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This study is devoted to the mechanical behaviour of polycrystalline materials with two
populations of voids, small spherical voids located inside the grains and larger spheroidal
voids located at the grain boundaries. In part I of the work, instantaneous effective stress–
strain relations were derived for fixed microstructure. In this second part, the evolution of
the microstructure is addressed. Differential equations governing the evolution of the
microstructural parameters in terms of the applied loading are derived and their integra-
tion in time is discussed. Void growth results in a global softening of the stress–strain
response of the material. A simple model for the prediction of void coalescence is proposed
which can serve to predict the overall ductility of polycrystalline porous materials under
the combined action of thermal dilatation and internal pressure in the voids.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

This study, started in a companion paper (Vincent et al., 2008), is devoted to the mechanical behaviour of uranium oxide
(UO2), a polycrystalline material where, under irradiation, two populations of voids can be observed, small spherical voids in
the interior of the grains and larger spheroidal voids at the grain boundaries (see Fig. 6). Under accident condition, the tem-
perature in the material increases suddenly, causing a thermal dilatation of the material and a sudden raise of the pressure of
the fission gases in the voids under which the voids can grow and coalesce to form a macro-crack.

In this paper, we continue the derivation of constitutive relations for porous materials containing two populations of
voids of different sizes. In part I of this work (Vincent et al., 2008), instantaneous constitutive relations were obtained (the
terminology is borrowed from Ponte Castañeda and Zaidman (1996)). By instantaneous it is meant that these effective rela-
tions between the overall stress and the overall strain-rate are established by considering that the microstructure of the
material is fixed. In this second part, the evolution of the microstructure is addressed. This requires first to identify a set
of variables characterizing the microstructure to a good degree of accuracy. For the specific problem under consideration
where the loading has no preferential direction, simplifying assumptions described in Section 2.1 allow us to reduce the
microstructural variables to only three variables, the local volume fraction fb of the small spherical voids, the volume fraction
fe of the spheroidal intergranular voids and the aspect ratio w of the spheroidal voids. Evolution equations for these variables
are given in Section 2.2. The full set of constitutive relations is given in Section 3 where their integration in time is discussed.
The predictions of the model are discussed in Section 4. As expected the damage evolution results in a softening of the overall
stress–strain curves predicted by the model. However, these curves do not show any sudden drop in the stress which could
. All rights reserved.
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be interpreted as void coalescence or macroscopic failure. Coalescence of voids is a localized phenomenon where void-to-
void interaction plays a crucial role which cannot be captured without information about the arrangement of the intergran-
ular voids. This additional information is introduced in Section 5 where a simple analysis is proposed to predict the type of
failure (transgranular or intergranular) and the strain at failure of a biporous material with a specific microstructure.

2. Microstructure evolution

2.1. Microstructural variables

The microstructural variables describe the shape and distribution of the two populations of voids. In full generality the
microstructure evolution is a complex problem. For instance, ellipsoidal voids with different orientations should be consid-
ered as different phases. Similarly, because of the heterogeneity of the intragranular strain field, the growth of the secondary
voids (small, spherical voids) is likely to be inhomogeneous. Therefore, the porosity fb of the small voids should be considered
as a field at the mesoscopic scale and the different values of this field at different points in a mesoscopic volume element
should appear in the microstructural (or mesostructural) variables of the model. Accounting for all the details of this heter-
ogeneity would result in a formidably complicated model. Therefore, simplifying assumptions are introduced to keep the
size of the model compatible with its implementation in a structural code. These simplifications are motivated by the specific
application which we have in mind as described in the introduction of the first part of this study, namely a sudden increase
in pressure inside the voids and an overall hydrostatic deformation of the volume element. Under such loading conditions, it
is in particular expected that no direction plays a preferential role so that it is not necessary to account for different orien-
tations in the intergranular voids. Clearly, the validity of these assumptions is limited to the problem at hand and should be
revisited for a different problem. These assumptions read as follows:

H1: The secondary voids (small intragranular voids) remain spherical in shape and their volume fraction is described by a single
variable fbðtÞ.

H2: The primary voids (large spheroidal intergranular voids) remain spheroidal in shape. All voids, even with different orienta-
tions are assumed to have the same aspect ratio wðtÞ. Their overall volume fraction is described by a single variable feðtÞ.

H3: The distance between the focii of each individual ellipsoid remains fixed during the evolution.
H4: The evolution of the microstructural variables fbðtÞ; f eðtÞ; wðtÞ is only due to plasticity effects. In other words these vari-

ables are not affected by the overall elastic deformation.

Comments:

(1) As a consequence of assumptions (H1) and (H2), the whole microstructure is characterized by only three time-depen-
dent variables, fbðtÞ; f eðtÞ and wðtÞ. The merit of this minimalist description of the microstructure is that it can be eas-
ily implemented in a standard finite element package. In a more general description, which would probably be
required to model the deformation of biporous materials under general loading conditions, ellipsoids with different
orientation should be considered as different phases with their own volume fraction and their own aspect ratio for
all possible orientations. This would lead to a model with a large number of microstructural variables, a situation sim-
ilar to that encountered in the micromechanical modelling of texture evolution in polycrystals. This direction is not
pursued here.

(2) Under the simplifying assumption (H2) according to which all ellipsoids are described by a single aspect ratio, there
are several possible approximate ways to obtain an evolution equation for w. The idea behind assumption (H3) is that
under internal pressure a flat ellipsoid should become more spherical as its volume increases. This is ensured by
assumption (H3) as one can see by considering a family of confocal ellipsoids starting from a penny-shaped crack.
Since the focii of the ellipsoid remain fixed during the deformation, the various stages of the deformation of the ellip-
soid belong to the family of ellipsoids parameterized by a scalar parameter k as described in Appendix B of the first
part of this study. The corresponding ellipsoids tend to become spherical when their volume increases, or equivalently
when the parameter k increases.

2.2. Evolution of the microstructural variables

2.2.1. Evolution of the volume fraction fb of the small spherical voids
Classically, a first evolution equation is provided by the mass balance equation at the macroscopic scale:
_f ¼ ð1� f Þtr _E; ð1Þ
where f denotes the total porosity which can be expressed in terms of the intragranular porosity fb and of the intergranular
porosity fe as (see relation (1) of Vincent et al. (2008))
f ¼ fe þ fbð1� feÞ:
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The mass balance equation can be alternatively written as
_f b ¼ ð1� fbÞ tr _E �
_f e

1� fe

 !
: ð2Þ
2.2.2. Evolution of the volume fraction fe of the large ellipsoidal voids
Consider a mesoscopic volume element containing ellipsoidal voids occupying a domain xe possibly composed of several

different voids with different orientations. Recall that the void volume fraction of the ellipsoidal voids is fe ¼j xe j = j V j. Tak-
ing the logarithmic derivative of this relation yields
_f e

fe
¼

_j xe j
j xe j

�
_j V j

j V j ¼ htr _eixe
� tr _E; i:e:; _f e ¼ feðhtr _eixe

� tr _EÞ:
The relation between htr _eixe
and tr _E depends on the micromechanical model used in the analysis of the instantaneous effec-

tive properties. In the present paper, we make use of the N-phase modified secant method developed in the first part of this
work (Vincent et al., 2008). First, the population of randomly oriented spheroidal voids dispersed in a Gurson matrix is re-
placed by a distribution of spherical voids. Second, the matrix is divided into N concentric phases. Third, the modified secant
method is used to determine the local strain-rate fields and the effective properties. In particular, the change in volume of
the ellipsoidal voids htr _eixe

can be related to the overall change in volume tr _E and to the pressure difference p� ¼ pe � pb by
htr _eixe
¼ i : Að1Þe : _E þ að1Þe

� �
¼ 1

fe
be tr _E þ p�

Me

� �
; p� ¼ pe � pb; ð3Þ
where Að1Þe denotes the elastic localization tensor in the ellipsoidal voids (in the absence of pressure), and að1Þe is the average
strain-rate in the voids due to the internal pressure only (in the absence of overall strain-rate), both being delivered by the
N-phase model (see Vincent et al., 2008 for details). The final form of the evolution equation for fe is
_f e ¼ ðbe � feÞtr _E þ p�

Me
: ð4Þ
Let us recall that the Biot moduli be and Me in the linear comparison voided material containing ellipsoidal voids are related
to the Biot moduli bs and Ms in the N-phase comparison voided material with spherical voids by means of the equivalent
porosity f k

s introduced in the first part of this study, through
be ¼ bsðf k
s Þ; Me ¼ Msðf k

s Þ: ð5Þ
For simplicity, the index s will be omitted in what follows and b and M will refer to the Biot moduli whose expressions can be
found in Appendix C of the first part of this study.

