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Over a subring R of the rationals, we explore the properties of a new functor .X 
from spaces to differential graded Lie algebras. We prove a Hurewicz theorem 
which identities H*X(X) with n*(QX) 0 R in a range of dimensions. Using it, we 
prove an R-local version of the Milnor-Moore theorem. I(’ 1989 Academx Press. Inc 

This paper continues the program, begun in [2], of exploring an R-local 
form of rational homotopy theory. Our overall goal, for a subring R of Q, 
is to discover small algebraic models over R which encode as much infor- 
mation as possible about the R-local homotopy type of a space X. The 
paper [2] introduced a functor bQ which is weakly equivalent in the case 
R = CI with Quillen’s differential graded Lie algebra functor 1 [lo]. This 
paper examines &‘sZ when R # Q. 

The MilnorMoore theorem [S] discusses the rationalized Hurewicz 
homomorphism 

h”: 7c*(QX)Q Q + H*(QX; cl). (1) 

The homomorphism h” is a bijection between n,(l;tX) Q&p, known as the 
rational homotopy Lie algebra (with Samelson product) for X, and the Lie 
algebra 9’PH,(SZX; Q) of primitives in the rational Pontrjagin ring for s2X. 
If Q is replaced in (1) by a subring R, h” is in general neither one-to-one 
nor onto primitives. 

In order to generalize the Milnor-Moore theorem to a coefhcient ring 
R 5 Cl?, we first recall Quillen’s differential graded Lie algebra functor 9. 
Quillen [lo] showed that 3? enjoys the simultaneous properties that there 
are natural isomorphisms 

and 

(2a) 

n,(QX)Q Q “, H,(IX), (2b) 
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where J& denotes the enveloping algebra of a (differential) (graded) Lie 
algebra. Since H./&L = &H,L when L is a differential graded Lie algebra 
over Q [ 10. Prop. B2.11, (2a) and (2h) tell us 

which is essentially the MilnorrMoore theorem. In order to generalize it we 
will show that certain spaces X have a differential graded Lie algebra 
model YX for which 

H,“.2’(X) 5 H,(QX; R), (3a) 

while the relation 

n,(sZX) @ R =, H,Y( A’) (3b) 

is valid for a certain range of dimensions. 
We will actually consider two Lie algebra models for A’ in this paper. 

The first one is derived from the functor QQ of [Z]. Denoted .X‘( ), it is 
defined on r-connected spaces (r 3 1) and is of interest up to dimension 
rp-1 if REIK’ for 1 <n <p. The functor A’” has homotopy-invariant 
homology, and (for r 3 2) this homology coincides with n,(QX)@ R 
through dimension r + 2p - 4. (This range represents an improvement over 
the usual mod p Hurewicz theorem [9] when r is small compared to p.) 
Because of this, the Lie algebra H,X(X) may be thought of as an 
approximation to rc,(QX) @ R. 

Our second Lie algebra associated to A’, denoted V(X), requires the 
further hypothesis that X be a CW complex of dimension <rp. Then Y(X) 
and X(X) have the same homology below dimension rp, but Y(X) also 
satisfies (3a). 

The paper is organized as follows. We begin with some algebraic 
preliminaries. The most important of these is the observation that a 
homomorphism of differential graded Lie algebras induces an isomorphism 
in a range of dimensions if and only if the induced homomorphism on 
enveloping algebras does so. We introduce X’ and check that H,3Y‘( ) is 
preserved, on maps by homotopy and on spaces by weak homotopy equiv- 
alences. We prove the Hurewicz theorem for H,X, and discuss naturality 
with respect to products. We then recall the model 2 from [2] and verify 
the promosed R-local Milnor-Moore theorem. We conclude with an 
application to p-elliptic spaces, decomposing their loop spaces into well- 
known factors. 
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1. ALGEBRAIC PRELIMINARIES 

We collect here some definitions, notations, and lemmas which will be 
useful to us in the course of the paper. We work with (differential) graded 
Lie algebras and Hopf algebras over an arbitrary ring R. On the whole, our 
results are generalizations of results already known to hold over a field. 

We fix once and for all a commutative ring with unity R. We reserve the 
symbol p for the least prime, if any, which is not a unit in R; if R 2 Q, then 
p = rx~. We let r 3 1 denote a connectivity parameter. 

We begin with a brief review of graded Hopf algebras, for which the 
principal reference is the classic work [8]. For us, an R-algebra A is always 
non-negatively graded and connected (i.e., A, = R). It is R-free if it is free 
as an R-module, and r-reduced if A, = 0 for 0 < t < r. A Hopf algebra (A, $) 
has a coproduct $:A+AOA satisfying ~(.~)-s01-10.~~A+OA+ 
for -YEA+. 

Given an algebra homomorphism ,fi A + B, where A is a Hopf algebra 
with coproduct $, the Hopf algebra kernel off, denoted Hak(f ), is defined 
by 

The Hopf algebra kernel off is a connected graded subalgebra of A, but 
it need not be a Hopf algebra. 

A monomorphism of graded R-modules is R-split if it has a left inverse 
as R-modules. We will frequently compensate for relaxing the customary 
hypothesis that R is a field by supposing homomorphisms to be R-split. 

LEMMA 1.1. Let f: (A, $) + (B, x) he a surjective homomorphism 
betuyeen R-free coassociative Hopf algebras. Suppose the inclusion 
K= Hak( f) --) A is R-split. Choose any R-module splitting y: A + K and 
define g: A + K@ B as the composite 

Filter A via F,A=((l@f)$)-‘(A@B,,,) and K@B via F,(K@B)= 
K@ B,,. Then 

(a) For each s 2 0, g( F, A) E F,y( K @ B) and g induces an isomorphism 
2: F,A/F,p, A + F,(K@ B)/F,+ ,(K@ B) z K@ B,; 

(b) g is an isomorphism of right B-comodules; 

(c) gr(g): & (F,A/F+, A) + K@ B is an isomorphism. 

