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1. Introduction

In recent years, a class of strongly coupled parabolic systems with cross diffusion terms
were derived from applied science. In real applications, due to more information included,
such class of cross diffusion models describe the phenomena more clearly than the classical
weakly coupled diffusion systems. But very few theoretical results have been obtained up
to now. It is well known that if the system is not weakly coupled, no general theory like the
results in [15] can be used directly. In fact, the structure is completely different from the
weakly coupled case so that the usual method including the maximum principle and the
regularity theory for parabolic equations cannot be used.

In the present paper, we will study a system, i.e. energy transport model, derived from
semiconductor simulations. For more details of the energy transport model, we refer to
[1,2,8,13,14,17]. The energy transport model is a degenerate quasi-linear cross diffusion
parabolic system with principal part in divergence form. The common form of the energy
transport model is governed by the system

9 .
Ep(u, T)+divJi =0,

d . .
gU(M, T)+divo=VV . -J1+W(u,T) in§$2,

A2AV =p —C(x), (1.1)
with

el (3)-3) 2)
Jo= —L21<V<%> - V—Tv> . LZZV(—%), (1.2)

where the parametegs and T are chemical potential of the electrons and the electron
temperature respectively, is the electrostatic potentiab(u, T) is the electron density,
U(u, T) is the density of the internal energW,(u, T) is the energy relaxation term sat-
isfying W(u, T)(T — Tp) < 0, where the positive constafy is the lattice temperature,
Ji is the carrier flux density/> is the energy flux density, or heat fluk,is the diffusion
matrix, A is the scaled Debye length, addx) is the doping profile which represents the
background of the device. The expressionsdol/, L and W are constitutive relations.
Various forms, corresponding to different models, are found in the literature.

In a parabolic band structure, the relations f@y, T) andU (i, T) derived from the
Boltzmann statistics are

3
p(u,T):Tgexp{%}, Un.T)=5pT. (1.3)

Several authors have recently studied stationary energy transport models [4,6,10] and
have obtained useful results. For the transient case, the first results on the existence of a
weak solution and its large time behavior for a more general parabolic system were ob-
tained by P. Degond et al. [7]. They employed semidiscretization in time and entropy func-
tion under the physically motivated Dirichlet—-Neumann boundary conditions and initial
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conditions. Furthermore, A. Jingel has established in [12] the regularity and uniqueness
when the coefficient matrix. depends merely on. However, in both [7] and [12] it is re-
quired thatL is uniformly positive definite. However the situation in which the coefficient
matrix is only positive definite may arise in physics.

One of the most commonly used model in real applications which discussed in [3,13],
with coefficient matrixZ. andW as

1 37
L = uop %’T 175T2 ) (1.4)
3 Top—T

is the system for which the diffusion matrix is only positive definite without the uniformity,
wherepu is the mobility constant; is the energy relaxation time.

L. Chen et al. [5] have studied the existence and uniquene@é&tQ,) solution for
this energy transport model. For the system (1.1)—(1.5) in 1D case, the global existence and
large time behavior of the solutions were obtained by Y. Liand L. Chen in [16].

The macroscopic models derived from semiconductor simulations contain three classes:
hydrodynamic models, energy transport models and drift—diffusion models [14]. Each of
them has its own advantage. For instance, drift—diffusion models are easy to be analyzed
mathematically, but are not able to describe the temperature effects which are important in
applications. The hydrodynamic models have the property of hyperbolic systems, which
include more information (conservation law of mass, balance laws of momentum and
energy), but are hard to be analyzed. The energy transport models, which combine the con-
servation of mass and balance of energy, represent a reasonable compromise. Theoretically
drift—diffusion models and energy transport models can both be derived from hydrody-
namic models by different scale of relaxation limits [9]. A natural question is whether there
are some relations between the energy transport models and the drift—diffusion models.

The first part of this paper is to establish the global existence and asymptotic behavior of
the solutions for (1.1)—(1.5) in multi-dimension when the initial data is arouridaiher-
mal stationary solution. In the second part we first give an a priori estimates for any smooth
solution, without any restriction on the initial data, by entropy inequality. This result will
be used in our second result: To prove that the solutions obtained in the first part converge
to a solution of thésothermaldrift—diffusion model ag goes to 0. As far as we know, this
is the first result on discussing of the relation between the energy transport model and the
drift—diffusion model by energy relaxation time limit.

Without loss of generality, we suppose that uo = 1, and set€ = pT. Then the
model (1.1)—(1.5) can be rewritten as the following form in which the unknowng afe
andE=VV:

pr +div(j1) =0,
& +div(ja) =3E - j1— @,
j=%E—Vp, (1.6)
J2=pE—VE,
divE =p—C(x),
with the initial data
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ox,0)=p;(x), Ex,0=E&(x), xe8, a.7)

whereQ, = 2 x (0,1), £2 € R3, is a bounded uniformly cone domain which satisfies the
requirement in Sobolev embedding theorem.
The Neumann boundary conditions which we will consider are
Vo-vlie=VE-ylae=E ylse =0, (1.8)

wherey is the unit outer normal vector @x2.
The energy relaxation timeis a positive constant for which we assume that

O<1<10.