2.3. Evolution of the aspect ratio of the large ellipsoidal voids

All ellipsoidal voids are self-similar and their evolution is assumed to be self-similar as well. It is therefore sufficient to
consider a single void. Let a1 and b1 denote the minor semi-axis and major semi-axis of one of the ellipsoidal voids. The focii
of all ellipsoids are located on a circle with radius c given by
c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

1 � a2
1

q
;

and since c remains constant according to assumption (H3), one has
_c ¼ 0 therefore
_b1

b1
¼ w2 _a1

a1
:

This relation yields an evolution equation for the void aspect ratio w:
w ¼ a1

b1
; _w ¼ w

_a1

a1
�

_b1

b1

 !
¼ w

_a1

a1
ð1�w2Þ: ð6Þ
The relative change in volume of the population of voids is the same as that of a single ellipsoid:
htr _eixe
¼

_j xe j
j xe j

¼
_a1

a1
þ 2 _b1

b1
¼

_a1

a1
ð1þ 2w2Þ:
This last relation, together with (3) and (6), yields the following evolution equation for w:
_w ¼ 1
fe

wð1�w2Þ
1þ 2w2 be tr _E þ p�

Me

� �
: ð7Þ
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3. Effective constitutive relations and their integration in time

The final model consists of two sets of equations:
(1) The instantaneous effective equations derived in Vincent et al., 2008 relating the overall stress R and the overall defor-

mation E and its time-derivative. In order to account for elasticity effects which were neglected in Vincent et al., 2008, a
slight modification has to be introduced in these equations by splitting the total deformation into an elastic and a plastic
part E ¼ Ee þ Ep. The poro-elastic relations derived in Section 3 of Vincent et al., 2008 relate the overall stress and the elastic
deformation Ee ¼ E � Ep through
R ¼ Chom
2 : Ee � ½b2ðpe � b1pbÞ þ b1pb�i; ð8Þ
In the above relation, b1 and b2 stand for the Biot coefficients of the porous material at the mesoscopic and macroscopic scale,
respectively (Vincent et al., 2008), and should not be confused with the major axis of the outer and inner ellipsoids.

The evolution of the plastic strain Ep is governed by the instantaneous constitutive relations established in Vincent et al.,
2008. An (instantaneous) effective plasticity domain Phom has been introduced which is such that
R 2 Phom

when R is in the interior of Phom : _Ep ¼ 0;

when R is on the boundary of Phom : R ¼ fð _Ep; fb; fe;w;pb;peÞ;

ð9Þ
where f is given by the N-phase model of Vincent et al., 2008. Note that, for comparison with Vincent et al., 2008 where elas-
tic effects were neglected, the stress is related here to the plastic strain-rate _Ep and not to the total strain-rate _E.

(2) The evolution equations for the microstructural parameters fbðtÞ; f eðtÞ and wðtÞ derived in Section 2.2. According to
assumption (H4) the overall elastic deformation does not contribute to the change in the microstructural variables and,
again, _E should be replaced by _Ep in (2), (4) and (7).

The constitutive relations describing the evolution of the plastic strain and of the microstructure, assuming that the
strains remain infinitesimal, read as
R ¼ Chom
2 : ðE � EpÞ � ½b2ðpe � b1pbÞ þ b1pb�i;

R 2 Phom

when R is in the interior of Phom : _Ep ¼ 0;

when R is on the boundary of Phom : R ¼ fð _Ep; fb; fe;w;pb;peÞ;

ð10Þ

_f b ¼
1� fb

1� fe
ð1� beÞtr _Ep � pe � pb

Me

� �
i:e: _f b � g1ð _Ep; fb; fe;w;pb;peÞ;

_f e ¼ ðbe � feÞtr _Ep þ pe � pb

Me
i:e: _f e � g2ð _Ep; fb; fe;w;pb;peÞ;

_w ¼ 1
fe

wð1�w2Þ
1þ 2w2 be tr _Ep þ pe � pb

Me

� �
i:e: _w � g3ð _Ep; fb; fe;w; pb; peÞ:

ð11Þ
The above system of strongly nonlinear differential equations for the unknowns RðtÞ; _EpðtÞ; f bðtÞ; f eðtÞ and wðtÞ is solved
numerically by means of an implicit Euler scheme which is a generalization of the classical closest-point algorithm in Plas-
ticity (Nguyen, 1977; Simo and Hughes, 1998). The loading parameters ðEðtÞ; pbðtÞ; peðtÞÞ follow a prescribed path. The initial
state of the microstructure is given and this is reflected through initial conditions f 0

b ; f
0
e ;w

0 for the microstructural parame-
ters. To simplify the integration, the effective poro-elastic characteristics of the voided material Chom

2 ; b2; b1 are assumed to
remain constant in time and are computed once and for all by means of the initial value of the microstructural parameters (in
full rigor the elastic characteristics also depend on fe; f b; and w but to a much lesser extent than the plastic properties). The
first equation in (10) can then be replaced by its incremental version obtained by derivation with respect to time:
_R ¼ Chom
2 : ð _E � _EpÞ � ½b2ð _pe � b1 _pbÞ þ b1 _pb�i: ð12Þ
The time interval of study ½0; T� is discretized into successive time steps ½tn; tnþ1�, and the value of a function f at time tn is
denoted by fn. Assuming that the value at time tn of all unknowns have been determined at the end of the preceding
time-step, new values ðEnþ1; ðpbÞnþ1; ðpeÞnþ1Þ are prescribed to the loading parameters. The unknowns R; _Ep; fb; fe;w at time
tnþ1 (note that the subscript nþ 1 is omitted to simplify notations) solve a time-discretized version of the equations (10)
and (12):
R ¼ Rn þ Chom
2 : ðDE � Dt _EpÞ � ½b2Dðpe � b1pbÞ þ b1Dpb�i

R 2 Phom;

when R is in the interior of Phom : _Ep ¼ 0;
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when R is on the boundary of Phom : R ¼ fð _Ep; fb; fe;w; ðpbÞnþ1; ðpeÞnþ1Þ;
fb ¼ ðfbÞn þ Dtg1ð _Ep; fb; fe;w; ðpbÞnþ1; ðpeÞnþ1Þ;
fe ¼ ðfeÞn þ Dtg2ð _Ep; fb; fe;w; ðpbÞnþ1; ðpeÞnþ1Þ;
w ¼ wn þ Dtg3ð _Ep; fb; fe;w; ðpbÞnþ1; ðpeÞnþ1Þ;

ð13Þ
where Dt ¼ tnþ1 � tn with similar definitions for DE; Dpb and Dpe. The trial stress RTrial, which is the purely elastic response of
the system under the applied increment of loading, reads as
RTrial ¼ Rn þ Chom
2 : DE � ½b2Dðpe � b1pbÞ þ b1Dpb�i:
Two cases must be considered.

