) = dT (u, w) + dT (w, v).

As above discussed, either dH (u, w) > dT (u, w) or dH (w, v) > dT (w, v). This contradicts the minimality of dT (u, v) in S .
Then u and v must be two vertices of degree 2 in H and they lie in two certain hexagons. Without loss of generality,

suppose that u lies in A and v lies in B .
Denote by t the top perimeter of H . We know that t is an even cycle [26]. Hence u and v divide t into two paths tuv

and t′
uv . Since P ∩ t = {u, v}, one of the two cycles P ∪ tuv and P ∪ t′

uv (say P ∪ tuv ) is a cycle not encircling the axis of T .
Let G ′ be the subgraph formed by the vertices and edges of hexagons lying on P ∪ tuv and in its interior. Denote by H AB the
set of hexagons of H that contains at least one edge of tuv (the graph shaded in Fig. 5). Since P ∪ tuv contains no open-end
of T , G ′ is homeomorphic to a benzenoid system. Therefore G ′′ = G ′ ∪ H AB is also homeomorphic to a benzenoid system.
In the following, both G ′ and G ′′ are considered to be benzenoid systems.

Denote the hexagon of G ′ which contains u by C . Suppose that uu′ is the edge shared by A and C . Draw a straight line
L across the centers of A and C . Then the edges of G ′′ intersecting with L form an edge-cut of G ′′ [5]. So some edges of P
lie on one side of L and some hexagons of H AB lie on the other side of L.

Since G ′′ is a finite benzenoid system, along the direction of AC , L first meets an edge of P or first passes through some
hexagon’s center of H AB .

If L first meets one edge, say xy, of P with x lying on the same side of L as u, as shown in [5], there is a unique shortest
path Pux in G ′′ connecting u and x along L (see Fig. 5(a)). And there is a unique shortest path Pu′ y in G ′′ connecting u′
and y along L. Since u Puxxy is a part of P , it is a shortest path connecting u and y in G ′′ . Obviously, d(u, x) + d(x, y) =
d(u, u′)+ d(u′, y). So uu′ Pu′ y y is also a shortest path connecting u and y in G ′′ . Hence P − (Pux + xy)+ (uu′ + Pu′ y) is also
a shortest path connecting u and v in T . This contradicts statement (∗) above.

If L first passes through one center of some hexagon E of H AB (see Fig. 5(b)), replace the hexagons of H AB from A to
E by the hexagons from A to E whose centers are passed through by L. Then we obtain a cyclic chain shorter than H , a
contradiction.

So there is no such vertices u and v in S that dH (u, v) > dT (u, v) and S is empty. This indicates that for any two vertices
x and y in H , dH (x, y) = dT (x, y) and the proof is complete. �
Proposition 2.5. Let T be a nanotube and H a shortest cyclic chain of T with length at least three. Then every hexagonal face of H is
isometric in H. Furthermore, it is isometric in T .

Proof. By the contrary, suppose that C = abcdef a is a hexagon of H which is not isometric. There exist such two vertices
of C that the distance between them in H is less than that in C . Since H is bipartite, these two vertices must be the two
vertices of the cycle whose distance is three in C , say a and d, which satisfy that dC (a,d) > dH (a,d). Hence there is an edge
connecting a and d in H . But except C there are at least two hexagons in H . It is impossible to connect a and d by an
edge. �
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Fig. 6. A shortest cyclic chain with all hexagons of II-type and n even.

Fig. 7. A shortest cyclic chain with all hexagons of II-type and n odd.

Remark 2.6. The condition “the length of H is at least three” in Proposition 2.5 is necessary. For example, in the graph in
Fig. 12(a), the vertices u2, v2 ∈ H2, and dH2 (u2, v2) = 3, but dH (u2, v2) = 1.

3. Proof of the main theorem

For a graph G , if it is an l1-graph, dG must satisfy the following 5-gonal inequality [8]: For any five vertices x, y,a,b, c
of G ,

d(x, y) + (
d(a,b) + d(a, c) + d(b, c)

)
�

(
d(x,a) + d(x,b) + d(x, c)

) + (
d(y,a) + d(y,b) + d(y, c)

)
.