Proof This is the dual of [8, Prop. 1.71. 
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In this paper, a Lie algebra (over R) L is positively graded and satisfies 
the Jacobi identities with signs. It is r-reduced if L, = 0 for t < r. We denote 
by 42 the universal enveloping algebra functor, from Lie algebras to Hopf 
algebras. 

LEMMA 1.2. Let f: L + M be a surjection of R-free Lie algebras, and let 
K he its kernel. Then -2!(K) = Hak(#f) as subalgebras of Q&L, and the 
inclusion of Hak(JUf) into ,INL is R-split. 

Proof: This follows easily from the Poncare-Birkhoff-Witt theorem, 
which enables us to write J&L z 47/K@ J&M as coalgebras and as left 
&K-modules. In particular, J&K + XL is R-split. A direct computation 
reveals that the composite 

where t‘: J&M+ R is the augmentation, is the identity. It follows that 
Hak(%f) = J&K@ 1 = J&K in J&L. 

Now we introduce the differential. A differential on a (Lie, Hopf) 
R-algebra is a derivation of degree - 1 whose square is zero; on a Hopf 
algebra, the coproduct must be a chain map. The term “differential graded 
(Lie, Hopf) algebra” is abbreviated dga (dgL, dgH). The kernel (resp. Hak) 
of a dgL (resp. dgH) homomorphism is a dgL (resp. dga). A dga (or dgL 
or dgH) is n-acyclic if its homology is n-reduced. A homomorphism is an 
n-quism if on homology it induces an isomorphism in dimensions below n 
and an epimorphism in dimension n. A quism is an n-quism for all n. 

LEMMA 1.3. Let f: (L, d) 4 (M, e) be a dgL surjection. Then f is an 
n-quism zf’and only if ker( f) is n-acyclic. 

Proof Trivial, by the long exact sequence for homology. 

LEMMA 1.4. Let f: (A, $)-+ (B, x) and K he as in Lemma 1.1, and 
suppose further that there are differentials d on A and e on B which make f into 
a dgH homomorphism. Then d(F, A) E F,A, and the resulting first quadrant 
homology spectral sequence converging to H,(A) has Ey = H,( B; H,(K)). 

Proaf: Straightforward. 

LEMMA 1.5. Let f: (A, d, $) + (B, e, x) he a surjection af R-free 
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coassociatioe dgH’s. Let (K, d) = Hak(f ), and suppose K + A is R-split. 
Then f is an n-quism if and onlv if (K, d) is n-acyclic. 

Proof: Consider the spectral sequence associated to f in the previous 
lemma. The conclusion is a standard fact about spectral sequences whose 
E, term is given by H,(B; H,(K)). 

Recall that p is defined so that (p - l)! is invertible in R. Fixing the 
integer r 3 1, let r’ = 2[ (r + 2)/2] be the smallest even integer exceeding Y, 
and put N = N(r, p) = r’p - 2. 

LEMMA 1.6. L& r 3 1 and Iet (L, d) be an r-redwed dgL of the form 
L = Il(x,, y,), the free Lie R-algebra on the generating set (x,, y,}, where 
d(y,) = x, and Ix, 1 3 r. Then (L, d) is N-acyclic. Zf (M, e) is any other 
R-free dgL, then the surjection 

(M, e) H(L, 4 -+ (M, e) (4) 

sending L to zero is an N-quism. 

Proof The calculation of H*(L(x,,y,), d), where d(ya)=x,, was 
essentially done in [4, Sect. 43. 

Let (L’, d’) be the kernel of (4). One sees easily that L’ is the free dgL 
on (ad(w)(y,), ad(w)(x,)) as MS runs through an R-basis for %M. The 
differential d’ satisfies 

d’(ad(u~)(-d) = ad(e(w)kL 
d’(ad(w)(y,)) = ad(e(w))(p,) + (- 1 )lK’ ad(w)(.u,). 

Letting fzsi equal the set {ad(w)(y,)l, we see easily that L’ has the form 
[I(-‘p, d’(z,)), which makes L’ N-acyclic. Apply Lemma 1.3. 

LEMMA 1.7. Let (L, d) be R-free and r-reduced. For n < N, (L, d) is 
n-acyclic if and onlv if J&(L, d) is n-acyclic. 

Proof: First suppose L is free as a Lie R-algebra; then @L is free (i.e., 
it is a tensor algebra). If @L is n-acyclic, then the module Q(oUL) of 
indecomposables is n-acyclic. Since Q(L) = Q(J&L), in dimensions <n it 
must be possible to pair off the generators of L, i.e., L <n = (%(x3, ~1,)) < nr 
where d( y,) = x,. We may now apply Lemma 1.6 to deduce that (L, d) is 
n-acyclic. Conversely, if L is n-acyclic, an induction on dimension using 
Lemma 1.6 shows that the generators of L may be paired off, i.e., L looks 
like some [I( s,, y,) with d( y,) = X, in dimensions <n. Thus @(L, d) is 
also n-acyclic. 

Now consider a general L. There exists a surjective quism f: (M, e) + 
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(L, d), where A4 is a free r-reduced Lie algebra. Put (K, e) = ker(f ). 
Because M is free and the inclusion K -+ L is R-split, K is also a free Lie 
algebra [4]. Because f is a quism, K is acyclic and consequently -&K is 
N-acyclic. By Lemma 1.5. &‘f‘ is an N-quism. Thus L is tz-acyclic o 
(because f is a quism) M is n-acyclic o (because M is free) 4YM is 
n-acyclic 0 (&f an N-quism ) &L is n-acyclic. 