� Either RTrial belongs to Phom, in which case the step is purely elastic and
R ¼ RTrial; f b ¼ ðfbÞn; f e ¼ ðfeÞn; w ¼ wn:
� Or RTrial does not belong to Phom, the step is plastic and the stress R is on the yield surface. The following nonlinear equa-
tions has to be solved for _Ep; fb; fe;w:
fð _Ep; fb; fe;w; ðpbÞnþ1; ðpeÞnþ1Þ ¼ RTrial � DtChom
2 : _Ep;

fb ¼ ðfbÞn þ Dtg1ð _Ep; fb; fe;w; ðpbÞnþ1; ðpeÞnþ1Þ;
fe ¼ ðfeÞn þ Dtg2ð _Ep; fb; fe;w; ðpbÞnþ1; ðpeÞnþ1Þ;
w ¼ wn þ Dtg3ð _Ep; fb; fe;w; ðpbÞnþ1; ðpeÞnþ1Þ:

ð14Þ
This system is solved by means of a Newton–Raphson procedure (where the gradient is computed numerically by a differ-
ence quotient). Once the solution _Ep; fb; fe;w is determined, the stress R is obtained as
R ¼ fð _Ep; fb; fe;w; ðpbÞnþ1; ðpeÞnþ1Þ:
Remark. The instantaneous plasticity domain Phom is only defined implicitly by the N-phase model and the verification of
the condition RTrial 2 Phom is not straightforward. In a first step an interior point of Phom is determined. This can be done,
among other possibilities, by computing the stresses Rþm and R�m corresponding, respectively, to positive and negative
hydrostatic _Ep in the relation (9) (see Fig. 1). The stress R ¼ 1=2ðRþm þ R�mÞi is in the interior of Phom. Then consider the line
ðR;RTrialÞ and the intersection R0 between this line and the flow surface, boundary of Phom. R0 is unknown but the triaxiality
ratio R� R is constant along the whole line ðR;RTrialÞ. In particular
R0
m � Rm

R0
eq

¼ RTrial
m � Rm

RTrial
eq

: ð15Þ
On the other hand, the constitutive relation (9) gives
R0
m ¼ fmðDÞ; R0

eq ¼ feqðDÞ;
where D is the (unknown) outer normal vector to Phom at R0. It should be noted that, by isotropy, f depends only on the three
invariants of D and since the constituents in the linear comparison composite used in the N-phase model are isotropic, f de-
pends only on the two first invariants Dm and Deq of D : fðDm;DeqÞ. Furthermore, being a positively homogeneous function of
Fig. 1. Determination of interior points of Phom.
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degree 0 with respect to D; f depends only on its triaxiality ratio h ¼ Dm=Deq : fðDm;DeqÞ ¼ fðh;1Þ. According to (15), h solves
the nonlinear equation
Fig. 2.
cavities
(ellipso
fmðh;1Þ � Rm

feqðh;1Þ
¼ RTrial

m � Rm

RTrial
eq

; ð16Þ
which can be solved for h using a Newton–Raphson algorithm. Then the two first invariants of R0 are given by
R0
m ¼ fmðh;1Þ; R0

eq ¼ feqðh;1Þ:
Finally, RTrial is in Phom if its invariants belong to the segment ½R;R0�.
4. Applications

The above model has been implemented numerically to study the influence of the different parameters on the void
growth in specific situations. The material data (Young modulus E, Poisson ratio m and yield stress r0) of compact (unvoided)
UO2 at 1700 �C are
E ¼ 173 GPa; m ¼ 0:33; r0 ¼ 55 MPa:
The original Gurson criterion (q1 ¼ q3 ¼ 1) is used to describe the plastic properties at the mesoscopic level (porous grains).
The applied loading is a purely hydrostatic deformation
EðtÞ ¼ EmðtÞi;
superimposed to internal pressures pe and pb which are kept constant in time along the loading path. More general loading
paths including change in internal pressures could be explored using the algorithm described in Section 3 but, for simplicity,
this direction is not pursued here. The overall stress is hydrostatic and the stress–strain response is represented by ðRm; EmÞ
plots.

4.1. Influence of the initial microstructure

The influence of the initial microstructure on the overall stress–strain curve is examined by varying the initial conditions
f 0
b ; f

0
e ;w

0. The relative importance of the initial intragranular porosity f 0
b and of the initial intergranular porosity f 0

e is shown
in Fig. 2a and b, respectively. For this particular choice of the aspect ratio w ¼ 0:1 which corresponds to flat ellipsoids, the
overall response is more sensitive to variations in fe. However, the volume fraction fe varies linearly with the aspect ratio w
and therefore, for fixed fe, smaller w corresponds to a higher density of voids, and therefore to a more severe damage. The
influence of fe is less pronounced when the intergranular voids tend to be spherical.

The influence of the initial aspect ratio w0 is illustrated in Fig. 3. The initial porosity f 0
e is the same in all plots while the

aspect ratio w0 is varied from 0.9 to 0.1. The density of voids increases while the aspect ratio decreases, resulting again in a
more severe damage of the material when w is small.

4.2. Influence of the two internal pressures

The effect of the internal pressures pe and pb is discussed in Fig. 4. Note that the initial overall stress Rm is negative (when
Em ¼ 0). Indeed, the internal pressure in the voids creates a dilatational eigenstrain in the matrix which is inhibited by the
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condition Em ¼ 0 and a negative overall stress is required to enforce this constraint. For moderate values of pe and pb, the
matrix does not yield under purely internal pressure in the two populations of voids and the resulting overall stress is purely
elastic. It can be estimated by the relation (8) where the strain (which, again, is purely elastic) is 0, as
Rm ¼ �b2ðpe � b1pbÞ � b1pb. It is also observed that the relative influence of pe and pb depends strongly on the aspect ratio
w of the ellipsoidal voids. When the ellipsoidal voids are almost spherical in shape (w ¼ 0:9, Fig. 4a and b) the influence
of pb is stronger than that of pe (in this example where fb > fe). By contrast, when the voids are flat (w ¼ 0:1, Fig. 4c and
d) the influence of pe is dominant. So, the relative influence of the two internal pressures is itself strongly influenced by
the shape of the ellipsoidal intergranular voids. The loading is strain-controlled which allows for capturing a softening in
the stress–strain curve.

All curves show a more or less steady softening of the material and no instability (in the sense of a sudden drop in the
stress–strain curve) was observed in all the examples which have been considered here (which correspond to realistic values
of the porosities). Additional ingredients are required in order to observe instabilities related to the coalescence of voids. This
is the object of the next section.

4.3. Influence of the presence of intragranular voids on the growth of the intergranular voids

In a recent study on voided materials with two populations of spherical voids, Fabrègue and Pardoen, (2008) have ob-
served that at low stress triaxiality the presence of small voids has no significant influence on the growth of larger voids.
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Fig. 4. Influence of the internal pressures pb and pe on the overall stress–strain response of a doubly voided material. Initial aspect ratio of the ellipsoidal
cavities w0 ¼ 0:9;0:2;0:1.
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stress triaxiality T ¼ Rm=Req. Drained material pb ¼ pe ¼ 0. All predictions, except the exact result, are obtained with the N-phase model with N ¼ 11.
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The present model shows similar trends at low stress triaxialities. However, it does show a significant influence of the pop-
ulation of small voids on the growth of the larger voids at high stress triaxiality.