A further characterization of partial cube was obtained by Avis in 1981.

Lemma 3.1. (See [2].) A graph G is a partial cube if and only if it is bipartite and dG satisfies the 5-gonal inequality.

Lemma 3.2. Let H be a shortest cyclic chain of a nanotube T with at least two hexagons. If all the hexagons of H are II-type, then H is
not a partial cube.

Proof. Denote the hexagons of H by H1, H2, . . . , Hn (n � 2) with Hi being adjacent to Hi−1 and Hi+1, where i is taken
modulo n. Suppose that H1 and Hn share an edge uv with u = H1 ∩ Hn ∩ c1 and v = H1 ∩ Hn ∩ c2. Next we will show that
H is not a partial cube.

Case 1. n is even. Let a be the vertex of H1 ∩ c2 with dH (a) = 2. Let x be the vertex of H n
2

∩ H n
2 +1 ∩ c2, b the neighbor of x

in H n
2 +1 ∩ c2, y the vertex of H n

2 +1 ∩ H n
2 +2 ∩ c1, and c the neighbor of y in H n

2 +1 ∩ c1 (see Fig. 6).

By the symmetry of H , we can obtain that: d(a,b) = n, d(b, c) = 3, d(a, c) = n + 1, d(x, y) = 3; d(x,a) = n − 1, d(x,b) = 1,
d(x, c) = 2, d(y,a) = n, d(y,b) = 2, and d(y, c) = 1.

So d(a,b)+d(b, c)+d(a, c)+d(x, y) = n+3+(n+1)+3 = 2n+7, and d(x,a)+d(x,b)+d(x, c)+d(y,a)+d(y,b)+d(y, c) =
(n − 1)+ 1 + 2 +n + 2 + 1 = 2n + 5. Clearly, d(a,b)+d(b, c)+d(a, c)+d(x, y) > d(x,a)+d(x,b)+d(x, c)+d(y,a)+d(y,b)+
d(y, c). These five vertices violate the 5-gonal inequality.

Case 2. n is odd. Choose v as our a in the first hexagon. Let x be the vertex of H n−1
2

∩ H n+1
2

∩ c2, b the neighbor of x in

H n+1
2

∩ c2, y the vertex of H n+1
2

∩ H n+1
2 +1 ∩ c1 and c the neighbor of y in H n+1

2
∩ c1 (see Fig. 7).

By simple calculations as Case 1, we can obtain that d(a,b)+d(b, c)+d(a, c)+d(x, y) = n + 3 + (n + 1)+ 3 = 2n + 7, and
d(x,a) + d(x,b) + d(x, c) + d(y,a) + d(y,b) + d(y, c) = (n − 1) + 1 + 2 + n + 2 + 1 = 2n + 5.

It is easy to see that these five vertices violate the 5-gonal inequality.
By Lemma 3.1, H is not a partial cube in both of the cases. �
A connected subgraph H of a graph G is said to be convex if each shortest path in G between any two vertices of H lies

entirely in H . Let 〈S〉 denote the subgraph induced by the vertex subset S . Recall that for an edge uv of G , W uv is the set
of vertices of G that are closer to u than to v . Djokovič characterized partial cubes in the following lemma.
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Fig. 8. Illustration for the proof of Claim 2.

Lemma 3.3. (See [13].) Let G be a bipartite graph. Then G is a partial cube if and only if for every edge uv of G, 〈W uv〉 and 〈W vu〉 are
convex subgraphs of G.

Lemma 3.4. Let H be a shortest cyclic chain with length at least three of a nanotube T . If not all the hexagons of H are II-type, then H
is not a partial cube.

Proof. In the following, H is considered to be drawn in the plane with one infinite face F1 surrounded by c1 and one inner
face F2 surrounded by c2. Since not all the hexagons of H are II-type and there is at least three hexagons in H , by Corol-
lary 2.3, there must be at least one I-type hexagon H1 and one III-type hexagon H2 in H . Let d(H1, H2) = min{dH (x, y) |
x ∈ H1, y ∈ H2}. We choose a I-type hexagon H1 and a III-type hexagon H2 such that d(H1, H2) is minimum. In the fol-
lowing, we will define the direction along c1 from H1 to H2 as our direction. Without loss of generality, we assume that
the direction is anticlockwise (see Fig. 8(a)). Next we will show that H is not a partial cube by the contrary. Assume that
H is a partial cube. For the second transversal edge uv of H1 with u ∈ c2 and v ∈ c1, by Lemma 3.3, 〈W uv〉 and 〈W vu〉 are
convex subgraphs of H . Color the vertices in W vu by white and the vertices in W uv by black. It is clear that u ∈ W uv and
u is colored by black.