We consider a typical stationary solutiaV, ToV, E = VV) for (1.6)—(1.8). The cor-
responding stationary problem is

{vN—%vvzo, xeQ, (1.9)
AV=N—-C(x), xe£, '
with boundary condition

VV-ylae =0. (1.10)

For the global existence and asymptotic behavior, we obtain
Theorem 1.1. Suppos® < C < C(x) < C, p(x,0) € H(£2), £(x,0) € H%(2). For any
fixedr > 0, if there exists a suitably small constait> 0 such that
1oC.0) = NO | g2+ [EC. 0 = ToN O 42+ (C— C) <61,
then the problen(l.6)—(1.8)has a unique solutiofp, &£, E) in £2 x [0, co) satisfying
loC.O=NO| g+ |EC.H=TNO | 2+ |EC.0) = EQ)|| s
<co([p¢ 0 =N g2+ [EC.0) = ToN ()| y2) €XP(—a0),

for some positive constants anda; depending onr.

For the energy relaxation time limit problem as- 0, we have the following theorem
for one space dimensional case.

Theorem 1.2. Under the assumptions of Theordn, if (0%, 7, ET) is the sequence of
solutions of(3.18)—(3.20) then there existéo, £, E) with £ = Tpp, such that, ag — 0,

p"— p  stronglyinL?(0,; C1*(£2)),

E"— & strongly inL?(0,; C*(£2)),

g7 - €2 strongly inL2(0, £; L”(£2)),

E*— E  strongly in(L?(0,1; C%%(2)) N C(0, T; C*(2)))°,
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fora € (0,1/2), 1 < p < 00. Here,(p, E) is a weak solution to the following isothermal
drift—diffusion equation

dp+diV(fE —Vp) =0,
divE =p—C(x),

in the sense of distributions.

2. Global existence and large time behavior
2.1. Isothermal stationary solution

In this section, we shall get some estimates toislsthermalstationary solution. We
consider the corresponding stationary problem (1.9)—(1.10) to obtain the following theo-

rem.

Theorem 2.1. Assume tha < C < C(x) < C and C € L*®(£2), then the problengl.9)—
(1.10)has a solution\V, V), for which the following estimates hold

0<C<NK<C, xef, (2.1)
c<Vx)<c, xef, (2.2)
AV @), [VV@)|, [VN @], |[AN @) |2 <c180, x €, (2.3)

wheresg = (C — C), c1 is a positive constant ang ¢ are constants.

Proof. We will only prove the inequality (2.3). The discussion on the existence for the
stationary solution and the inequalities (2.1) and (2.2) can be found in [4].

Multiplying (1.9), by (V — V) with ¥ = & [, V(x)dx, and integrating the result
over §2, we have, with the help of integration by parts whenever it is necessary,

- - 1
/ IVV|2dx < /(/\/— OV —V)dx < e/ IV —V?dx + ™ / IV —C|%dx
2 2 2 2
1
< 5/ IVV2dx + c283,
Q
wheree = % and the Holder inequality and the Poincaré inequality have been used. Then

we have

/ IVV|2dx < 2c283. (2.4)
2
From(1.9), and(2.1), we can directly obtain, for alt € £2, that

|AV(x)| < c3do. (2.5)
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This, with the help of the interpolation inequality, yields
|VV(x)| <ca(lAVIEx + IVVI72) < es85,
for all x € £2. From the above inequality ar(d.9)1, it implies for allx € £2,
|VN(x)| < cebo.

Taking the divergence af1.9); with respect tax, and integrating it over2, with the
help of (1.9)2, (2.1) and the above inequalities, we can show that

/|AN|2dx=ijv4 (IVVI2 + ToAV)?d

0

2
< C7/(|AV|2 +|VVI?) dx < cgdd, (2.6)
2
wherec;, i =1, ..., 8, are generic positive constants which depend on the dofaainc

2.2. The local existence of solution

For any fixedr, we will prove the local existence of the solution by Banach fixed point
theorem in this section. For simplicity, we only give a sketch on this standard argument.

Theorem 2.2. Assume thaf (x) € L®(£2), (po(x), Eo(x)) € H2(£2) with (po(x), Eg(x)) =
2D > 0, D is a positive constant. Then for any fixed- O, there exists &1 > 0, such that
(1.6)—(1.8)has a unique smooth solutigp (x, 1), £(x, t)) satisfying
(p(x, 1), E(x, 1)) € L=([0, To); HX(82)),
(pr(x, 1), & (x, 1)) € L¥([0, Tv); LA(2)).
SetMo = | poll%,, + [I€0ll2,,. We consider the following space:
= {(p, &) sup (1122 + I, + o2 + 11€1122) < M
0<I<Ty
M > Mo, p,5>Q}, 2.7)
whereM and D are positive constants. We use the metric

T,

lie-©ll=_sup (o172 +1€12) + /(l}p(-,r>||i,1+||6(~,t)||§11)dt. (2.8)

0<r<T
0

Define a mapping-: (p, £) € D — (u, v) in the following way. First, for any fixeg,
we solve the problem

{szp—C(x), x €2, (2.9)

VV .-ylae =0,
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and get a uniqgu& = VV. Then, we solve the linear parabolic system(oyrv),
2

2 u .
u,—Au+?pE-Vu—%E~Vv+%dlvE:O, (2.10)
5 2 T
v— Avt L4 2E-Vut (dvE—LE.E-2)u=0, (2.11)
T 3 3& T
Vu-ylagg=Vv-ylye =0, (2.12)
u(x,0)=p;(x), v(x,0) =& (x), (2.13)

where(x, t) € (£2 x [0, T)). The solvability can be found in [15].
Thus, we have the following lemmas.