LEMMA 1.8. Let ,f‘: (L, cl) + (M, e) he atz~t hotttott~orphisttt of r-reduced 
RT free dgL ‘s. 

(a) [f‘,f is swjectirre and n < N, then ,f’ is an n-quistn lf and otdj> lf 4!f 
is un n-quism. 

(b ) In general, jbr tz < N, .f is an n-quism if and onI)! if &j‘ is an 
n-quism. 

Proof: First suppose f is surjective, and let (K, d) = ker( f ). Then f‘is an 
tz-quism o (by 1.3) K is n-acyclic o (by 1.7) JcYK is n-acyclic o (by 1.2) 
Hak(JZ!f) is n-acyclic o (by 1.5) “$f is an n-quism. 

For general J factor ,f’ as 

(L, d)-/- (L, d) LI(L’, d’)$-+ (M, e). 

Here f’ is a surjective extension off and (L’, d’) has the form k( x,, ~1,) 
with d’(J),) = s,. If n < r there is nothing to prove, and if n > r then (L’, d’) 
may be chosen to be r-reduced. By Lemma 1.6, the surjection 
(L, d) LI(L’, d’) + (L, d) is an N-quism; since j is a right inverse for this 
surjection, it too induces an isomorphism of homology in dimensions 
below N. Thus j, and consequently J&j, are (N - 1 )-quisms. Since f’ is sur- 
jective and n < N - 1, we now have f is an tz-quism o f' is an n-quism 
0 42f' is an n-quism 0 "if = (4/f’ ) 3 (@j) is an n-quism. 

LEMMA 1.9. Let (L, d) he an r-reduced R-free dgL. The natural inclusion 
,j: (L, d) + (g&L, d) ?f‘ chain complexes induces 

j,: H,,(L, d) -+ H,(+YL, d). 

kvhich is a nzononzorphisrn for n < rp. 

ProoJ This follows from the existence [2] of a differential-respecting 
direct sum decomposition 

valid in dimensions <rp. 
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LEMMA 1.10. Let f: (L, d) + (M, e) he a homomorphism of dgL’s, where 
L is r-reduced and R-free. For some n < rp, suppose H,( j&f) is monomorphic. 
Then H,(f) is monomorphic. 

Proof In the diagram 

H,,(L, d) ‘* b H,(M, e) 

the left and bottom arrows are injections, so the top arrow is also an 
injection. 

PROPOSITION 1 .l 1. Let f: (L, d) + (M, e) be a homomorphism of 
r-reduced R-free dgL’s. For some n < rp, suppose that H,(%f) is an 
isomorphism for t <n. Then H,(f) is an isomorphism -for t < n. 

Proof Always, rp 6 N. By Lemma 1.8, H,(f) is isomorphic for t < n 
and surjective for t = n. By Lemma 1.10, H,(f) is also injective. 

For completeness, we also include here 

LEMMA 1.12. Suppose R is a field or a subring of Q. Let (L, d) be 
r-reduced and R:free, and suppose that H,(%L, d) is R-free in dimensions 
<n, where n < N. Then H,( L, d) is R-free in dimensions below II, and the 
natural homomorphism 

(#‘2/j), : &H,( L, d) + H,(#L, d) 

is an isomorphism in dimensions <II and an epimorphism in dimension n. 

Proof: Incorporate the hypothesis that L is r-reduced into the proof of 
[ 1, Lemma 4.31. 

2. THE FUNCTORX 

Over an arbitrary ring R, we define a functor X from r-connected 
topological spaces to r-reduced dgL’s. We verify that the homology of 
X( ) is a homotopy invariant. We also demonstrate that H,X(X) is an 
abelian Lie algebra when X is an H-space. Since X agrees in low dimen- 
sions with the functor 652 of [Z], and bsZ is weakly equivalent to Quillen’s 
functor 1 when R 2 Q, we may view 1‘ as a generalization of 9. 

Let TOP, denote the category of r-connected pointed topological spaces 
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and let MON, be the category of (r - 1 )-connected topological monoids. 
Let (CU,, 8) denote the (r - 1 )st Eilenberg subcomplex of the cubical 
singular chain complex, with coefficients in R. In [2, Sect. 71 it is shown 
that the usual diagonal Ic, ).: CU,( Y) +CU,(Y)@CU,(Y)for YeMON,is 
naturally chain homotopic below dimension rp to a new diagonal 
d,.: CU& Y) + (CU,( Y)OCU,( Y)),,,,. This new 4, , has the property 
that it is strictly cocommutative and coassociative below dimension rp. 
Putting 8(Y)= ker(dy), $,- being the reduced diagonal d,(u)= 
~5 Ju) - 1 @U - u 0 1, we have constructed a functor G from MON, to 
dgL’s for which ‘)c& coincides in dimensions below rp with CU,( ). 

When R 2 Q, then rp = z and ‘12(& = CU,( ), so 8 provides a very nice 
approach to the rational homotopy,theory of Y. However, when p < rj, 4) 
is not defined above dimension rp - 1. We therefore feel free to make 
whatever definition is convenient in dimensions >rp, so as to simplify the 
properties of the resulting functor. 

DEFINITION. For XE TOP,, define ,X(X) = i&(X),., c CU,(QX) by 

Xi(X) = 

i 

&Q(X) = (ker dc2t.)n if ncrp; 

(ker &n,td L, if tz=rp; 

CU,( 52X) if n>rp. 

