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Abstract The Nav1.6 voltage-gated sodium channel has been
implicated in the generation of resurgent currents in cerebellar
Purkinje neurons. Our data show that resurgent sodium currents
are produced by some large diameter dorsal root ganglion
(DRG) neurons from wild-type mice, but not from Nav1.6-null
mice; small DRG neurons do not produce resurgent currents.
Many, but not all, DRG neurons transfected with Nav1.6 pro-
duce resurgent currents. These results demonstrate for the first
time the intrinsic ability of Nav1.6 to produce a resurgent cur-
rent, and also show that cell background is critical in permitting
the generation of these currents.
� 2005 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

Voltage-gated sodium channels underlie the generation of

action potentials in excitable cells. Nine different voltage-gated

sodium channels have been identified in mammals [1,2]. Many

of these channels have specific developmental, tissue or cellular

distributions [3], and expression of recombinant channels indi-

cates that different channels can have distinct functional prop-

erties [4–6]. Differences in the properties of voltage-gated

sodium channels may be important determinants of the inte-

grative and firing properties of neurons.

Resurgent sodium currents are an unusual type of sodium

current that reactivate during mild repolarizations following

depolarization to positive potentials and may be critical in

determining the firing patterns of cerebellar Purkinje neurons

[7]. While classic sodium channel tail currents activate instan-

taneously and decay rapidly, resurgent currents show much

slower kinetics and are thought to arise from a distinct inacti-

vation mechanism [8]. A 90% reduction of resurgent sodium

currents in Purkinje neurons from Nav1.6 null mice strongly
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suggested that Nav1.6 underlies most of this current [9].

Nav1.6 channels are expressed in many different neuronal pop-

ulations including dorsal root ganglion (DRG) neurons [1,3,10].

Therefore, we asked whether DRG neurons could generate

resurgent currents. Our results show that resurgent currents

can be recorded from native DRG neurons and show that

Nav1.6 channels underlie the generation of these currents in

these neurons. Part of this work has been presented in abstract

form [11].
2. Methods

2.1. Culture of DRG neurons
DRG neurons were cultured as previously described [12]. Briefly, L4

and L5 DRG ganglia were harvested from wild-type mice, Nav1.8-null
mice [13] and Nav1.6-null mice [14]. DRGs were treated with collage-
nase A (1 mg/ml) for 25 min, and collagenase D (1 mg/ml) and papain
(30 U/ml) for 25 min, dissociated in DMEM medium supplemented
with 10% fetal bovine serum and plated on glass coverslips.

2.2. Biolistic transfection of mouse DRG neurons
The Helios Gene Gun (Bio-Rad Laboratories) was used to transfect

DRG neurons with recombinant sodium channels, as previously de-
scribed [5,6]. To facilitate isolation of Nav1.6 and Nav1.4 currents,
our studies utilized cDNA constructs that encode tetrodotoxin-resis-
tant (TTX-R) versions of Nav1.6 (Nav1.6r), and Nav1.4 (Nav1.4r)
[15,16]. For these experiments Nav1.8-null neurons were kept under
standard tissue culture conditions for 5–7 days before biolistic trans-
fections. We previously showed that Nav1.8-null DRG neurons do
not express fast or slow-inactivating TTX-R sodium currents [5,17].
Some Nav1.8-null DRG neurons express persistent TTX-R sodium
currents [17], but because these currents fall below 1 nA after several
days in culture and run down quickly in whole-cell recording configu-
ration, they are not significant under the recording conditions used in
the present study. Neurons were cotransfected with green fluorescent
protein (GFP). Electrophysiologic studies were conducted 18–48 h
after transfection; most of the cells that expressed GFP also expressed
fast-inactivating recombinant TTX-R sodium currents.

2.3. Whole-cell patch-clamp recordings
Whole-cell patch-clamp recordings were conducted at room temper-

ature (�21 �C) using an EPC-9 amplifier (HEKA Electronic,
Germany) as previously described [4]. Fire-polished electrodes were
fabricated from 1.7-mm capillary glass using a Sutter P-97 puller (No-
vato, CA). Voltage errors were minimized using low resistance pipettes
(0.8–1.5 MX) and 80–90% series resistance compensation. Linear leak
currents were subtracted using –P/5 pulse protocols applied before the
test protocol for all voltage clamp recordings. The pipette solution
blished by Elsevier B.V. All rights reserved.
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contained (in mM): 140 CsF, 1 EGTA, 10 NaCl and 10 HEPES (pH
7.3). The standard bathing solution was (in mM) 140 NaCl, 3 KCl,
1 MgCl2, 1 CaCl2, 0.05 CdCl2, and 10 HEPES (pH 7.3). Osmolarity
of all solutions was adjusted to 310 mosM using glucose. Data were
typically low-pass filtered at 4 kHz and sampled at 20 kHz. Data were
analyzed using the Pulsefit (HEKA, Germany) and Origin (Microcal,
Northampton, MA) software programs. Unless otherwise noted, sta-
tistical significance was determined by P < 0.05 using an unpaired
t test. Results are presented as means ± S.E.M.
3. Results