Consider first a hollow sphere made of a Gurson matrix (porosity fb) with a central cavity (volume fraction fe). A hydro-
static deformation EmðtÞ is applied to this hollow sphere and the void volume fractions fbðr; EmÞ and feðEmÞ can be computed,
either analytically, or in our case, using the N-phase secant method (which delivers the exact response in the limit of a large
number of layers N). Note that, in the exact solution, the secondary porosity fb has a gradient in the radial direction. The pre-
diction of the N-phase model for the evolution of fe are compared to the exact solution in Fig. 5a for different initial volume
fraction of the small voids. According to assumption (H1), the model does not account for the heterogeneity of the distribu-
tion of fb in the matrix and makes the approximation that the spatially inhomogeneous field fb can be replaced by a single
scalar value which acts as an effective porosity. This explains the difference between the exact solution and the predictions of
the model, which however is small as can be seen in Fig. 5a. A second observation, valid both for the exact solution and for
the model, is that the small voids delay the growth of the large voids. This is due to the fact that the test is driven by the
overall strain and part of this overall strain contributes to the growth of the smaller voids. Therefore, the dilatation of the
large voids is smaller when the volume fraction of the small voids is larger.

Considering that the comparison between the exact solution and the model is satisfactory, other stress triaxiality ratios
have been considered. No analytical solution is available, and therefore only the predictions of the present model are shown.
The material containing two populations of voids is deformed axisymmetrically (the axis of symmetry being the z direction)
along a path where the stress triaxiality is prescribed Rm=Req ¼ 10;1;0:1 and two different values of the secondary porosity
f 0
b . The evolution of the porosity fe predicted by the model is shown in Fig. 5b–d. The observation of Fabrègue and Pardoen

(2008) made on the basis of finite element simulations is retrieved by the model at low stress triaxiality ðRm=Req ¼ 0:1;1Þ.
But significant deviations from this result are observed at large stress triaxiality ðRm=Req ¼ 10;þ1Þ.

5. Void coalescence

5.1. Onset of coalescence

The ultimate stage of void growth is the coalescence of several voids which eventually results in the formation of a mac-
roscopic crack. In the present problem, the macro-cracks formed by void coalescence can link together and give rise to a con-
nected network of cracks through which fission gases may diffuse and reach the outer barrier. Predicting void coalescence
is therefore an important safety issue. The evolution equations derived in Section 2.2 are based on certain geometrical
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assumptions, such as well-separated and self-similar ellipsoids, which are inappropriate at the onset of coalescence. These
evolution equations capture correctly the evolution of the voids when all voids deform in a similar manner in a diffuse plas-
ticity mode. But at a certain point, a few voids start growing much more rapidly than others and an unstable process takes
place. This change of regime is now well-recognized. It was first modelled by Koplik and Needleman, 1988 by the introduc-
tion in the GTN criterion of an effective porosity f � growing more rapidly than the actual porosity. This model requires the fit
of several parameters which can be questioned. Another interpretation of coalescence, which will be followed in this study, is
that the transition to coalescence corresponds to the localization of the plastic deformation in the ligament between two
neighbouring voids.

For materials containing a single population of voids, Thomason, 1985 has derived an empirical expression based on slip-
line fields between voids arranged periodically in a rigid ideally plastic matrix. For a spherical cavity with radius b1 in a cylin-
drical block of matrix with radius b2 and axis aligned in the z direction, subjected to an axisymmetric stress state with
Rzz P Rxx ¼ Ryy, Thomason’s criterion reads as Rzz 6 RTho

zz with (Benzerga, 2002)
RTho
zz ¼ r0ð1� v2

ThoÞCTho where vTho ¼
b1

b2
; CTho ¼ 0:1

1
vTho

� 1
� �2

þ 1:2

ffiffiffiffiffiffiffiffiffi
1

vTho

s
: ð17Þ
Thomason’s criterion has been generalized to ellipsoidal voids with ellipsoidal distribution by Pardoen and Hutchinson, 2000
and Benzerga, 2002:
Rzz 6 RBen
zz ; RBen

zz ¼ r0ð1� v2
BenÞCBen; where vBen ¼

b1

b2
;

CBen ¼ 0:1
v�1

Ben � 1
w2 þ 0:1v�1

Ben þ 0:02v�2
Ben

� �2

þ 1:3

ffiffiffiffiffiffiffiffiffi
1

vBen

s
: ð18Þ
It will be convenient to use the triaxial form of this criterion (Benzerga, 2002; Pardoen and Hutchinson, 2003)
Req þ
3
2
j Rh j �

3
2
r0ð1� v2

BenÞCBen 6 0; ð19Þ
where Rh ¼ 2a2Rp þ ð1� 2a2ÞRn is the generalized ‘‘hydrostatic” stress of Gologanu et al., 1994. Rn is the stress in the direc-
tion of the axis of symmetry of the ellipsoid, while Rp is the axisymmetric stress in the plane perpendicular to this axis and a2

is a geometrical parameter whose definition is recalled in Appendix A.
The aim of the following section is to show how the criteria (17) or (18), derived for a single population of voids, can be

used in the present context of doubly voided materials.

5.2. Composite grain model

In order to use the coalescence criteria, more specific information about the microstructure of the doubly voided material
has to be introduced. So far, the only information on the microstructure which has been used is the fact that spheroidal voids
are randomly distributed in a Gurson matrix. In the problem of fragmentation of a UO2 under the action of high-pressure
fission gases contained in the two population of voids, the typical situation, shown in Fig. 6 right, is a grain weakened by
spherical voids in its interior and surrounded by a grain boundary zone where ellipsoidal voids parallel to the grain boundary
are located. This situation can be schematized by considering a single grain as a composite sphere X as represented in Fig. 6.
The inner core Xð1Þ contains small spherical voids with porosity fb, subjected to an internal pressure pb. The outer spherical
b
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Fig. 6. Actual and idealized geometry of a grain. Composite Grain Model.
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shell represents an interphase layer around the grain boundary between two adjacent grains. This layer contains spheroidal
voids with minor axis aligned in the radial direction. These intergranular voids with volume fraction fe are subjected to an
internal pressure pe. The whole model will be referred to as the Composite Grain Model.

R1 and R2 denote the radii of Xð1Þ and X, respectively. The interphase zone around the grain boundary is denoted by
Xð2Þ ¼ X�Xð1Þ. f ð1Þ and f ð2Þ denote the volume fraction of Xð1Þ and Xð2Þ relative to the whole volume element X. The thickness
of the grain boundary interphase 2a2 ¼ R1 � R2 is unknown at this stage and will be specified in due course.

The inner core contains only spherical voids and its behaviour can be modelled using the plastic dissipation potential uGur

of Gurson, 1977. The outer shell contains ellipsoidal voids with a definite orientation and its behaviour can therefore be mod-
elled using the effective potential uGol of Gologanu et al., 1994 which describes the effective relations of a von Mises matrix
containing aligned ellipsoidal voids. The boundary zone contains a single void through its thickness and the use of an effec-
tive potential can be questioned. In fact the derivation of the potential of Gologanu et al., 1994 was carried out on a single
void and does not assume the presence of many voids. Its use is therefore legitimate in the present context. For simplicity,
elasticity is neglected in both phases and the total strain-rate can be identified with the plastic strain-rate.

The loading conditions depend on three independent parameters, the two internal pressures pb and pe and the hydrostatic
deformation applied on the external boundary of the volume through an imposed velocity _u ¼ _Emi � x on oX. The problem to
be solved on X reads as
rþ pbi ¼ ouGur

o _e
ð _eÞ in Xð1Þ; rþ pei ¼ ouGol

o _e
ð _eÞ in Xð2Þ

divðrÞ ¼ 0 in X; _u ¼ _E � x on oX:
ð20Þ
Detailed expressions for the potentials uGur and uGol will be given in due course. As in the first part of this study, one of the
two internal pressures can be eliminated by shifting the stress field. Here it is chosen to eliminate the pressure in the ellip-
soidal voids by setting re ¼ rþ pei. The local problem (20) is equivalent to
re þ pi ¼ ouGur

o _e
ð _eÞ in Xð1Þ; re ¼

ouGol

o _e
ð _eÞ in Xð2Þ;

divðreÞ ¼ 0 in X; _u ¼ _E � x on oX;
ð21Þ
where p ¼ pb � pe. The macroscopic stress is then obtained as
R ¼ hriX ¼
1
jXj

Z
X

rdX ¼ hreiX � pei: ð22Þ
For simplicity, the local fields ðre; _eÞ solution of (21) will be denoted as ðr; _eÞ in the sequel.