Lemma 2.3. Assume thaf' (x) € L®(£2), (p; (x), E1(x)) € H2(§2) with (p; (x), &1 (x)) >
2D, D > Qis a constant. Then there exist§a> 0 such that7 mapsD into itself.

Remark 2.4. For any given(p, £) € D, from the theory of linear parabolic system, we
only need to prove thai, v) € D. By Sobolev embedding theoreth® (0, T1; L2(£2)) N
L2(0, T1; HY(2)) = L193(0, Ty; L1%3(22)). Thus we getp, £) € Wi'(Qr,). From the
result W32’1(Q71) — C*(Qp) With 0 <o < % (see [11]), we havép, &) € C*(Qry).
Then Lemma 2.3 can be established by using energy estimates.

Lemma 2.5. Assume thaf (x) € L®(£2), (p; (x), £1(x)) € H3($2) with (p;(x), £ (x)) >
2D > 0. Then there exists & > 0, such that]|(su, sv)||| < %|||(3p, 3E)|I. Namely the map
F:D — D is acontraction with metri¢2.8).

Theproof of Theorem 2.2. By the Banach fixed point theorem and with the help of Lem-
mas 2.3 and 2.5, we can show that there exists a smallO, such that there exists exactly
one fixed point(p, £) with (p, £) = F(p, £) in the corresponding spade, and the fixed
point is the unique solution of (2.10)—(2.13)0

2.3. Asymptotic behavior of smooth solution
Let(p, &, E) be asolutionto (1.6)—(1.8), andset=V —V,p=p—N, f =E —ToN,
where (N, V) is a solution to (1.9)—(1.10). To prove Theorem 1.1, we first establish the

following a priori estimate.

Lemma 2.6. For any fixedr > 0, if there exists sufficiently small constagt such that for
anyT > 0,

o<t
then it holds
leC. 052+ [ £C 05 <e(loC. 0|52 + [ £¢.0] o) exp—ar).  (2.15)

for anyt € [0, T'], wherea; and ¢ are dependent on.
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Proof. From (1.8) and (1.10), we get

Vi -ylae =Ve-vise=Vf vlae =0 (2.16)
By using (1.6) and (1.9), we have the following equationsgf@nd f:
N2 @2f + ToMNN N2
_A VN -V — —— V.V
o AT TN T T ToN)2 VoG Y
(@ +2N) (VY + VD) NVY B
+d'v( 7+ ToN (p_To(erToN)f)_o @17)
ft—Af+£+§(Vl/f+VV)-th+<¢+AV+N—?>¢J+VN~V¢
2 (¢ +N)? (¢ +2\HVV NVY )
Eaye vV VoV, \Y - -0
sV )(f+T0/\/ VTN T 1o
(2.18)

From (1.6)3, we obtain thatAy = ¢. Multiplying it by (¢ — ), wherey is the mean
value ofy in £2, and using the integration by parts with the help of (2.16) and Poincaré
inequality, we deduce

/|v¢|2dx < 0(1)/<p2dx. (2.19)
22 2

Then taking gradient to the equatiah) = ¢, and noting (2.14), we have the following
estimates:

/lDilp|2dx <O0M)sy, i=123 Viel0,T].
2

The above estimates and (2.14) give, with the help of Sobolev embedding theorem, that

sup (V1. lel. 1 f1) < O(Ddo. (2.20)
\t\
Multiplying (2.17) by ¢, integrating the result ove®, and making the integration by
parts with the help of (2.16) and (1.10) whenever necessary, we have

2 22
__/(2f+ToN)N
B (f + ToN)?

(¢ +2N) N
+/{f+ToN‘”W'V‘”_ To(f+va)fw'w}dx

N2
f+ToN‘”>dx

VN -Virdx

2

N2 (@ +2N)
—l—![i(f_*_TON)quvw-Vfdx%—Q —f+TON(pV1//~V(pdx

=h+ Db+ I3



604 L. Chen et al. /J. Math. Anal. Appl. 312 (2005) 596-619

With the help 0f(2.19), I; and the second term &§ can be controlled by (o) [9(|Vgo|2+
%+ f?)dx by using the Gagliardo—Nirenberg inequality, Hélder inequality and the small-
ness offp. Using (2.16) and integration by parts, we estimate the first terfp a$ follows:

[ 7

—— VY -V fdx
S2U+MM

NZ

=— VY -Vedx —

J TN wAYy dx

/(f+7wVVf

/(f+ToN)2f(pvw VN dx

/(f+TNvf¢Vw(Vf+%VNMM

which with the choosing& < TpC, implies
/——4N3——wvw~Vfdx<cu%{/ovm2+¢2+fﬂdx
S2U+MM2 J

Then we are able to show that

1d
o /w dx+f(|V<p|2+C1qo2)dx< 0(80)/(IV¢|2+f2+<p2)dx, (2.21)
2

2 2

whereci = % > 0.
Multiplying (2.18) byt f and integrating it oves2, we obtain

1d

5o | dx+/(r|Vf|2+f2)dx

2 2

= —r/{g(w +VV)~V<pf+(<p+AV)<pf+VN-V1ﬁf}dx
2

—ﬂw>mww

2 (@ +N)2 (¢ +2N)VVY
rgéww+wn(7:%ﬁvww—7:iwfw
_mq+mmf>w

=Is4+ Is+ Ig,
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wherely, Is can be controlled by (8o)t [, (IVe|? + ¢? + £?)dx, due to the smaliness
of (2.3) and (2.20). By using Hélder inequality, we get

_/(-,;N—TO)(pfdxg%/fzdx+C2(l+Tz)/¢2dx,
2

wherecs = (C + Tp)? > 0. Then we have

1d 3
2d tf dx+/<r|Vf|2+Zf2)dx
2

< 0(30)1:/(|V(p|2+<p2+f2) dx + co(1+ rz)/<p2dx. (2.22)
2

Multiplying (2.21) by (1 + z—i(l+ 7)) and adding it to (2.22), we conclude by choosing
8o suitable small, that

[A+ @’ +1f ]dx +f[(1+ 0)|Ve|? + 1|V f)? ]dx +a1/(g0 + f2)dx
Q2
g 0, (2.23)
wherea; = min(3, 2¢1) > 0.
Taking the gradient of (2.17) with respect to multiplying it by Vg, and then inte-

grating the result ovef2 and making the integration by parts with the help of (2.16), we
obtain

1d 2 2, N 2)
2dt/lvwl dX+/<|A<pI +f+TON|Vq0I dx
2 2
N2
=— | Vo.V| ——
[ro-s{ 2

dt

@2f + ToMNN N2
+/{7(f+ToN)2 V/\/~V1p——(f+TON)2V1p-Vf}A¢dx

S VY +VV)(p+2N)  NVY }
+/d'v{ FAN YT T+ A0

=17+ Ig+ Io.

By the smallness of (2.3), (2.20) and using (2.1g)x;an be bounded b§ (50) f9(|V<p|2+
IV f12+ ¢?) dx, andI7 andIg can be estimated as follows:

= 2Ny _N42‘/’ }
fr=- /{f ToN VN -V (f+TON)2(V‘/"Vf+TOV§0'VN) dx

<o<ao>f(|w| LIV 4?4 f2)dx
2
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19=/{2(¢+N)(w+vw-w

f+ToN

ZW\/ (V¢+VV)+(¢+AV)(¢+2/\/)
f+ToN
(V¢ + VV) (g + 2N)
- VV.Vf-—
To(f + ToN) f (f + ToN)?
NVY NAV +VV . VN
T _(ToVN +V
T 2ot 1 N2 VN VDS T TN
{Z(w +N) (¢ + AV)(p +2N) NAY

Fron YT T N ¢_To(f+ToN)f}A¢dx

(ToVN + V f)g

f}A¢dx

2
4 (¢+N)

N

_|_

2
/ 2VN - (Vyr +VV) (VY + VV) (¢ + 2N)
2

TN 0 — TES TG (TOVN—i-Vf)(p}A(pdx
NVY VY. .VN

—  (ToVN +V _—
+Q/ To(f + ToN2 VN VD = oy

}Awdx

<0G0) [ (18012 + V9l + 1912+ 62 + ) d
Thus we have the following estimate f&kp:

Vol2d A \Y
2dt/l ¢l? x+/(| 92+ c1|Vpl?) dx
22

< 0<ao>/(|A¢|2+|V¢|2+|Vf|2+¢2+f2)dx. (2.24)

Taking the gradient of (2.18), multiplying it byV f, integrating the result ove®, and
using the integration by parts and the smallnesisof|¢|, |[Vy| and (2.3), similar to the
estimates of before, one gets

1
1d r|Vf|2dx+/(r|Af|2+|Vf|2)dx
2dt
2 2
(2 (9 +N)? (¢ +2N)VV
= ’!3(V*”+W) {f+Tova+ f+1oN *
VY

" To(f + ToN) f}Afdx
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+f/{g(vwrvw~V¢+(¢+AV)</)+VN-V¢}ANX
2

+ / (tN — To)pAf dx
2
3 2(p+N)? 5
_—r/{émvw'vw—l-éVW'V(ﬂ+((P+AV)‘P}Afdx
2
(p+2V)VYy — NVY 7
F+ToN * 7 To(f + ToN)