3.1. Resurgent sodium currents in native DRG neurons

To determine whether DRG neurons express TTX-sensitive

(TTX-S) resurgent sodium currents, we recorded from wild-

type mouse DRG neurons, 24 h after culture, using a strong

depolarization (20 ms at +30 mV) followed by intermediate

repolarization pulses to voltages ranging from �30 to

�70 mV (for 100 ms). Resurgent sodium currents were not ob-

served in small (<35 lm diameter) DRG neurons (n = 8; Fig.

1A). However, we recorded large (2.1 ± 0.4% of peak current
Fig. 1. Resurgent currents are detected in some, but not all, DRG
neurons. (A) Family of sodium currents recorded from a small DRG
neuron. The peak sodium current amplitude was 49 nA and the cell
capacitance was 29 pF. Small neurons did not exhibit resurgent sodium
currents in response to repolarization. (B) Sodium currents recorded
from an isolated mouse large DRG neuron. The peak sodium current
amplitude was 54 nA and the cell capacitance was 37 pF. This cell
exhibited large resurgent currents. (C) Representative sodium currents
recorded from a large DRG neuron that did not exhibit resurgent
currents. The peak sodium current amplitude was 163 nA and the cell
capacitance was 43 pF. The voltage protocol used to elicit the currents
is shown at the bottom of the figure. Resurgent currents were evoked
by repolarizations to voltages ranging from �10 to �70 mV. The
amplitudes of the current traces on the right side are magnified 20
times for comparison of resurgent currents.
amplitude) resurgent sodium currents from some larger (35–

50 lm diameter) DRG neurons. Twelve out of 27 large diam-

eter DRG neurons exhibited resurgent currents (Fig. 1B); some

large diameter neurons did not produce resurgent currents

(Fig. 1C). To further investigate the origin of these resurgent

currents, we recorded from Nav1.8-null mouse DRG neurons,

which do not express the slowly-inactivating TTX-R sodium

current generated by Nav1.8. While none of the small diameter

(<35 lm) Nav1.8-null DRG neurons exhibited resurgent cur-

rents (n = 8), 5 out of 11 large diameter Nav1.8-null DRG neu-

rons did (Fig. 2A). The voltage-dependence of the resurgent

current recorded from DRG neurons is similar to that re-

corded from cerebellar Purkinje neurons [7,9]. Four of the cells

exhibiting resurgent currents were exposed to 500 nM TTX

and in each case TTX blocked the resurgent current (Fig.

2C), as it did in wild-type neurons (data not shown). Resurgent

currents were never recorded in the presence of TTX in either

large or small diameter neurons. These data indicate that

TTX-sensitive channels generate resurgent sodium currents

in large diameter DRG neurons.
Fig. 2. TTX-sensitive resurgent currents are generated in Nav1.8-null
but not Nav1.6-null DRG neurons. (A) Representative resurgent
sodium currents recorded from a large (64 pF) Nav1.8-null DRG
neuron. The amplitudes of the current traces on the right side are
magnified in order to better see the resurgent currents. (B) The voltage-
dependence of the resurgent currents in (A) is shown by plotting the
peak resurgent current amplitude against the repolarization pulse
potential. (C) The left panel shows currents from a large (62 pF)
Nav1.8-null neuron before and after exposure to TTX (500 nM). The
right panel shows the TTX-sensitive current (obtained by subtracting
the after-TTX current from the before-TTX current). The currents
were evoked by a repolarization to �45 mV following a 20 ms
depolarization to +30 mV.
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3.1.1. DRG neurons from Nav1.6-null mice do not produce

resurgent currents. Previous studies have shown that TTX-S

resurgent currents are much smaller in cerebellar Purkinje neu-

rons isolated from Nav1.6-null mice than from wild-type mice

[9]. We investigated the presence of resurgent currents in DRG

neurons from Nav1.6-null mice. Resurgent currents, either

TTX-S or TTX-R, were not observed in small (n = 16) or large

diameter (n = 25) Nav1.6-null DRG neurons (data not shown).