5.3. Approximate resolution of the local problem (21)

5.3.1. Formulation of the nonlinear problem with secant moduli
The exact resolution of the nonlinear problem (21) is difficult (and its solution is not known to the best of the authors’

knowledge). An approximate resolution by the modified secant method (which is another name for the variational procedure
of Ponte Castañeda, 1991) is adopted. The error due to the substitution of a nonlinear medium by an optimal linear compos-
ite is expected to be small for the following reasons. First, due to the spherical symmetry of the loading and of the geometry,
the core of the grain is subjected to an hydrostatic stress on its outer boundary r ¼ R1. Therefore the stress field, as well as the
strain-rate field, inside the core is uniform and hydrostatic. There is no error induced by the modified secant method for uni-
form stress fields. Second the outer shell is thin and the stress, or strain-rate, heterogeneity in the grain boundary region is
limited.

The application of the modified secant method requires some care. The axes of symmetry of the material in the outer layer
corresponding to the grain boundary are in the radial direction and therefore differ for points having different Euler angles.
As a consequence, the composite grain model is, in full rigor, a composite with an infinite number of different phases (dif-
ferent orientations in the outer layer) and not a two-phase composite. However, when the composite grain is subjected to an
outer isotropic deformation and internal pressure in the voids, the solution of the nonlinear problem has the same spherical
symmetry as the data and the strain-rate field is hydrostatic in the central core and has only two independent components
_errðrÞ and _ehhðrÞ ¼ _e//ðrÞ in the outer layer. The linear comparison composite is consequently chosen with the same spherical
symmetry, isotropic in the core, and locally transversally isotropic in the outer shell. By ‘‘locally” it is meant that the invari-
ant direction is the direction er which depends on the Euler angles of the point under consideration. The linear comparison
composite is not a two-phase composite for the same reason as for the nonlinear composite, but is characterized by four elas-
tic coefficients, a bulk modulus in the core and three elastic coefficients in the outer layer.

In order to derive analytical expressions for these elastic coefficients, note that, the strain-rate and the stress field are iso-
tropic in the core and are related by
rm þ p ¼ 1
3

ouGur

o _em
ð _emiÞ ¼ 3ksct _em;
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where
uGurð _eÞ ¼ r0

Z 1

fb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 _e2

m

t2 þ _e2
eq

s
dt; ksct ¼ �

2
9
r0

1ffiffiffiffiffiffi
_e2

m

p lnðfbÞ: ð23Þ
In the outer layer, the potential uGolð _eÞ can be expressed as
uGolð _eÞ ¼ r00
Z 1

~f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~y2

2

t2 ðFAþ GBÞ2 þ H2B2

s
dt; ð24Þ
where A and B are functions of _e and where y2; F;G;H;r00 are geometrical or material constants (see Appendix A for detailed
expressions). After use of the equality _ehh ¼ _e//, one obtains the secant relations
rrr ¼ nsct _err þ 2lsct _ehh; rhh ¼ lsct _err þ 2jsct _ehh; ð25Þ
where the secant moduli nsct; lsct and jsct are given by (A.4), (A.5) and (A.6). They depend, at each point x, on the strain-rate
_eðxÞ at this point. The idea underlying the variational or secant method (and all methods making use of a linear comparison
composite) is to replace these nonuniform moduli by uniform moduli per phase.

5.3.2. Linear comparison composite (LCC)
Now consider a linear composite with a central core with bulk modulus kð1Þ and a locally transversely isotropic outer layer

characterized by elastic moduli ðnð2Þ; lð2Þ;jð2ÞÞ. The local elastic energy of the linear comparison composite in the core and in
the outer layer can be, respectively, written as
wð1Þ0 ð _eÞ ¼
9kð1Þ

2
_e2

m � 3p _em; wð2Þ0 ð _eÞ ¼
1
2
ðnð2Þ _e2

rr þ 4lð2Þ _err _ehh þ 4jð2Þ _e2
hhÞ:
Consequently, for the hydrostatic loading conditions under consideration here, the effective energy of the linear comparison
composite can be expressed as
whom
0 ð _Em;pÞ ¼ f ð1Þ

9
2

k0h _e2
mi1 � 3ph _emi1

� �
þ f ð2Þ

nð2Þ

2
h _e2

rri2 þ 2lð2Þh _err _ehhi2 þ 2jð2Þh _e2
hhi2

� �
;

from which it follows that the second moments of the strain field in the phases of the LCC are given as
h _e2
mi1 ¼

2
9f ð1Þ

owhom
0

okð1Þ
ð _Em;pÞ; h _e2

rri2 ¼
2

f ð2Þ
owhom

0

onð2Þ
;

h _err _ehhi2 ¼
1

2f ð2Þ
owhom

0

olð2Þ
; h _e2

hhi2 ¼
1

2f ð2Þ
owhom

0

ojð2Þ
:

ð26Þ
The modified secant method consists in choosing the elastic moduli kð1Þ; nð2Þ; lð2Þ;jð2Þ in the linear comparison compos-
ite using the second-moment of the strain field over each individual phase, using the relations (23), (A.4), (A.5), (A.6)
and (26).

5.3.3. Implementation
The modified secant method for the specific problem under consideration can be summarized as

Input: _Em.
Do until convergence:

(1) Compute the secant moduli
kð1Þ ¼ ksctðh _e2
mi1Þ by relation ð23Þ;
nð2Þ; lð2Þ;jð2Þ ¼ nsct; lsct;jsctðh _e2
rri2; h _e2

hhi2; h _err _ehhi2Þ by relations (A.4)–(A.6),
(2) Compute the second moments h _e2

rri2; h _err _ehhi2; h _e2
hhi2 by relations (26) where the effective energy whom

0 ð _Em; pÞ is given by
relation (B.9).

Output:
Rm þ pe ¼ 3khom _Em � pbhom
;

where khom and bhom are given by the relations (B.24) and (B.25), respectively, p ¼ pb � pe and R is the actual stress (22) in the
composite grain.



518 P.-G. Vincent et al. / International Journal of Solids and Structures 46 (2009) 507–526
5.4. Microstructure evolution

When the loading is applied to the composite grain under the form of a path EmðtÞ; peðtÞ; pbðtÞ, its microstructure evolves.
The spherical symmetry of the problem allows us to assume that the spherical voids in the core remain spherical and that the
spheroidal voids in the outer layer remain spheroidal. Five microstructural variables
fb; f �e ;w;R1;R2
are sufficient to specify completely the microstructure, where f �e is the relative porosity of the intergranular voids in the out-
er layer related to the absolute intergranular porosity fe by fe ¼ f �e f ð2Þ.

The other microstructural parameters a1; a2; b1; b2; f ð1Þ are related to these five variables through the relations
b2
2 � a2

2 ¼ b2
1 � a2

1 ðconfocalityÞ; w ¼ a1

b1
;

a1b2
1

a2b2
2

¼ f �e ; 2a2 ¼ R2 � R1; f ð1Þ ¼ R3
1

R3
2

: ð27Þ
The mass balance equations in phase 1 and 2 give the two evolution equations (28), elementary geometrical considerations
give the two other evolution equations (29) and the last equation governing the change in the aspect ratio w is taken from
Gologanu et al., 1994
_fb ¼ 3ð1� fbÞh _emi1; _f �e ¼ 3ð1� f �e Þh _emi2; ð28Þ
_R1 ¼ R1h _emi1; _R2 ¼ R2

_Em; ð29Þ

_w ¼ w h _err � _ehhi2 þ 3
1� 3a1

f �e
þ 3a2 � 1

� �
h _emi2

� �
; ð30Þ
where a1 and a2 are geometrical parameters defined in Appendix A. The first moments of the strain-rate field in the phases
are estimated as the first moments of the strain field in the LCC and are given in Appendix B, Eq. (B.29).