Claim 1. If two diametrical vertices u and u′ of a hexagon C in H (i.e., dC (u, u′) = 3) are colored by one color, then all the vertices of
the hexagon are colored by the same color as u.

Let C = abcdef a be a hexagon of H . Suppose that a and d are colored black, i.e. a and d lie in W uv . By Proposition 2.5,
dH (a,d) = dC (a,d) = 3. Then abcd and af ed are two shortest paths connecting a and d in H . Since 〈W uv〉 is a convex
subgraph of H , the vertices b, c, e and f all lie in W uv and they must be colored black. This completes the proof of Claim 1.

Claim 2. 〈W uv ∩ c1〉 and 〈Wuv ∩ c2〉 are two paths in H, so are 〈W vu ∩ c1〉 and 〈W vu ∩ c2〉.

Firstly we show that there are white vertices and black vertices in both c1 and c2. If H1 and H2 are adjacent, it is easy
to see that there are white vertices and black vertices in both c1 and c2 (see Fig. 3).

If H1 and H2 are not adjacent, according to the choice of H1 and H2, the hexagons from H1 to H2 must be II-type.
It is easy to see that there are white vertices and black vertices in c2 (see Fig. 8(a)). If all the vertices in c1 are white,
by Claim 1 we know that H2 has two diametrical white vertices. So all the vertices in H2 are white. The vertices of the
hexagon H3 previous to H2 must be all white (since H3 is II-type). Doing this way we will find that the vertices of the
hexagon H4 (possibly identify with H3) successive to H1 are all white. But u and the neighbor of u in H4 are colored black,
a contradiction. Hence there are black and white vertices in both c1 and c2.

Secondly, we show that 〈W uv ∩ c1〉 and 〈Wuv ∩ c2〉 are two paths in H , so are 〈W vu ∩ c1〉 and 〈W vu ∩ c2〉. If c1 is
divided into l (� 2) black and white segments denoted by A1, A2, . . . , Al and c2 into k (k � 4) black and white segments
B1, B2, . . . , Bk anticlockwise (see Fig. 8(b)). Suppose that v ∈ A1 and u ∈ B1, then the vertices in A1 and Bi (i even) are all
white and the vertices in A2 are black. Denote by w the first vertex of B2, w ′ the last vertex of A1, z′ the first vertex of A1
and z the last vertex of Bk . Note that w, w ′, z′ and z are white vertices. Since 〈W vu〉 is convex, the vertices of any shortest
path P w w ′ connecting w and w ′ and the vertices of any shortest path P zz′ connecting z and z′ are all white. For any black
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Fig. 9. Illustration for Case 1.

vertex y ∈ c1, any shortest path P yu joining y to u must intersect P w w ′ ∪ P zz′ ∪ 〈A1〉 at some white vertex. This contradicts
the convexity of 〈W uv〉.

If c2 is divided into at least two segments and c1 into at least four segments, the contradiction is similar. Hence c1, as
well as c2, consists of one path with all of whose vertices being black and the other path with all of whose vertices being
white. This proves Claim 2.

Claim 3. There must be a white transversal edge and a black transversal edge in H, i.e. 〈W uv〉 and 〈W vu〉 are connected in H.

Since 〈Wuv 〉 and 〈W vu〉 are convex, it is immediate for this claim.
Recall that the direction is counterclockwise. Select the first white transversal edge from uv , say wz, and the last white

transversal edge, say xy, with w, x ∈ c2 and z, y ∈ c1. So xy and uv lie in the same hexagon H1 and y is adjacent to v . Let
a be the previous vertex of w in c2 and b the neighbor of x in H1 (see Fig. 9). Since d(u,b) = 2 and d(v,b) = 3, the vertex
b is colored black.