These results indicate that Nav1.6 underlies the resurgent cur-

rent in DRG neurons. However, because Nav1.6-null mice are

juvenile lethal and may have developmental abnormalities [18],

it is also possible that the lack of resurgent currents in DRG

neurons from these mice is an indirect consequence of the dis-

ruption of Nav1.6 (possibly by altering kinase activity or the

expression of beta subunits that could conceivably influence

resurgent currents generated by other sodium channel iso-

forms).

3.1.2. Recombinant Nav1.6 channels generate resurgent cur-

rents. To further investigate if Nav1.6 channels generate

resurgent currents in DRG neurons, we expressed Nav1.6

channels directly in Nav1.8-null mice DRG neurons using

the Nav1.6r version of this channel [6]. The Nav1.8-null

DRG neurons were transfected with GFP alone or in combina-

tion with Nav1.6r cDNA after 5–7 days in culture. Sodium cur-

rents were recorded in the presence of 500 nM TTX, 24–48 h

after transfection, permitting recording of Nav1.6 currents

without contribution of other TTX-S sodium currents in these

cells. While Nav1.8-null neurons transfected with GFP alone

did not produce fast-inactivating, TTX-R sodium currents,

the Nav1.6r channels produced large fast-inactivating TTX-R

sodium currents following biolistic transfection of Nav1.8-null

DRG neurons, consistent with our previous findings [6].

Resurgent currents were observed in 62% of the Nav1.8-null

DRG neurons (n = 45) transfected with Nav1.6r cDNA (Fig.

3A). In many of these neurons the resurgent currents were

quite large, ranging from 0.4% to 6.4% of the peak current
Fig. 3. Resurgent sodium currents generated by recombinant sodium chan
transfected with Nav1.6r (A, B) and Nav1.4r (C) sodium channels. The voltage
to +30 mV for 20 ms, after which they were repolarized to voltages rangin
resurgent currents were clearly present in some (A) but not all (B) neurons ex
neurons expressing Nav1.4r currents. The lower traces are magnified 10 time
amplitude. Overall, the resurgent current amplitude averaged

1.6 ± 0.2% of the peak transient sodium current amplitude.

However, 38% of the cells expressing Nav1.6r exhibited no

detectable resurgent current (Fig. 3B). It is not clear what con-

tributed to the variation in resurgent current generation. There

was no clear correlation either between peak current amplitude

and relative amplitude of the resurgent current, or between cell

capacitance and the amplitude of the resurgent current. Mean

cell capacitance was 24 ± 2 pF (range 8–64 pF). Lidocaine

(2 mM) equally inhibited both the resurgent current and peak

transient current amplitudes (by 68 ± 4% and 69 ± 1%, respec-

tively; n = 3; holding potential set at �120 mV).

In contrast to Nav1.6r-transfected cells, we did not observe

resurgent currents in Nav1.8-null DRG neurons that were bio-

listically transfected with GFP alone or with a TTX-R version

of the rat skeletal muscle sodium channel Nav1.4 (n = 41; Fig.

3C). This is despite that fact that Nav1.4r channels generated

larger peak sodium current amplitudes (76 ± 8 nA) than

Nav1.6r channels (40 ± 3 nA).
4. Discussion

We have shown that a subpopulation of DRG neurons

generate TTX-sensitive resurgent currents. Resurgent cur-

rents were not observed in DRG neurons isolated from

Nav1.6-null mice. Recombinant Nav1.6 channels, however,

could produce large resurgent currents in cultured Nav1.8-

null DRG neurons. Thus, our data demonstrate that the

Nav1.6 channel isoform can produce resurgent currents in

DRG neurons.

Native resurgent sodium currents have not been previously

reported in DRG neurons. We show in this study that resur-

gent sodium currents can be recorded from �40% of large

diameter DRG neurons. In several of the native DRG cells

that we studied the resurgent current was >1000 pA. These
nels. Sodium currents were recorded from Nav1.8-null DRG neurons
protocol is shown in (A). Neurons, held at �120 mV, were depolarized

g from �30 to �70 mV for 100 ms to elicit resurgent currents. Large
pressing Nav1.6r currents. (C) Resurgent currents were not detected in
s for comparison of resurgent currents.
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large resurgent currents were similar to those recorded from

Purkinje neurons [7], with a clear rising phase and maximum

amplitude typically elicited with intermediate repolarizations

to voltages close to �40 mV.