5.5. Void coalescence

The evolution equations (28)–(30) are integrated in time along a loading path EmðtÞ; pðtÞ. The average stresses in each
phase are estimated in the LCC and in particular
hrmi1 ¼ 3kð1Þh _emi1 � p; hrrri2 ¼ nð2Þh _erri2 þ 2lð2Þh _ehhi2; hrhhi2 ¼ lð2Þh _erri2 þ 2jð2Þh _ehhi2; ð31Þ
where kð1Þ; nð2Þ; lð2Þ and jð2Þ are the elastic coefficients given at convergence by the modified secant method. The com-
posite grain is deformed until coalescence is detected in either phase (core or outer layer) by one of the criteria (17)
or (18).

In the core, coalescence is detected by the Thomason’s criterion (17) applied to the average stress in the core (the stress is
indeed uniform and hydrostatic in the core). In its original form the criterion of Thomason, 1985 applies to stress-free voids
in an incompressible von Mises material. Thanks to the matrix incompressibility, the application of an internal pressure p in
the spherical voids results in a shift of the original criterion which now reads as
j hrmi1 þ p j6 RTho: ð32Þ
In the outer layer, coalescence is detected by the criterion (19)
j hrrr � rhhi2 j þ
3
2
j 2a2hrhhi2 þ ð1� 2a2Þhrrri2 j �

3
2
r0ð1� v2

BenÞCBen 6 0: ð33Þ
Failure of the whole grain is assumed to take place as soon as one of the two criteria (32) or (33) is attained. Failure is said to
be transgranular when (32) is attained first and intergranular when (33) is attained first.

5.6. Discussion

The above composite grain model consisting of the evolution equations (28)–(30), together with the secant approxima-
tion is used to predict the type of failure and the strain at failure of polycrystalline voided materials with intragranular and
intergranular voids. For this purpose, one has to determine the initial aspect ratio w0 of the voids and the initial width of the
grain boundary zone 2a0

2 which was left undetermined by the above analysis. The aspect ratio can be estimated from the
micrograph shown in Fig. 6 to be w0 ’ 1=3. Similarly the initial width of the grain boundary can be roughly estimated from
Fig. 6 as about one fifth of the grain radius, leading to an initial width a0

2=R0
2 ¼ 0:1, where R0

2 is the average grain size. It can
also be estimated by matching the prediction of the composite grain model with that of the N-phase model in the range
where the two models can be compared, i.e. in the range of incipient plastic deformation where plasticity is still diffuse.
The predictions of both models are shown in Fig. 7 with a0

2=R0
2 ¼ 0:1 with due account for changes in microstructure. As

can be seen, the maximal stresses are very close to each other and the models differ only slightly in the softening regime.
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The difference is that the composite grain model is able to predict void coalescence in the phases, whereas the N-phase mod-
el is not.

All results shown in the rest of this section are obtained with a0
2=R0

2 ¼ 0:1;w0 ¼ 1=3.
A parametric study of the influence of the initial geometrical parameters f 0

e ; f
0
b and of the loading parameters pe and pb is

carried out. The pressures pe and pb are prescribed and constant in time, whereas the dilatational strain Em is increased lin-
early with time until coalescence is reached in one of the two regions in the composite grain. Transgranular failure is rep-
resented by a dark core surrounded by a white annulus, whereas intergranular failure is shown by a dark annulus and a
white core (the phase undergoing failure is shown in dark).

Influence of internal pressures. The influence of the internal pressures pe and pb is shown in Fig. 8. The pressure pb has a
strong influence both on the maximum stress, on the type of failure and on the overall ductility of the composite grain. When
pb is zero or small, the failure occurs at the grain boundary at a relatively small overall strain. However when pb is larger than
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r0 (this threshold depends on the other parameters) the failure becomes transgranular and the overall ductility increases.
The pressure pb creates an initial compression in the grain boundary region which delays the failure of this region.

By contrast, the internal pressure pe in the intergranular voids promotes intergranular failure and has almost no influence
on the overall ductility of the composite grain. It does have a significant influence on the maximal overall stress.

Influence of initial void volume fractions. The influence of the void volume fractions fe and fb is shown in Fig. 9. For small fb

(smaller than fe in the present example) the failure is intergranular and fb has little influence on the overall ductility. How-
ever when fb is significantly larger than fe the failure is transgranular and the overall ductility falls dramatically. The influ-
ence of fb is seen to be more significant on the maximal strain than on the maximal stress.

The effect of the intergranular porosity shows similar trends. It can be seen in Fig. 10 that when fe is significantly smaller
than fb the failure is transgranular whereas it becomes intergranular as soon as both porosities are of the same order (with
the present set of the other parameters).

Transgranular versus intergranular failure. Finally it is possible to discuss the dependence of the type of failure on the initial
void volume fractions and on the applied pressures. As shown in Fig. 10, intergranular failure is the predominant type of fail-
ure, but transgranular failure can also be observed. The line of separation between the regions corresponding to the two
types of failure is almost straight, either in the ðfb; feÞ plane or in the ðpb; peÞ plane. For a drained material the effect of the
intergranular void volume fraction is approximately twice that of the intragranular porosity (when w ¼ 1=3). When the
two volume fractions are small and of the same order, the separation between the two regimes is approximately ruled by
the sign of pe � pb � r0. In particular a sufficiently high internal presssure pb in the secondary voids is necessary to observe
transgranular failure.

Merits and limits of the N-phase model and of the composite grain model. The N-phase model and the composite grain
model have different ranges of validity and application. The N-phase model can be used for arbitrary triaxial loading
conditions, whereas the composite grain model is limited to hydrostatic loadings. On the other hand, thanks to its spe-
cific geometry, the composite grain model is able to detect coalescence, either inside the grains or along the grain
boundaries. The N-phase model does not incorporate enough specific microstructural information to be able to predict
coalescence.

The two models are in fact complementary. When the polycrystalline microstructure is close to the one shown in Fig. 6
and when the loading consists of a pure dilatation and internal pressures, the composite grain model is the most appropriate
one. However, when the ellipsoidal voids are dispersed in the porous matrix in a more random way, or if the applied strain
(or stress) is not hydrostatic, the N-phase model is the most appropriate one. Predictions regarding the material ductility
under more general loading conditions could be made by adopting a slightly different model for the grain boundary zone.
The spherical model used here is adequate for hydrostatic strain (or stress). When the principal stresses are different, one
could use a model similar to that of Pardoen et al. (2003) where the grain boundary is modelled as a thin layer bounded
by two planes rather than by two spherical surfaces. The technical details would be different, but in spirit the model would
be very similar.

6. Conclusion

In this study, we have developed a constitutive model for doubly voided materials which can predict the growth of the
voids and, to a certain extent, their coalescence. This constitutive model consists, classically, of two parts:

� Instantaneous effective stress–strain relations were derived in part I of the study and the evolution equations derived in
the present paper. Two rigorous upper bounds for the effective plastic potential were obtained. Each of these upper
bounds has a different range of accuracy and none is accurate at all stress triaxiality. Therefore a N-phase model interpo-
lating between these two upper bounds was proposed which improves on both bounds at all stress triaxialities.
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� In the second part of this study (present paper), differential equations governing the evolution of the microstructural
parameters in terms of the applied loading have been derived. The integration in time of these integration has been dis-
cussed and implemented. Void growth results in a global softening for the stress–strain response of the material. In par-
ticular this study has shown that the small voids have a significant effect on the growth of the larger voids at high
triaxiality.