—r/%(wJFW)-{ }Afdx
2

2
—rf{g(¢+N) vv.vw—vN.w}Afdx

3 f+ToN
+/(r./\/— To)pAf dx (2.25)
2
< 0(50>rf(|Af|2+ IV F12+ 1Vol2 + 2+ p?) dx
2
+%f|Vf|2dx+cz(1+ rz)/|V<p|2dx, (2.26)
2 2

where the last integral on the left-hand sidg2£5) can be controlled by

/(T/\/—To)wAfdx:—I/VN-Vﬂpdx—/(tN—To)Vw-Vfdx
2 22 2
1
< 0(60)1/(|Vf|2+<p2)dx+Z/|Vf|2dx+cz(l+ rz)/|V¢|2dx.
2 2 2

Multiplying (2.24) by (1+ f—i (1+ 1)), adding itto (2.26), and choosiag small enough
and combining with (2.23), we obtain the following estimate:

& Jas (9ol +6?) + c(v 72+ )] ax
2

+/[<1+r>(|A<p|2+ IVol?) + T(1AF 12+ |V £12)] dx
2

+611/(|V<p|2+<p2+ IV fI12+ f2)dx <O. (2.27)
2

Now we turn to estimate the higher order derivatives.
From (1.6}, we haveAy, = ¢;. Then by (2.16), we ge¥y; - y |32 = 0, and similar to
the former discussion, we obtain that
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1
/|v¢,|2dx </¢,2dx. (2.28)
Q 0
Differentiating (2.17) with respect tg we get

NZ NP f 4 @ HTNIN
F+ N T G+ 02 T T+ ToNY?
N? 2N fVN -V
- (V¥ -V VFf-V s 7 7
T AR A Sy VRl
2/\[2
IRV T AAAEAL
(VY +VV)(p +2N) NVV }
d — =0
" N{ f+ToN Y To(f+TcW)f ¢
Multiplying (2.29) byg,, integrating it over2, and using the facv¢; - y |92 = 0, it follows

that
>7 | ¢ dx+/(|V<Pt| +
2 2

Q11 — Agr + VN -V,

(2.29)

f+ToN¢’2) dx =lo+ i+ 2 (2.30)

By the smallness off|, |¢|, |Vy|, and (2.3), with the help of2.28), we obtain the fol-
lowing estimates:

; _/{ N2 j,_ @A TNN
OZ VG2~ T (F+ N2

2NVN -V N?

T+ T e

< 0(50) /(sz + 92+ f2)dx,
2

A2 N2
111—9/{7(],+TW)2VJ‘~V%+7(f+TON)3V¢-foz}¢zdx

< 0<ao>/(|wt|2+ IV fi2+ f2+ 0?) dx,
2

VN -V,

2

Vi - Vft}(pt dx

where the last term affyg is treated similarly td3, and we only need to deal with the two
terms in/y1, by using the Gagliardo—Nirenberg inequality and (2.14), as follows:

N2

/ FraoV S Ve dx SOOIV A2l Vvilalol

< 0(60)/(|V¢t|2+<p,2)dx,
2



L. Chen et al. /J. Math. Anal. Appl. 312 (2005) 596-619 609

2/\/2

J WVW Vffiordx < OGN fill 2V fllpalleell pa

< 0(50) /(ngz + @2+ f2)dx.
Q
The part/y2 in (2.30) is estimated by
; _/{(VW+VV)(¢+2/\/) L NWY
2= FHTN 77 To(f + ToN)

_/{2(V¢+VV)(</)+N) +(§0+2/\/)</)
B f+ ToN O TN

__ MY (VYA V(e +2N)
(f + ToN)2”"! (f + ToN)?

< 0(80)f(|V<pz|2+¢,2+ f7)dx.
2
Thus we can get the following estimate fgr.
1d
2dt
2

f} V(p[ dx
t

Vi

(/’ft} -Verdx

of dx + / (IVer[? + c19?) dx < 0 (S0) / (VP + 9 + f7)dx. (231
2 2
Differentiating (2.18) with respect tq we obtain

fuu — Aft + é + g(Vw+VV)~V(p, + 2o+ AV)pr + (ngo—}-VN) -V,

To 2 (@ +N)2 2(¢ + N)(Vy + VV)
+(N—?>¢t—§(v¢+vv)'{f_'_TON-VWz—i- T+ ToN
N2VY (¢ +N)? (¢ +2N)VV
TS G T S T A Yy v }
2((@+N)? (9 4+ 2N)VN NVY
_Z= v —
3{f+Ta/\/ VTN YT i+ 1o

Multiplying (2.32) byt f;, integrating it overs2, and notingV f; - y |32 = 0 and (2.28), it
can be shown that

Dr

} VY =0, (2.32)

}i 2 2 2 _
> Tf dx + (‘L’|Vf;| +f,)dx—113+114+115+116+117,
2 2
where

5 5
lIiz3= T/{év‘ﬂ Vo + (29 + AV)gr + §V§0 -V
2

2@+ N)?
3 f+ToN

Vt/f-Vw,}f,dx
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2 (¢ +N)? 2(¢ +N)
—r!:—ng'{f_i_ToNv‘/ft'F f—i—To/\/’le(pt
(¢ +MN)?
_7(f+TON)2VI//fI}fth,
114=T/{§VV~Vgﬁt—i-v./\/"Vl//[}f;dx
2
2( (¢ +2N)VN NVY
_19/5{ [+ ToN ‘”_To(f+ToN)f}'Wﬁdx’
B 2 (9 +N)? 20+ N (VY +VV)
115——‘5‘/§VV.{f+TONVIﬁt+ f+ToN ;
N2y (¢ +N)? (¢ +2N)VV
TS TS T TS Y “’f’}ﬁdx’
2@ +N) N? (¢ +2N)

2
Ie= —r/ éw-vv{ )zwfz}ftdx,
2

FANY T o2 T 1oV

7= —/(U\/— To)e: frdx.