Case 1. a is colored black (see Fig. 9).

Claim 4. d(a, u) = d(w, v).

Since a is black and w is white, d(a, u) = d(a, v) − 1 and d(w, v) = d(w, u) − 1. We use contrary, suppose that d(a, u) �=
d(w, v). If |d(a, u) − d(w, v)| = 1, then Pau + uv + P v w + wa is a closed odd walk, here Pau is a shortest a, u-path, P v w
is a shortest v, w-path, and “+” denotes the union of graphs. Then there is an odd cycle in H [29, Lemma 1.2.15], which
contradicts the fact that H is bipartite. If d(a, u) � d(w, v) + 2, then d(a, u) � d(w, v) + 2 > d(w, v) + d(w,a) � d(a, v). This
contradicts d(a, u) = d(a, v) − 1. If d(w, v) � d(a, u) + 2, we can similarly obtain a contradiction and the proof of Claim 4 is
complete.

Let P wy be a shortest path joining w to y in H . Since w and y are white and 〈W vu〉 is a convex subgraph of H , all of
the vertices of P wy are colored white. Suppose the length of P wy equals p.

The vertex y lies in a shortest path between w and v . Otherwise, any shortest path connecting w and v must pass
through the vertices from v to z in c1. By the convexity of 〈W vu〉, all the vertices from v to z in c1 are white. At the same
time, the vertices w, z, x and y are white, so the black vertices in c1 cannot arrive at u by a shortest path without including
white vertices. This contradicts the convexity of 〈W uv〉.

By Claim 4, d(a, u) = d(w, v) = d(w, y) + d(y, v) = p + 1. Since a and b are black, all shortest paths between a and b
must pass through u. Since d(u,b) = 2,

d(a,b) = d(a, u) + d(u,b) = (p + 1) + 2 = p + 3.

We are known that aw + P wy + yx + xb is a walk that connects a and b. Then the length of any shortest a,b-path is no
more than

d(a, w) + d(w, y) + d(y, x) + d(x,b) = 1 + p + 1 + 1 = p + 3.

This indicates that we can find a shortest a,b-path with length no more than p + 3 passing through white vertices, which
contradicts the convexity of 〈W uv〉. So H is not a partial cube.

Case 2. a is colored white.
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Fig. 10. (a) Illustration for the proof of Claim 5; (b) a is colored white and the previous vertex a′ of a is colored black.

Claim 5. dH (a) = 2.

Suppose not, then dH (a) = 3 and a, w and z lie in the same hexagon H ′ . In H ′ , denote the neighbor of a in c1 by w ′
and the neighbor of z in c1 by z′ (see Fig. 10(b)). Then w ′ and z′ must be black vertices. Otherwise, wz cannot be the
first white transversal edge. As shown in Claim 4, d(a, v) = d(w ′, u). Since w ′ is black, due to the convexity of 〈W uv〉, any
shortest w ′, u-path consists of black vertices. Because a and w are white, any shortest a, v-path must pass through the
vertex w . Otherwise, there is a shortest a, v-path which does not pass through the vertex w . Then the shortest a, v-path
must intersect some shortest w ′, u-path at a black vertex, which contradicts the convexity of 〈W vu〉. Since z′ is black and z
is white, any shortest z′, u-path must pass through w ′ . Therefore,

d
(
z′, u

) = d
(
z′, w ′) + d

(
w ′, u

) = 2 + d(a, v) = 2 + (
d(w, v) + 1

) = d(w, v) + 3.

Let P w v be a shortest path connecting w and v in H . Choose the walk z′z + zw + P w v + vu connecting z′ and u. Then
the length of any shortest z′, u-path is no more than

d
(
z′, z

) + d(z, w) + d(w, v) + d(v, u) = d(w, v) + 3.

This illustrates that we can find a shortest z′, u-path which passes through white vertices. But this contradicts the
convexity of 〈W uv〉 and Claim 5 is proved.

By Claim 5, the previous neighbor of a in c2, say a′ , must be colored black (see Fig. 10(b)). Otherwise, wz cannot be the
first white transversal edge.