Clearly, X( ) is a functor from TOP, to r-reduced dgL’s. 

LEMMA 2.1. 

(a) For n 3 rp, H,X(X) = H,(!XY; R). 

(b) For n < rp, (UX(X))), = CU,(sZX) and H,,&%“(X) = 
H,,(QX; R 1. 

Prooj: The inclusion of chain complexes X(X) + CU,(l2X) is a surjec- 
tion on cycles in dimension rp and an isomorphism above rp, so it induces 
an isomorphism of homology in dimensions >rp. 

We, have already remarked that (@‘2/&QX) <‘,, = CU,,,(!SX), which means 
that the induced dga homomorphism 

g: ,iuX(X) + CU*(OX) (5) 

is an (rp - 1 )-quism. It remains only to check that (5) injects on homology 
in dimension rp - 1. 

Let x E @X(X) be any (rp - 1 )-dimensional cycle for which g(x) is a 
boundary, say g(x) = a(~!). We want to show that x is a boundary. In 
[2, Sect. 31 an R-homomorphism 

PI WLO’~L).,,,- (WL,.,,))..,, 
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is defined for any R-free r-reduced Lie algebra L. This p commutes with 
any differential that can be imposed on L. In dimensions below rp we also 
have AuA = 2, where d denotes the reduced coproduct on J&L. We now 
drop the subscripts on $nx and d,.,. 

Put L = X(X), so that (g@g) d= &g in dimensions below rp. Because 
II/ E 4 and g(.u) is a cycle, we may write $g(s) = $g(x) + a(u). Because 
gag is isomorphic on ((O?/L)+O(%!L)+)G,.,, we may write $(JJ)+u= 
(gOg)(o), and from (g@g) a(u) = a@(J)) + a(u) = &g(x) = (gOg) J(X) we 
may deduce a(o) = d(x). Now consider 2 =y -gp(u). Observe that 

This says that z E ker(@) = X,,(X); in particular, : E im(g). Thus J’ E im(g), 
say y=g(w). Then g(8(M~)-,~)=Q-g(x)=O, but g is oneetooone in 
dimension rp - 1, so a( M>) = x as desired. 

We now show that H,3Y‘ is a homotopy invariant. Let IX denote the 
reduced cylinder on X, i.e., IX= (Xx I)/(. Y,, x I), .x0 being the base point of 
A’. Let jo,j, : X-t IX denote the inclusions of X into the two ends of the 
cylinder, and let q: IX+ X be the projection back onto A’. Thus 
qj, = idx = d,. Two mapsf,,,f, : X+ Y are homotopic in TOP, if and only 
iffo vf, extends over IX. 

LEMMA 2.2. Let f: X + Y be a weak R-equivalence in TOP,; i.e., j’ 
induces an isomorphism on 7c.J )OZ[(p- l)!]-‘. Then H,x(f) is an 
isomorphism. In particular, H.J(q) is an isomorphism. 

Proof: In dimensions n 3 rp, H,X(f) is simply the isomorphism 
H,(S2f; R). In dimensions below rp, apply Proposition 1.11 and Lemma 
2.1. 

LEMMA 2.3. Let fo, f, : X + Y be homotopic in TOP,. Then H,;T(,f,) = 
H,Jf’-U-I). 

Proof It suffices to show that the two inclusions j,,j, : X+ IX induce 
the same homomorphism on H&‘( ). They do, because each of H,x(j,) 
and H,x(j,) is a right inverse for the isomorphism H,3fr(q). 

LEMMA 2.4. Let j: x(X) + %X(X) be the natural inclusion. The induced 
homomorphism on homology g,j, : H,x(X) + H,(QX, R) is one-to-one. 

Proof In dimensions >rp, g,j, is clearly the identity. In dimensions 
< rp, combine Lemmas 1.9 and 2.1. 

LEMMA 2.5. Let XE TOP, be an H-space or, more generall?,, suppose 
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that the Pontrjagin ring H,(RX; R) is commutative. Then H,.Y(X) is an 
ahelian Lie algebra. 

Proof. For x, y E H&4“(X). g,j,[.u, y] = [g,j,(.u), g,.j,(y)l = 0, the 
second bracket denoting the Pontrjagin commutator in H,(QX; R). Since 
g,j, is one-to-one, [s. ~31 = 0. 

3. THE HUREWICZ THEOREM 

We prove here a strong form of the Hurewicz theorem for X. Specifi- 
cally, for XE TOP, and R GQ, H,.%!(X) agrees with n,(QX)@R for 
n < min(r + 2p - 3, rp - 1). When R = Q, we obtain a new proof of the 
Milnor-Moore theorem. 

Throughout this section we will suppose that R is a subring of Q. We fix 
an r 3 1 and define X’: TOP, + dgL’s as in Section 2. for this r. We begin 
by computing H,.K( s”’ + ’ ). 

LEMMA 3.1. For m > r and r < q < rp, 

i 

R if‘ q=m; 

H,.Y(S”‘+‘)= R lf’ q = 2m and m is odd: 

0 other,~ise. 

Proef!f: This is a straightforward application of Lemmas 1.12 and 2.1. 