2

By the smallness of (2.3), (2.20), due to the Gagliardo—Nirenberg inequality and Holder
inequality,l;,i =13,..., 17, can be governed by

ha< 0<ao>r/(|wt|2+<p,2+ £2) dx,
2

ha< 0(60>r/(|m|2+<p,2+ £2) dx,
2

Ii5< 0(80)T /(sz +@f + f7) dx,
2

I6< 0(50) / (62 + f2)dx.
2

1
I17< Z/f,zdx+cz(1+r2)/<p,2dx.
2 2

From the above inequalities, it gives

1d 3
EE/Tftzdx+f<T|Vf[|2+ fo)dx
2

2
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< 0(o)T / (VP + 7 + f7) dx + co(L+ 7% / f dx. (2.33)
2 2

Multiplying (2.31) by (1 + f,—i(l + 1)), adding it to (2.33), and choosirdg suitable small,
we obtain

d
- [(1+t)g0,2+tf,2]dx+/[(1+t)|Vgo,|2+r|Vf,|2]dx
2 2

+a / (92 + f7) dx <O0. (2.34)
2
Combining (2.27) with (2.34), we obtain the following estimate:

d
- [A+ D) (02 + Vo2 + %) + T (fZ+ V> + f?)]dx
22

+f[<1+r)(|wt|2+ 1412+ IVel?) + T(IV £+ |AfI?+ |V £1?)] dx
2

+a1/(<p3+ft2+|v¢|2+|Vf|2+ga2+f2)dx<o. (2.35)
2
Integrating (2.35) from O to with respect ta, we get

t
(1+r)/(¢,2+|Vg0|2+<p2)dx+(1+t)ff(|V¢,|2+|Ag0|2+|V<p|2)dxds
22 0 2
t
+rf(ff+|Vf|2+f2)dx+r//(|vm2+|Af|2+|Vf|2)dxds
2 0 2

13
var [ [(0F+ £24190R 419 412+ 6%+ ) dxds
0 Q
2 2
<o+ 0)([leC 0] + | £¢ 0 72), (2.36)
wherecg is a positive constant independentrof
From Egs. (2.17) and (2.18), we can get the estimate\foand Af,

/(|Ago|2 +IAfP) dx < 0<1>/(¢,2 Vet f24 IV fP) da
2 2

+ 0(1)(1+ %)/(tpz—i-fz)dx. O (2.37)
2

Remark 2.7. By the standard argument, Theorem 1.1 can be proved with the help of The-
orem 2.2 and Lemma 2.6.
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3. Relaxation time limit
3.1. A priori estimates for arbitrary large initial data
In this section, we will first get more a priori estimates on the system (1.6) for arbitrary

large initial data. We rewrite (1.6) in the following form, where the unknownsearé
andV:

pr — div(Vp - %vv) -0, (3.1)
(pT), — div(V(pT) — pVV) = —gvv : (Vp - §VV) - @ (3.2)
AV =p — C(). (3.3)

Theorem 3.1.1If (p, T) is a smooth positive solution to the problédnl)—(3.3), (1.7)—(1.8)
then we have the following a priori estimate

t
3p 2 Vo P 2
[ PR S, < .
r;(t)+f[[2T2|VT| +(«/ﬁ T VV) dx dt < n(0), (3.4)
0 2
where
5 3 (T 1 2
r)(t)—/|:p|np— Ep—l—no-i-ép(?o —InT)—f-?OIVVl ]dx, (3.5)
2

no = e2 is a positive constant, and the following quantities are bounded by the initial
entropyn (0), |£2| and Tp (uniformly int),

Il 0012y I1PTlLo@00irr(2)ys  IVVILo@©00:22(2))-

Remark 3.2. This entropy estimates also hold for mixed Dirichlet and Neumann boundary
problem.

Remark 3.3. To prove the relaxation time limit, we only need the bounds of

”p”LOO(O,oo;Ll(_Q))v loT ||L00(o,oo;L1(_Q)) and |VV ||L00(0,oo;L2(Q))~

In fact, by entropy inequality and certain technical calculations, we can also get some
estimates for the currentg and J2, which would be helpful in getting the existence for
large data.