� In addition to these constitutive equations a simple model for the prediction of void coalescence has been proposed which
can serve to predict the overall ductility of polycrystalline porous materials under the combined action of thermal dila-
tation and internal pressure in the voids.
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Appendix A. Secant moduli for the potential of Gologanu et al., 1994

Gologanu et al., 1994 have derived the following estimate for the effective dissipation potential of a porous material made
of a von Mises matrix weakened by aligned spheroidal voids and subjected to an axisymmetric train-rate _e:
uGolð _eÞ ¼ r00
Z 1

~f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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t2 ðFAþ GBÞ2 þ H2B2
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dt; ðA:1Þ
where A;B are functions of the strain-rate _e, whereas the other coefficients are purely geometrical (or material) coefficients
which do not depend on _e.

The purely geometrical parameters are
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The strain-rate dependent quantities are
A ¼
_ezz þ 2 _exx

2R2 þ Z2
; B ¼ _ezz �AZ2; ðA:3Þ
where z is the axis of symmetry of the spheroidal voids and ðx; yÞ denote the coordinates in the plane orthogonal to z. The
stress being given by derivation of the potential with respect to the strain-rate, one obtains
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rzz ¼
ouGol

o _ezz
ð _exx; _ezzÞ ¼ nsct _ezz þ 2lsct _exx;
and
rxx ¼
1
2

ouGol

o _exx
ð _exx; _ezzÞ ¼ lsct _ezz þ 2jsct _exx:
The factor 1/2 in the first equality comes from the fact that rxx is the derivative of uGol with respect to _exx when uGol is con-
sidered as a function of the three separate variables _exx; _eyy and _ezz. However, the expression (A.1) makes use of the equality
_exx ¼ _eyy which leads to a factor 1/2 in the derivation.

The following expressions for the secant moduli are obtained:
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These secant moduli can be written as functions of ð _e2
zz; _e2

xx; _ezz _exxÞ, by noting that
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The secant moduli nsct; lsct and jsct can be expressed in closed form
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where the function arccsch is the inverse of the hyperbolic cosecant cschðxÞ ¼ 1= sinhðxÞ,
~a2 ¼ ~y2
2ðF2A2 þ G2B2 þ 2FGABÞ; ~b2 ¼ H2B2:
Remark. In the present context, the axis of revolution of the spheroids is the radial direction er whereas the in-plane
directions x and y are the directions eh and e/. Consequently, the above relations are used in Appendix B with _err and _ehh in
place of _ezz and _exx, respectively.
Appendix B. Strain field in the linear comparison composite (LCC)

The composite grain occupies a spherical domain X with radius R2. The core of the grain is another spherical domain Xð1Þ

with radius R1 whereas the boundary zone occupies the domain Xð2Þ ¼ X�Xð1Þ such that R1 6 r 6 R2. The volume fraction of
the domains are denoted by f ð1Þ and f ð2Þ. In this Appendix, both constituents of the composite grain are assumed to be linearly
elastic, the central core being isotropic and the outer layer being locally transversally isotropic. The loading consists in an
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imposed dilatation on the outer boundary of the grain and to a uniform internal pressure p in the core. For definiteness the
detailed solution to this problem is given here. The reader is referred to He and Benveniste, 2004 for a more systematic
theory.

The problem to be solved for the LCC reads as
r ¼ Cð1Þ : e� pi in Xð1Þ; r ¼ Cð2ÞðxÞ : e in Xð2Þ;

divðrÞ ¼ 0 in X; u ¼ E � x on oX:
ðB:1Þ
The dependence of Cð2Þ on x stems from the rotation of the local axes of symmetry with the material point x in the outer layer
Xð2Þ.

B.1. Effective energy

The constitutive relations in (B.1) can formally be written as those of a thermoelastic composite
r ¼ CðiÞ : eþ sðiÞ; 1 6 i 6 N; sð1Þ ¼ �pi; sðiÞ ¼ 0; 2 6 i 6 N; ðB:2Þ
where phase 1 is the central core and the N � 1 other phases correspond to the different orientations in the outer layer (N is
in fact infinite). As in the first part of this study, the effective energy of the LCC can be obtained by a general result about N-
phase thermoelastic composites (Willis, 1981) and reads as
whomðEÞ ¼ 1
2

E : Chom : E þ shom : E þ 1
2

ghom; ðB:3Þ
with, in particular,
shom ¼
XN

i¼1

f ðiÞAðiÞ
T

: sðiÞ; ghom ¼
XN

i¼1

f ðiÞsðiÞ : aðiÞ: ðB:4Þ
In the above relations, AðiÞ is the (fourth-order) strain-localization tensor which relates the average strain in ith phase to the
macroscopic strain E in the absence of eigenstresses ðsðiÞ ¼ 0; i ¼ 1; . . . ;NÞ and aðiÞ is the average strain in phase i due to eigen-
stresses only ðE ¼ 0Þ. Given that all the sðiÞ’s are zero except sð1Þ it is found that the overall elastic energy of the LCC reads as
whomðE; pÞ ¼ 1
2

E : Chom : E � pBhom : E � 1
2

p2

Mhom ðB:5Þ
with
Bhom ¼ f ð1Þi : Að1Þ;
1

Mhom ¼
f ð1Þ

p
i : að1Þ: ðB:6Þ
The effective relation between the overall stress and the overall strain is obtained by derivation of (B.5)
R ¼ Chom : E � pBhom: ðB:7Þ
To simplify further this relation it is noted that the stress R and the average strain in the core að1Þ generated by the sole appli-
cation of a pressure p in the core of the grain (with E ¼ 0) are purely hydrostatic by spherical symmetry. It follows that Bhom

(proportional to R when E ¼ 0) and að1Þ are proportional to i:
Bhom ¼ bhomi; bhom ¼ 1
3

Bhom : i ¼ f ð1Þ

3
i : Að1Þ : i; að1Þ ¼ að1Þi; að1Þ ¼ 1

3
að1Þ : i: ðB:8Þ
Similarly, when the composite grain is subjected to a hydrostatic deformation Emi only, the response of the composite grain
is again hydrostatic and proportional to Em. The ratio khom ¼ Rm=3Em is the effective bulk modulus of the composite grain.
Finally, when the composite grain is subjected to both an internal pressure p in the core and an average deformation Emi,
the overall stress is hydrostatic with
Rm ¼ 3khomEm � pbhom
;

and the effective energy reads as
whomðEm;pÞ ¼
9khom

2
E2

m � 3pbhomEm �
1
2

p2

Mhom : ðB:9Þ
Thanks to the relation (B.8), it is sufficient to solve the purely elastic problem ðEm–0; p ¼ 0Þ to determine both the effective
modulus bhom and the effective bulk modulus khom (see Section B.2). The effective Biot modulus Mhom is obtained by means of
the last relation in (B.6) and the determination of að1Þ requires the resolution of the local problem (B.1) with p–0; Em ¼ 0
(see Section B.3).
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B.2. Response of the composite grain under a purely hydrostatic deformation

In this section, the grain is drained ðp ¼ 0Þ and subjected to an imposed dilatation on its boundary
u ¼ EmI � x on oX: ðB:10Þ
The objective of this section is to derive an explicit expression for the displacement field in the composite grain and to use
this expression to determine the effective bulk modulus khom of the composite grain and the scalar coefficient bhom.