It is clear that every shortest path between a and v passes through w and y, therefore d(a, v) = d(a, w) + d(w, y) +
d(y, v) = p + 2. As shown in Claim 4, d(a′, u) = d(a, v) = p + 2. Since a′ and b are black vertices, all shortest a′,b-paths
must pass through u. Then

d
(
a′,b

) = d
(
a′, u

) + d(u,b) = p + 4.

Choose the walk a′a + aw + P wy + yx + xb connecting a′ and b. Obviously, the length of any shortest a′,b-path is no more
than

d
(
a′,a

) + d(a, w) + d(w, y) + d(y, x) + d(x,b) = p + 4.

This indicates that we can find a shortest a′,b-path with length no more than p + 4 which passes through some white
vertices. So 〈W uv〉 is not convex.

Summarizing the above two cases, we know that 〈W uv〉 is not convex. By Lemma 3.3, H is not a partial cube. �
Since l1-graphs allow multiple edges, our definition does not exclude multiple edges in G . Let Pm be the path of order

m and K2 the complete graph on two vertices. Denote by P∗
2m the graph obtained from P2m by adding multiple edges from

the very beginning of P2m on every second edge (see Fig. 11(b)).
A graph is a median graph if there exists a unique vertex x to every triple of vertices u, v , and w such that x lies

simultaneously on a shortest u, v-path, a shortest u, w-path, and a shortest w, v-path.

Lemma 3.5. (See [19, Propositions 1.26, 1.38 and 2.22].)

1. Trees are median graphs.
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Fig. 11. (a) A (1,0)-type or (0,1)-type nanotube. The vertices with the same label are identified; (b) P∗
2m .

Fig. 12. (a) A (1,1)-type nanotube whose shortest cyclic chain has exactly one I-type hexagon and one III-type hexagon; (b) Pm � K2.

2. Cartesian products of median graphs are median graphs.
3. Median graphs are partial cubes.

Proof of Theorem 1.1. Suppose that T is an open-ended nanotube and H is a cyclic chain of T with minimum length.
Suppose that H has exactly n hexagons. By Theorem 2.4, H is an isometric subgraph of T . There are two cases to consider:
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Case 1. All hexagons of H are II-type.

If n = 1, cut T along a straight line parallel to its axis, then T is turned into the graph as indicated in Fig. 11(a). Since
T is finite, if all the vertices of T are labeled, it is easy to see that it is the graph P∗

2m for some integer m. Suppose that
P∗

2m = v1 v2 . . . v2m such that vi is adjacent to vi+1, 1 � i � 2m − 1. Define a mapping φ from V (P∗
2m) to V (Q 2m−1) such

that φ(vi) = (1, . . . ,1︸ ︷︷ ︸
i−1

,0, . . . ,0︸ ︷︷ ︸
2m−i

). It is clear to verify that dP∗
2m

(vi, v j) = | j − i| = dQ 2m−1(φ(vi),φ(v j)) for any vi, v j ∈ V (P∗
2m).

Hence P∗
2m a partial cube. In the (n,m) notation of nanotubes, this nanotube is a (1,0)-type or (0,1)-type nanotube.

If n � 2, by Lemma 3.2, H is not a partial cube. Therefore, T is not a partial cube.

Case 2. Not all the hexagons of H are II-type. By Corollary 2.3, we know that H has at least two hexagons.

If n = 2, by Corollary 2.3, there is exactly one I-type hexagon H1 and one III-type hexagon H2 in H . Cut T along a
straight line parallel to the axis of T and unroll it onto the plane. Then T is turned into the graph as shown in Fig. 12(a).
Since T is finite, if we label all the vertices of T , it is easy to check that this graph is indeed the graph Pm � K2 for some
integer m (see Fig. 12(b)). By Lemma 3.5, Pm � K2 is a partial cube. In fact, Pm � K2 is an isometric subgraph of Q m . In the
(n,m) notation of nanotubes, this nanotube is a (1,1)-type nanotube.

If n � 3, then by Lemma 3.4, H is not a partial cube. Hence T is not a partial cube.
Cases 1 and 2 indicate that Theorem 1.1 holds. �
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