Recall that the Hurewicz homomorphism 11, a natural transformation 
between homotopy and homology, is defined by fixing a generator 
z,,, E H,,(S”‘). Let :I, denote the image of zrn under the inclusion 
i: S” + OS”‘+’ of the m-sphere into its James construction. For XE TOP,, 
suppose [g] E rr,(QX) is a homotopy class and let 5: S”‘+ ’ -+ X be the 
adjoint of a representative r for this class. Then (SZC) i = c(, so 

Let ;; E H&-B”+ ‘; R) be the R-reduction of the class $,,. Define a 
natural transformation h”: n,(QX) + H,(QX; R) by II”[E] = (Q~),(z:); 
clearly ~?“[a] is the R-reduction of h[a]. When r < m < rp, we may choose 
a generator 5, of H,,,x(S”‘+l) such that g,j,(t,) = z:,, where j: X‘( ) -+ 
%X( ) is the natural inclusion and g is given by (5). 

DEFINITION 3.2. Given XE TOP, and [z] E n,,(QA’), r 6 m < rp, let 

bCal= H,X(~)(~,,,)E H,,.f(W. 



126 DAVID J. ANICK 

LEMMA 3.3. b is a well-defined natural transformation between z c ,,(QX) 
and H <‘,7X( 1. 

Proof Clear, using Lemma 2.3. 

LEMMA 3.4. For X E TOP, and r < m < rp, this diagram commutes 

n,(srX) h H,~(X) 

h” 

H,(QX; R) ‘y ~ H,#X(X) 
* (6) 

where g is given by (5). Furthermore, b is a homomorphism of ahelian groups 
and 

bC& .vl = CM-~), b(.Y)l? (7) 

the bracket on the left denoting a Samelson product and the bracket on the 
right denoting a (Pontrjagin) commutator. 

Proof: For [Ial E G(QJ’), s,j,bCal = g,j,H,,~‘(W5,) = 
g,H,,,@S(5)(j,c,) = H,,,(SZa; R)(g,j,t,) = (Qa),(,-L) = h”[z]. As to (7) 
g,j, is one-to-one by Lemma 2.4; since /I” is linear and bracket-preserving, 
so is h. 

We will show that h is an R-local isomorphism in a certain range of 
dimensions. Fix the notation D = D(r, p) = min(r + 2p - 3, rp - 1). 

LEMMA 3.5. Let Z E TOP,. Suppose H,(Z; R) = M, @ M, for some 
R-modules M, and M2. Identtfy H,(K(M,, m); R) wlith M, via the 
Hurewicz isomorphism h”. There is a map E: Z + K(M,, m) whose <[feet ON 
H,( ; R) is precisely the projection of M, Q Mz onto M,. 

Proof This is a standard fact, based upon the natural identification of 
H”‘(Z; M,) with the group of homotopy classes [Z; K(M,, m)]. 

PROPOSITION 3.6. Let XE TOP,, and let Y be the generalized Eilenberg- 
MacLane space Y = n,“=, K( H,x(X), n). There is a map e: 52X + Y 
inducing an R-local D-equivalence. Furthermore, this diagram commutes for 
t<D 

n,(Y) ; H,A’-(X) i, H,%23Y‘(X) 

I 
‘I, I 

I,” 1 R*j= 
H,( Y; R) 4 L* H,(SZX; R) (8) 

where v], is the obvious identifi:cation of x,( Y) nit/z H,I‘(X). 
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Proof By Lemma 1.9, we have for m < rp a direct sum decomposition 

H,,(QX; R) = M, @IV?, 

where M, = H,X(X). Apply Lemma 3.5 to obtain maps a,, : SZX -+ 
K(H,X(X), nr) for m d D, such that (s,,)*g.J* is the Hurewicz isomor- 
phism h”. Multiply the [.sIIl} together to obtain e: QX+ Y. Denote by Y,,, 
the inclusion of K(H,,X(X), m) into Y. 

For some particular t 6 D consider the diagram 

n*(Y) + 
(“‘I# 

n,K(H,.Y(X), t) A H,X(X) 

(9) 

In (9), the two right-most groups are to be viewed as graded R-modules 
which are zero except in dimension t. The left square commutes, and by 
our construction of E, so does the right pentagon. The triangle does not 
commute, but we claim it does so when restricted to im(g.J,). This 
amounts to the assertion that (E,)*(U) =0 when m # t for UE im(g,j,). 
When m > t, (E,)*(U) = 0 because H,(K(H,X(X), m); R) = 0. When m < t, 
note that any u~im(g,j,) is primitive (i.e., (d,)(u)= w(u@ 1 + 1 au), 
where d is the diagonal map and w is the homology external product). But 
H,(K(H,X(X), m); R) contains no non-zero primitives (because 
m< tb D<m+2p-2), so (E,).Ju)=O. It now follows quickly that (8) 
also commutes, since q, may be viewed as (v,);’ . 

Finally, let us verify that H,(E; R) is an isomorphism for t < D and an 
epimorphism for f = D. Since we will primarily utilize well-known informa- 
tion about the homology of Eilenberg-MacLane spaces with field coef- 
ficients, we omit most details. Let F denote any field which is an R-module. 
Lemma 1.12 and the universal coefficient theorem show that 

& (H,X(X)OFOTor(H,~,~(X), F)) 
m=r 

(10) 

accounts for the primitives of H,, (QX; F); and (10) also describes all the 
primitives of H, J Y; F). 0 ne checks easily that the homomorphism of 
coalgebras 

Ifz+c(&; F): HJOX; F) + H,( Y; F) (11) 
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induces a bijection on primitives in dimensions <D. Because both the 
source and the target of (11) are r-reduced Hopf F-algebras, this is enough 
to make ( 11) into an isomorphism in dimensions 6 D. 