Proof. First we will show the entropy inequality (3.4). Multiplying (3.1) byiké/—2 - Tio %4
and making the integration by parts, we have

t

// In 3InT lV dxdt
pi\Inp—>3 To X

02
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//(V,o — —VV) [In — iv} dxdt=0. (3.6)
To

We denote the two integrals & and /. By p, = AV;, which can be obtained from (3.3),
we have

Il—ff[wlnp)t p,——(plnT» ST+ (|VV|)]dxdr

— )+ f / SO dxdi -, (3.7)

where

3 1

m@=[|plnp—p+n—-pINT + —|VV|*|dx
2 To

2

The calculation ol shows

3 1
L= ——vv — — VT — —VV )dxd
R .

:// |V,0|2_V,0-VV_3V,O-VT+3,0VT~VV_Vp~VV
2T 2772 To

VV|?
+ %} dxdt. (3.8)

Multiplying (3.2) by (—5) — (—5%), we have
t
[ [zom(-7) - (%) Jaxa
2(,0 t T To X
02
o 1
+//§(V(pT)—pvv)-v<—7>dxdz
1 1
y /[w (0 257)(2 - Y] e
Tt T
3 1 1
)
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We denote the three integrals in the above equatiofsbyy and Is, which can be treated
as follows:

t
3 3p 31
I3 = ——pt—==Ty + =—(pT),; |dx dt
3 /'/|: 2,0t >T t+2T0(,0 )t] X
0

t
3
:nz(t)—//ng,dxdt—nz(O), (3.10)

where
3 3
n2(t) = —EP‘FFPT dx.
2
Since— 2 (To — T)(Ti0 — 1) > 0 for a nonnegative solution, we have
s+ 15> // V1) — o)+ - (Vo - Lov) (2 = 2)]axar
4 52 2 T2 1Y 1Y 1Y T o T X

// VT +3Vp-VT 3pVT -VV
2712 2T 272

Vp-VV  p|VV/? N VV.-Vp
T ToT To

Combined (3.6) to (3.9) together, with the calculation in (3.7), (3.8), (3.10) and (3.11), we
have, forn () = n1(t) + n2(t), that

t
3p 2 Vo2 _Vp-VV p 2
t “Pvr ~2 L v 2| dxdr <5 0).
n()+/f[2T2| 2 + LIVV | dxdi <5(0)
0

0
+ ﬁwwz— :|dxdt. (3.11)

T

This gives the entropy inequality (3.4).
Let E(¢) be the part of the entropy which does not contain the electric potential part, i.e.

1 2
E(I)ZH(I)—/?OIVVI dx,

2

then E(¢) < n(0) for all + > 0. We can use the fundamental mequal:ﬁ(y— InT >1-
InTy > 0 for anyT > 0, where, without loss of generality, we assume 0y < 1, and the
oneplnp — %’p +no = 0 for anyp > 0, to get some estimates prfrom the entropy. This
gives that

p e L™(0,00; LY(£2)), VV e L%(0, 00; L3(R2)). (3.12)

Then from the a priori estimates obtained above, we have
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/ g (%_mr> <c. (3.13)
2

On the other hand, bi% —InT > 1-1In(2Ty), it holds that

f3 T Ian—/3 T+T InT
2\ 1, =1 2°\on, T 21
2

3pT
/4’0—Todx+/ (1 - In2Tp))p dx. (3.14)

Thus by (3.12)—(3.14), we have

pT € L®(0, 00; L1(£2)). (3.15)

In the following, we get further estimates from the boundedne#gofin another point
of view, i.e. the convex property of the entropy functional. Let= In #, up = —%,

E(z)—/ nt 4 3r(-Lti 2 +72|a
=[Pttt g) et |
2
—/ (—u )7%e“1u +§(—u )726141 u —|—i
= 2 1 2 2 2 To
2
3 3
- <(_u2)zeul B TOZ)] “

ui  3(_ -3 u1
uj, u2+ |:( uz)” 26 > (~u2) 276 :|[ Ul1i|dx

3(—up)~3em 15<—u2>—?e“1 uz+ 75

T u
u1, u2+ 2'0 |: ! 1 ]dx
sz uz + To

12+ 1+31+T+12d
3P TP To P T I\ T *

1, 3 ) 1 T-To\?
== —p(T —To)*>+3p( dx, 3.16
f_4pbt1+4T02p( 0+ p<2u1+ T ) ] X (3.16)
2

Il Il \%
P B— B—

where we have used the convexity of functiofidh, up) = (—uz)_ge’“. It follows from
(3.16) and (3.4) that

VPT € L®(0,00; L%(2)). O (3.17)
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3.2. The convergence in one space dimensional case

Now we go to obtain the convergence to drift—diffusion model for one-dimensional
case. This restriction is caused by the Sobolev compact embedding theorem. We consider
the solution(p, £, E) to (1.6)—(1.8). For any fixead and¢, we introduce the following
variables:

pt(x,1)=p(x,1), ET(x,)y=Ex,1),
T (x,t) =T(x,1), ET(x,t)=E(x,1),

which satisfy
L divii=0 r o e g 3.18
,0, + IV]]_ — Y% Jl - ST — Vo, ( . )
2
ze,f+rdivj§=r§Ef-j1f —(EF = Top"), jE=p E"—VET, (3.19)
divE® = p* — C(x). (3.20)