Several previous studies have described TTX-S and TTX-R

persistent or ‘‘late’’ sodium currents in large [19,20] and small

[21,22] DRG neurons. Persistent sodium currents result from

channels that fail to completely inactivate, or from window

currents that result from overlap in the activation and stea-

dy-state inactivation curves. Persistent sodium currents can

generate classic tail currents during repolarizations, currents

that typically activate instantaneously, decay rapidly and have

amplitudes that increase proportionally as the repolarization

potential becomes more negative. Although these TTX-R

and TTX-S persistent currents can have important influences

on excitability, they are distinct from resurgent currents.

Resurgent currents exhibit slower activation and decay kinetics

during repolarizations than classic tail currents, and have a

distinctive voltage-dependence (Fig. 2B). TTX-S ‘‘de-inactivat-

ing’’ currents previously observed in large DRG neurons [20]

may be related to the resurgent sodium currents that we de-

scribe here in large DRG neurons. Small de-inactivating so-

dium current has also been observed in small DRG neurons

[21]. However, because data on these de-inactivating currents

are limited and different voltage protocols are used to elicit

these currents, it is not clear if these are indeed the same as

the resurgent currents that we describe here. It has been

proposed that resurgent sodium currents arise from channels

that inactivate during strong depolarizations due to the bind-

ing of a alternative binding particle [8], possibly the c-terminus

of the b4 sodium channel auxiliary subunit [23], that unbinds

with a different kinetics from the conventional inactivation

particle.

The absence of resurgent currents from DRG neurons iso-

lated from mice lacking functional Nav1.6 channels is consis-

tent with the finding that resurgent currents are reduced by

more than 90% in cerebellar Purkinje neurons from Nav1.6-

null mice [9]. The small residual resurgent current in Purkinje

neurons suggested that other sodium channels can produce

these currents. Indeed a recent study indicates that Nav1.6

channels are not the sole generator of resurgent sodium cur-

rents in subthalamic nucleus neurons [24]. However, the ab-

sence of residual resurgent current in Nav1.6-null DRG

neurons strongly suggests that the complement of the TTX-S

channels in these neurons, which includes Nav1.1 and Nav1.7

in addition to the TTX-R channels Nav1.8 and Nav1.9, are

incapable of producing resurgent currents. Thus, we hypothe-

size that Nav1.2 can produce a resurgent current. This conclu-

sion is further supported by the absence of Nav1.2, a TTX-S

sodium channel that is expressed in Purkinje neurons [3], in

adult rodent DRG neurons [25]. In agreement with this view,

Nav1.2 can produce a resurgent current when expressed in

Nav1.8-null DRG neurons (Rush, Dib-Hajj and Waxman,

unpublished data).

Resurgent currents were not observed in small DRG neu-

rons, which have been shown to express Nav1.6 channels

[10]. Additionally, resurgent currents have not been recorded

from hippocampal CA3 neurons [7] or from spinal neurons

[26], even though transcripts of Nav1.6 are detected in these

cells. Thus, factors that are differentially expressed in small

and large DRG neurons could also be important in determin-

ing the ability of large DRG neurons to generate resurgent cur-
rents. For example, the b4 sodium channel auxiliary subunit

has been reported to be expressed at higher levels in large

DRG neurons than small DRG neurons [27] and a recent re-

port suggests that this subunit might be a crucial modulator

of resurgent sodium currents [23]. Phosphorylation has also

been implicated in modulating resurgent sodium currents [28]

and therefore differential kinase activity might determine

which sensory neuron populations express resurgent sodium

currents. Cell background appears to be crucial for the pro-

duction of the resurgent current and, because this current is

thought to endow cells with rapid firing, may reflect the func-

tional modality of these sensory neurons.

Irrespective of the mechanisms that regulate resurgent cur-

rents, our results demonstrate for the first time that recombi-

nant Nav1.6 channels can produce a resurgent current in

DRG neurons. Thus, Nav1.6 sodium channels have the intrinsic

capacity to generate resurgent currents. Nevertheless, the com-

petence of different splice variants in generating resurgent cur-

rents remains to be investigated. We also show that while

some neurons produce a large resurgent current (>3% of the

peak current amplitude) other neurons express large fast-inacti-

vating Nav1.6 currents but not detectable resurgent current.

Resurgent currents have been shown to play crucial roles in

determining the firing patterns of cerebellar Purkinje neurons

[29], and therefore it will be important to determine the role that

resurgent sodium currents play in sensory neuronal excitability.
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