Furthermore, the composite 

H n+ ,(K(H,x(X), ~1; F) 
(b)* 

~Ho+,(Y;F)~cok(H,+,(&;F))=H,+,(Y,~2X;F) 

is surjective. Since the top arrow of the diagram 

H D+l(K(H,~(J7, r))OF - H,, ,(K(H,X(J7, r); F) 

H .+,(K QWOF - H,+,(Y,QX;f’) 

is also surjective, we see that the bottom arrow must be surjective too. This 
fact, together with the already-established vanishing of H,,( Y, QX; F) for 
any R-module field F, shows that H, “( Y, QX) 0 R = 0. This is the desired 
conclusion. 

THEOREM 3.7. Let R G Q, r 3 1, D = min(r + 2p - 3, rp - 1). The Hure- 
wicz homomorphism 

defined in dimensions < rp, is a natural bracket-preserving homomorphism. It 
is an R-local isomorphism in dimensions below D and an R-local epimorphism 
in dimension D. 

Proof In view of Lemmas 3.3 and 3.4 and Proposition 3.6, it suffices to 
verify that h coincides with V,E# in each dimension t 6 D. Consider the 
diagram 

h” 

1 d&J* 1 
H,(QX; RI 7 H,( Y; R) 

The quadrilateral commutes by Proposition 3.6, and the outer square 
expresses a familiar naturality relation. The left-hand triangle commutes 
by Lemma 3.4. Deduce that h”(q,)-‘b= h”E#. But h” is monomorphic 
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when applied to an R-local generalized Eilenberg-MacLane space, so 
(~I,))lh=c~, as desired. 

We may recover at once the classic Milnor-Moore theorem. 

COROLLARY 3.8. Suppose R = Q and r = 1. For X E TOP,. there is u 
natural bracket-presewing rational isomorphism 

6: n*(QX) + H*X(X), 

as wlell as u natural isomorphism 

JiH*x-(X) z H*(J)/X(X)) + H*(OX; Q). I 

Furthermore, the composite 

n*(LM) h H, .x-( X) ‘* * H*‘tvX( X) -=-b y* H*(QX; CD) 

coincides with the Hurebvicz homomorphism h”. 

4. PRODUCTS 

In low dimensions, there is a natural chain equivalence of X(Xx Y) with 
X(X) @ X( Y). In this section we will prove this fact. 

We assume R and r fixed, as usual. For A’, YE TOP, let XL 
Xx Y -% X and Y A Xx Y 2 Y be the inclusions and projections. 
Define a natural transformation of dgL’s 

i” = I. > y : X(Xx Y)+X(X)@X(Y) 

by i = (X(P, ), -@“&I). 

LEMMA 4.1. If R G Q, let I) be as in Definition 3.2. The diagram 

?r*Q(Xx Y) = ’ ~*vw 0 z*(Q Y) 

h 

I 

llP,l,. (Pz).I 

1 

h8h 

H,X(Xx Y) ’ p Hz+X’(X) 0 H,I‘( Y) 

commutes in dimensions <ro. 
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Proof. The naturality of h. 

Let us relate ;I to the Eilenberg-Zilber equivalence 

r/: CU*Q(Xx Y) -+ CU*(QX)O CU*(QYy). 

Recall that X is defined using the diagonal approximation 4. By 
[2, Sect. 71 there is a natural chain equivalence [: CU,Q(Xx Y) + 
CU,(QX)@CU,(QY), homotopic to 9, for which #=[n CU,(sZA). The 
equivalence [ = [,yy is strictly coassociative and cocommutative below 
dimension rp. That is, the diagram 

cu*(Q(xx Yx Z)) CtxY L - CU*(Q(Xx Y))@ CU*(QZ) 

cu. Y 1 z ! I 
i\YOl (12) 

CU*(QX) 0 CU*(Q( Y x Z)) - cu*(Qx)~cu*(f2Y)@cu*(Qz) 

commutes in dimensions <rp; when T(x, .Y) = (y, X) and t(a 0 h) = 
( - 1 )~“~~b~b @ a, so does 

CU*lQ(Xx Y)) 
CU*(C27-) f CU*(Q( yx Xl) 

cur 
I 

crt 
I 

(13) 

CU*(i2X) @ CU*(QY) T CU*(QY)@ CU*(QX) 

Furthermore, if E: A + R denotes the augmentation for a connected (dif- 
ferential) graded algebra, 

and 

(1 Oe) i = CU*(QJ,): CU*(Q(Xx Y)) + CU*(QX) 

(E@ 1) [ = cu,(f$,): cu,(fi?(xX Y)) -+ cu,(QY). 

Since [ is (naturally) homotopic to 4, they induce the same isomorphism 
on homology. 

LEMMA 4.2. For n < rp, [(xn(X x Y)) 5 ,X,(X) 0 1 + 10 XJ Y). 

Proof By (12) and (13), we deduce the equation 

(10~0 1) (ixvOixv)h2(xx .,=(dn,YO4nU)IxY: CU*(Q(Xx Y)) 

+ cu*(ax)@cu*(f2x)Ocu*(QY)~cu*(szY). (14) 
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So let u~&,(Xx Y), i.e., UECU,Q(XX Y) and &u)=u@ 1 + 10~. Write 
i(u) = C a, @ hi, {a, 0 h,} being linearly independent, and note that 

However, if i(u) contains any term u, @ h, with Iu,] > 0 and Ih,l > 0, then 
(~OC$) i(u) contains u,@ 10 1 Oh,, in contrast with (15). Thus 
i(u) = a @ 1 + 1 @b for some u and h. If either a or h is non-primitive, then 
(4 @ 4) i(u) cannot look like the right-hand side of ( 15). Thus u E .XJX) 
and h E &( Y), as desired. 

LEMMA 4.3. View X(X) us N(X)@ 1 E CU,(L?X)@ 1 ami X(Y) US 

1 @X‘(Y)C 1 @CU,(QY). T/Zen ;,,.,(u)=A(u).for UE.X,,,(XX Y). 