The displacement field is radial in X and depends on r only (where ðr; h;/Þ denote classically the spherical coordinates)
u ¼ uðrÞer . The strain tensor is diagonal in the spherical frame
err ¼
ou
or
; ehh ¼ e// ¼

u
r
: ðB:11Þ
The notations of Walpole, 1969 will be used to describe the transversely isotropic elasticity of the outer layer Xð2Þ. When the
strain is axisymmetric, the constitutive relations in the layer can be expressed with the help of three elastic coefficients in
the form
rrr ¼ nerr þ 2lehh; rhh ¼ lerr þ 2jehh: ðB:12Þ
Similar constitutive relations hold in the core, except that due to the isotropy of the core material, the three elastic coeffi-
cients ðn; l;jÞ in the core depend on two elastic constants, the bulk and shear moduli k and l of the core
n ¼ kþ 4
3
l; l ¼ k� 2

3
l; j ¼ 1

3
ð3kþ lÞ in the core: ðB:13Þ
The equilibrium equation along the radial direction
orrr

or
þ 2ðrrr � rhhÞ

r
¼ 0
combined with the expression (B.11) of the strain field gives a differential equation for the displacement field
n
o2u
or2 þ

2n
r

ou
or
þ 2ðl� 2jÞ u

r2 ¼ 0; ðB:14Þ
the solution of which is (separately in Xð1Þ and Xð2Þ)
uðrÞ ¼ Ara þ Brb with a ¼ �nþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � 8nðl� 2jÞ

p
2n
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p
2n

: ðB:15Þ
The exponents ða; bÞ and the constants ðA; BÞ are different in the core and in the outer layer.
In the isotropic core, it is well known (and readily checked) that a ¼ 1 and b ¼ �2. In order to avoid a singularity of the

displacement field in r�2 at r ¼ 0;B ¼ 0 and the displacement field in the core is simply uðrÞ ¼ Ar. The strain and the stress
in the core are hydrostatic:
err ¼ ehh ¼ e// ¼ A; rrr ¼ rhh ¼ r// ¼ 3kA: ðB:16Þ
In order to avoid confusion, we will now label the elastic coefficients and the unknowns by the phase. The elastic coefficients
are kð1Þ in the core and ðnð2Þ; lð2Þ;jð2ÞÞ in the outer layer. The exponents a and b in the outer layer are given by the relations
(B.15) with ðnð2Þ; lð2Þ;jð2ÞÞ. We are left with three unknowns Að1Þ (in the core) and ðAð2Þ;Bð2ÞÞ in the outer layer which solve
three equations expressing the continuity of u and rrr at the interface r ¼ R1 and the imposed displacement at r ¼ R2 (Em

is taken equal to 1 by homogeneity):
Að2ÞRa
1 þ Bð2ÞRb

1 ¼ Að1ÞR1;

ðnð2Þaþ 2lð2ÞÞAð2ÞRa�1
1 þ ðnð2Þbþ 2lð2ÞÞBð2ÞRb�1

1 ¼ 3kð1ÞAð1Þ;

Að2ÞRa
2 þ Bð2ÞRb

2 ¼ R2:

ðB:17Þ
A straightforward calculation leads to
Að1Þ ¼ f ð1Þ
b�1

3 Dþ f ð1Þ
a�1

3 ð1� DÞ; Að2Þ ¼ R1�a
2 ð1� DÞ; Bð2Þ ¼ R1�b

2 D ðB:18Þ
with
D ¼ 1� f ð1Þ
b�a

3 3kð1Þ � nð2Þb� 2lð2Þ

3kð1Þ � nð2Þa� 2lð2Þ

" #�1

:

The first moments of the strain field in the phases are given by
herri1 ¼ hehhi1 ¼ Að1Þ; ðB:19Þ
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It is easily deduced from the relations (B.18)–(B.21) that
hemi1 ¼
1
3
herr þ 2ehhi1 ¼ Cð1ÞE ; hemi2 ¼

1
3
herr þ 2ehhi2 ¼ Cð2ÞE ;

1
3
herr � ehhi2 ¼ Dð2ÞE ðB:22Þ
with
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ðB:23Þ
The overall bulk modulus khom follows directly from the expression of the overall stress (recall that Em ¼ 1),
3khom ¼ Rm ¼ f ð1Þhrmi1 þ f ð2Þhrmi2:
3khom ¼ 3kð1Þf ð1Þhemi1 þ
ðnð2Þ þ 2lð2ÞÞ

3
f ð2Þherri2 þ

ð2lð2Þ þ 4jð2ÞÞ
3

f ð2Þhehhi2:
This expression can be simplified by noting that
1 ¼ Em ¼ f ð1Þhemi1 þ f ð2Þhemi2; herri2 ¼ hemi2 þ
2
3
herr � ehhi2; hehhi2 ¼ hemi2 �

1
3
herr � ehhi2
into
Rm ¼ 3kð1ÞðEm � f ð2Þhemi2Þ þ
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3
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9

f ð2Þherr � ehhi2:
The final expression of the effective bulk modulus is obtained with the help of the relations (B.22)
khom ¼ kð1Þ þ ðnð2Þ þ 4lð2Þ þ 4jð2ÞÞ
9
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: ðB:24Þ
The scalar bhom entering (B.8) is related to Að1Þ given by the first relation in (B.18) by
bhom ¼ f ð1ÞAð1Þ: ðB:25Þ
B.3. Response of the composite grain under a pressure in the core only

The problem is now (B.1) where p–0; E ¼ 0. The displacement field in the two phases is still in the form (B.15) with three
unknowns Að1Þ;Að2Þ; Bð2Þ which solve the algebraic system of equations
Að2ÞRa
1 þ Bð2ÞRb

1 ¼ Að1ÞR1;

ðnð2Þaþ 2lð2ÞÞAð2ÞRa�1
1 þ ðnð2Þbþ 2lð2ÞÞBð2ÞRb�1

1 ¼ 3kð1ÞAð1Þ � p;

Að2ÞRa
2 þ Bð2ÞRb

2 ¼ 0:

ðB:26Þ
Taking p ¼ 1 by homogeneity, a straightforward calculation leads to
Að1Þ ¼ f ð1Þ
a�1

3 � f ð1Þ
b�1

3

� �
C; Að2Þ ¼ R1�a

2 C; Bð2Þ ¼ �R1�b
2 C ðB:27Þ
with
C ¼ 1
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a�1
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b�1

3

:
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Finally, the scalar að1Þ entering (B.8) is pAð1Þ, where Að1Þ given by the first relation in (B.27), from which it is deduced that
1

Mhom ¼ 3 f ð1Þ
aþ2

3 � f ð1Þ
bþ2

3

� �
C:
The first moments in the phases of the components of the strain are still given by the general relations (B.19)–(B.21). We
obtain in particular that
hemi1 ¼
1
3
herr þ 2ehhi1 ¼ Cð1Þp ; hemi2 ¼

1
3
herr þ 2ehhi2 ¼ Cð2Þp ;

1
3
herr � ehhi2 ¼ Dð2Þp
with
Cð1Þp ¼ f ð1Þ
a�1

3 � f ð1Þ
b�1

3

� �
C; Cð2Þp ¼

1
f ð2Þ

f ð1Þ
bþ2

3 � f ð1Þ
aþ2

3

� �
C

Dð2Þp ¼
1

f ð2Þ
C

a� 1
aþ 2

1� f ð1Þ
aþ2

3

� �
� b� 1

bþ 2
1� f ð1Þ

bþ2
3

� �� �
:

ðB:28Þ
B.4. First moments of the strain field in the phase under general loading conditions Em–0; p–0

Under general loading conditions, Em–0; p–0, the first moments of the strain field in the phases which will be useful in
the evolution equation (28)–(30) read as
hemi1 ¼ Cð1ÞE Em þ Cð1Þp p; hemi2 ¼ Cð2ÞE Em þ Cð2Þp p;
1
3
herr � ehhi2 ¼ Dð2ÞE Em þ Dð2Þp p: ðB:29Þ
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