By using (2.3) and (2.36), we obtain the following estimates uniformkhy:in
pf € L2(0,1; HY(2)),  p" € L™(0,1; HY(2)) N L%(0, 1; H*(2)),
EF € L?(0,1; L3(£2)), £ e L?(0,1; HY(£2)). (3.21)

From the above estimates and (3.17), with the help of the compact embeddifty f
holds that

||5T||Loo(o,,;L2(Q)) < Vet TT”LOO(O’[;LZ(Q)) NV eT =0,

by the interpolation inequality.
From the Aubin’s lemma [18] on compactness, we have

L?(0,1; H*(£2)) N HY(0,1; HY(£2)) — L?(0,1; C+*(22)),
fora € (0, %). Then ast — 0, for a subsequence pf ,
p" — p strongly inL?(0,1; C*¥(2)) N C(0,1; C*(£2)),
p" —p weaklyinL?(0,; H*(2)).
Similarly, we obtain, for a subsequence&sf,
E*— & strongly inL?(0,7; C*(£2)),
ET—~¢& weaklyinL?(0,1; HY(£2)).

By elliptic theory, we obtain the boundedness BFf in (L*°(0, r; H2(£2)) N L2(0, 1;
H3(2)) N HY(0, ; H%(£2)))3 uniformly in 7, and for a subsequence

E"— E stronglyin(L?(0,1; C%*(2)) N C(0, 1; C>*(2)))*.

DenoteW® = £72, Then we have
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”VWr”LZ(O’[;Ll(Q)) < ||5r||Loc(o,;;L2(Q)) ' ||V5r||L2(Q,),
IWi 20,0 02)) < 20E Lo 0,0 L2¢2)) * I1EF 20,

Thus it yields thatV® e L2(0, t; WL1(£2)) n H1(0, ; L1(£2)) uniformly in 7. By Aubin’s
lemma, we obtain for a subsequence

£ L g2 strongly inLZ(O, t; LP(£2)), for 1< p < oo.

For the positive solutions, (3.18)—(3.19) are equivalent to the following equations:
(ET)2pf —ETdIV(ETVPT — (p")2ET) + [E7Vp" — (p")?ET]-VET =0,  (3.22)
TEEF —tETAV(VET — p"ET) + rgEf [E7VPT — (0)ZET] + ET(ET — Top")

=0. (3.23)

On the one hand, as— 0, we get, for allp € C3°(Q,), that

t

T //5t5;r¢dx dr < T||5t||L2(Q,)||5tr||L2(Q,)||¢||L°°(Q,) < Cot — 0,
0 2
t

r//(vgf—prf)-V(£f¢)dxdr
0 2

t
erf(lvgrlz¢_prEr'VST¢_pTETET'V¢_5T2A¢)dxdt
0 2

<t(|Iver ||iz(Qt)||¢||L°°(Q,) +lpllLe o) 1E Lo on IVET i L2copllP Il L2(0,)

2
1Y@l 00 1E (00 1€ 20 167 1200y + 17 o | AGN L 01)
< Cot— 0,

t
%//[5fvpf — (pT)PET]- E"¢dxdt
0 2

< T(”ET oo IPllLe(o,) et ”LZ(Q,) IVo® ||L2(Q,)

2
+ ||ET||L°°(Q,)||¢||L°°(Q,)||PT||L2(QI))
< Cot— 0,

where the positive constagy is independent of .
On the other hand, by the above convergence, we have

t t
//é‘rzpfcbdxdt—)//Szptqﬁdxdt,
0 2 0
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t t
//pszf-v5f¢dxdz—>f/p2E-v5¢dxdt,
0 2 0 2

t t
//pTZETET~V¢dxdt—>//,025E-V¢dxdt,
0 2 0 2

t

t
ffeszpf¢dxdt—>//52Ap¢dxdt,
0 0 2

2

forall¢ € C3°(Q;) ast — 0.
From (3.20), (3.22) and (3.23), we have

t t
//5f2p;¢dxdz—//pf215f-(2v5f¢+5fv¢)dxdt
0 2 0 2

t

—//ErzAprdxdt:O,
2

0

t t
r//5r5f¢dxdt+r[/(vgf —p"EY)-V(ETP)dxdt
0 2 0 2

t t
2
o [ [Slevo - e Epavait [ [ e - mopnpdxar=o,

0

0
1 1
—//Ef.wsdxdr:/f(pf—C(x))¢dxdt,
0 2 0 2

for (x,1) € (Q;) and for all¢ € C5°(Q;).
Let T — 0. Then we obtain

t t t
//Ezp,¢dxdt—//p2E~(2V€¢+5V¢)dxdt—//EZA,Od)dxdt:O,
0 R 0 R 0 2

t

—//S(E—Top)q)dxdtzo,

0 2
t t
—/fE~V¢dxdt=//(p—C(x))¢dxdt,
0 2 0 2

for all ¢ € C3°(Q;). From the second equality, we hafe= Top. Then we can prove
Theorem 1.2.
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Remark 3.4. We could obtain Theorem 1.2 for the three-dimensional case if we assumed
ET e L™(0, 1; HL(2)).
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