Proqf: Suppose u E sT,(Xx Y), n < rp. We already know that c(u) E 
jr,,(X) @X,(Y). But we also know that the component of i(u) lying in 
CU,(QX)@ I equals (1 @c) i(u) = CU,(Q~,)(U) = X@,)(u), and likewise 
the component of i(u) lying in 1 @ C’U,(QY) equals X( p&z!). 

LEMMA 4.4. Ler g he us itz (5 ). und let j: X( ) + @X( ) be the natural 
itzclusiotz. This diugrutn cottztrzrrtes in ditnetzsions < rp: 

,X(Xx Y) A -f(W@.f(Y) 

i 
I I 

/ 

%X(Xx Y) 
Y/i 

- +YX( X) @ ,42x-( Y) 

K 
I I 

KOK 

CU*(Q(Xx Y)) L CU*(OX)@ CU*(QY) 

ProoJ Lemma 4.3 tells us that (g@g)jA=[gj. Since X(Xx Y) 
generates %X(Xx Y) as an R-algebra, the lower square also commutes. 

PROPOSITION 4.5. i is un rp-quistn. 

Proof To begin with, 1 has a right inverse (namely, ,w‘(i,) + X(i2)), so 
i, is surjective on homology in all dimensions. Also, [ is a quism, and in 
dimensions below rp, g and g 0 g are isomorphisms. By Proposition 1.11, 
1, induces an homology isomorphism below dimension rp. 
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5. THE MODEL Y 

We consider next the dgL model pW( ), introduced in [2, Sect. 81, for 
t--connected CW complexes of dimension <t-p. We demonstrate that H,9 
and H,x coincide for II < rp. Combining this with Theorem 3.7, we obtain 
the promised R-local version of the Milnor-Moore theorem. 

Let CW: be the full subcategory of TOP, consisting of m-dimensional 
C W complexes having a trivial r-skeleton. In [2, Sect. S] the 
Adams-Hilton model for a space XE CWrp is used in order to define a Lie 
R-algebra model U(X) for X. We will not repeat the properties of Y here, 
except to mention the existence of a quism 8 = O,V: ,J?/U(X) + CU,(QX) 
which is natural up to homotopy. 

LEMMA 5.1. Let X E C Wip. There is a dgL homomorphism CF = ox : 
U(X) + x(X) ulhich induces an isontorphisnt on homology in dimensions 
belolzl rp. Also, g,(@!ox), = (O,.),: H,%Y(X) -+ H,(OX; R), M>here g is 
given bll (5). For an), map j‘: X + Y, this diagram commutes up to dgL 
homotopy: 

0.x 
I I 

0, (16) 

X(X) = X( Y) 

ProoJ Because Y(X) is generated in dimensions below rp, the dga 
homomorphism 8 may be factored as 9 =gB’, where 8’: %9’(X) --f &x(X). 
It is easy to see that 0 and 0’ are homomorphisms of Hopf algebras up to 
homotopy [2]. Since U(X) is also free, we may apply [2, Theorem 6.31 to 
obtain a dgL homomorphism (T: Y(X) + x(X) for which V&U E 8’. By 
Proposition 1.11, g induces an isomorphism on H,,,,( ) because 0’ does. 
We also have g(4Yo) = go’= 8, so 8,(%2/a), = O*. As to (16). note that 

Since g is an isomorphism below rp and a surjection at rp, and 5?(X) is 
generated in dimensions below rp, we have J&(a,$P(f)) -@(x(f) ax-). 
Now apply the Lemaire-Aubry theorem ([3] or [2, Prop. 3.31). 

LEMMA 5.2. Suppose R E Q. For r 6 m < rp, let 5; denote the generator 
of H,,, ,(S”‘+ ’ ) wlhich is sent via c* to l, E H,,K(Sm+‘). For XE CW:v, 
define b’: x,,(QX) + H,sP(X) by b’[~] = ~(c%)(~~,). Then a,f~‘=l~. In 
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particulur, 6’ is natural, hrackrt-preserving, R-locally isomorphic helo++ 
dimension D = min( r + 2p - 3, rp - 1 ). and R-locull~~ epimorphic in 
dimension D. 

Proqf: Straightforward. 

We now have all the necessary pieces for 

THEOREM 5.3 (R-local Milnor-Moore theorem). Suppose R E Q, und Ier 
XE C WY. The dgL Ip( X) enjo~,s the ,fXo~~~ing properties: 

(a ) There is II natural hrucket-prcseroing hoinonlorpizisni 

h’: 7T*(QX) + H*Y(X), 

defined in dimensions < rp. uhich is an R-local isomorphism in dimensions 
helo~’ D = min(r + 2p - 3. rp - 1 ) and an R-lo& epimorphism in dimension 
D. 

(b ) There is u natural isomorphism 

(o,~),: H;&~‘(A’) =, H,(QX; R). 

l)alid in all dimensions. 

(c) The composite 

rJQX) 2 H.&?(X) J, H,&Y(X) “I, HJRX; R) 

coincides with the usual Hurerricz homomorphism h”, in dimensions helotv rp. 

6. P-ELLIPTIC SPACES 

We conclude the paper with an interesting application of the R-local 
Milnor-Moore theorem. We show that the loop space on certain finite 
complexes decomposes into a finite product of well-known factors. 

By [2, Theorem 9.11, XE CWz” implies that HJOX; Z,,) is a primitively 
generated Hopf algebra. By analogy with the situation for rational coef- 
ficients, we call X p-elliptic if H,(QX; Z,,) is, as a Hopf algebra. the 
enveloping algebra of a finite dimensional Lie L&,-algebra. 

THEOREM 6.1. Let R = Z,,,, the integers localized at a prime p < ic. Let 
A E C WY be p-elliptic, and It,rite H,(QX; Z,, ) = ‘4/L us Hopf algebras. Write 
L = Span.,>(s , , . . . . x,), and suppose that each I-T,\ < D = min(r + 2p - 3, 
rp - 1 ). Suppose.further that in the homology, Bockstein spectral sequence,for 
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QX, no non-zero differentials originate on any of the even-dimensional 9,‘s. 
Then SZX has the R-local homotopy type of a finite product. Each factor in 
the product is either an odd sphere, the loop space on an odd sphere, or the 
fiber of the degree p’ self-map (for some k) on an odd sphere. 

Proof Using Lemma 1.12, *%L = H,(SZX; 22,) = HJO&Y(X)@Z,), so 
L coincides with H*(Y(X)@Z,,) in dimensions below rp. In view of 
Lemma 1.9, (U(X)OZ,).., is a direct summand of (@Y(X) @ Z, ) srp as 
differential L,,-modules, hence the Bockstein spectral sequence (henceforth 
BSS) for OX has as a direct summand the BSS for P(X)@ Z,,. The E’ 
term of the latter BSS is precisely L. This means that L has a Z,-basis con- 
sisting of some elements which survive the BSS and others which come in 
pairs connected by a Bockstein differential. Without loss of generality we 
may assume that {x, , . . . . x,~] satisfies 

where s is the number of such pairs, /I” denotes the kth Bockstein differen- 
tial, and .x~~+, , . . . . X, survive the BSS. 

We will now realize each .Y; as an Hurewicz image. Consider separately 
the cases 2s < i with I.Y~( odd, 2s < i with Ix, 1 even, and i 6 2s. When 
2s < i, xi survives the BSS and represents the generator of an infinite cyclic 
summand of H GDY(X). By Theorem 5.3, X, is the mod p reduction of the 
Hurewicz image of some homotopy class yi: S’ + QX, where t = I-xi I. If t is 
odd, let j, = yj, let s, denote S’, and denote the generator of H,(si; Z,) by 
z,. Of course (fi)*(=,) =;yi. If t is even, put s,=QS’+‘( = James construc- 
tion on S’), and let fi: S, + QX denote the canonical extension of y, to an 
H-map. Letting Z, denote the generator of H,(S,; Z,,), we know that 
H,(S,; Z,) is spanned by (z:}~~~ and that ($i),(~y)=~~“. 

For 1 <j < s, .Y~, ~, and .x5 survive only until the (k,)th stage of the BSS. 
So xym I is the mod p reduction of the generator of a cyclic summand of 
H,,Y(X) of order ~“1. By Theorem 5.3 there is a homotopy class of order 
pkf whose Hurewicz image is this generator. The homotopy class extends 
over the mod pk’ Moore space, 

yi: P’(pk’) + CM, 

where t = I.Y~~I. Note that ~~~~~ ~, I and lxZjl span the homology image 
(coefficients Z,,) of yj. 

According to our hypotheses, t is odd. By [4], 7, may be extended to a 
map 



AN R-LOCAL MILNOR~MOORETHEOREM 135 

where si = S’{ ~“1) is the homotopy-theoretic fiber of the Brouwer degree 
pkl self-map on S’. Observe that 

H,(S,;Z,,)=SpanZ,,I=~~~ 1,zz \ I =2, , m > 0‘ 

where lzl,l = t and Iczi , 1 = t - 1 and fl”‘(z2,) = zz,. ]. The map 7, is not 
typically an H-map, but it may be selected so as to send z: , to .x;. ~, and 
_ ,?I 
-2, 1 =2, to .q, x-2,. 

Consider the space 

A = s, x .” x s, x &,+ , x “. x s,,. (17) 

Its mod p homology may be described as the Z,,-span of the elements 

as e = (e,, . . . e,) runs through the set T consisting of all length n sequences 
of nonnegative integers satisfying e, d 1 when Izi/ is odd. By applying the 
Poincari-Birkhoff-Witt theorem to H,(.QX; Zp) = @L, we may write this 
graded algebra as the Z,,-span of the products (in this order) 

as (e, ,... e,,) runs through T. 
Define 7: A -+ 52X to be the composite 

where v denotes the H-space multiplication, Clearly, (2:’ . z;) is sent via 
y* to .uf’ . .. ~2. Thus y induces an isomorphism on mod p homology. Since 
A and 52X are both H-spaces with locally finite homology, y is an R-local 
equivalence [9]. Thus (17) is our desired product decomposition for RX. 

EXAMPLE. Fix t 3 2, m 3 2, h- 3 I. Let V denote the (2mt - 1 )-skeleton 
of a minimal Z,,,,-local CU’ decomposition for SZS”+‘(pk]. Thus 

V=(pt)ue” ‘ue”ue”’ ‘ye”” . ye2’nt-‘ECW~~f,’ 

when m < p. For m < p we have 

H*( v; z,>) = Ata,, , JO ~,Cb,Il(G), 

subscripts signifying dimension. The Eilenberg-Moore spectal sequence 
yields 
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with /Ik(yz,- ,) = x*,-~. Thus H,(QV; Z,) = %L, where L is the abelian Lie 
algebra on (.Y~,~~,~~~~,,--~~,-~}. As long as 

p>t(m- 1)+2 

we have 2mt - 2 < (2t - 2) + 2p - 3 = D, so Theorem 6.1 applies. Deduce 
that, localized at p, 
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