
Journal of King Saud University – Science (2016) 28, 111–117
King Saud University

Journal of King Saud University –

Science
www.ksu.edu.sa

www.sciencedirect.com
ORIGINAL ARTICLE
The meshless local Petrov–Galerkin based on

moving kriging interpolation for solving fractional

Black–Scholes model
* Corresponding author at: Department of Mathematics, Faculty of

Science, King Mongkut’s University of Technology Thonburi

(KMUTT), 126 Pracha-utid Road, Bangmod, Toongkru, Bangkok

10140, Thailand.

E-mail address: anirut.lua@kmutt.ac.th (A. Luadsong).

Peer review under responsibility of King Saud University.

Production and hosting by Elsevier

http://dx.doi.org/10.1016/j.jksus.2015.08.004
1018-3647 � 2015 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
P. Phaochoo
a
, A. Luadsong

a,b,*, N. Aschariyaphotha
b

aDepartment of Mathematics, Faculty of Science, King Mongkut’s University of Technology Thonburi (KMUTT), 126
Pracha-utid Road, Bangmod, Toongkru, Bangkok 10140, Thailand
bRatchaburi Learning Park, King Mongkut’s University of Technology Thonburi (KMUTT), Rang Bua, Chom Bueng,

Ratchaburi 70150, Thailand
Received 12 July 2015; accepted 18 August 2015
Available online 29 August 2015
KEYWORDS

European option;

Fractional Black–Scholes

equation;

MLPG;

Moving kriging interpolation
Abstract In this paper, the fractional Black–Scholes equation in financial problem is solved by

using the numerical techniques for the option price of a European call or European put under

the Black–Scholes model. The MLPG and implicit finite difference method are used for discretizing

the governing equation in option price and time variable, respectively. In MLPG method, the shape

function is constructed by a moving kriging approximation. The Dirac delta function is chosen to

be the test function. The numerical examples for varieties of variables are also included.
� 2015 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is

an open access article under theCCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The first idea of fractional calculus is considered to be the
Leibniz’s letter to L’Hospital in 1695. Fractional calculus is
a name for the theory of derivatives and integrals of arbitrary

order. The famous definitions of a fractional calculus are the
Riemann–Liouville and Grunwald–Letnikov definition

(Ghandehari and Ranjbar, 2014). Caputo reformulated the
definition of the Riemann–Liouville in order to use integer
order initial conditions to solve fractional differential equation

(Ishteva, 2005). The definitions of Riemann–Liouville and the
first Caputo version have the weakness for singular kernel.
Caputo and Fabrizio proposed a new fractional order deriva-

tive without a singular kernel (Atangana and Alkahtani Badr
Saad, 2015a,b). Fractional differential equations have
attracted much attention during the past few decade. This is
the fact that fractional calculus supplies an competent and

excellent tool for the description of many important phenom-
ena such as electromagnetic, physics, chemistry, biology, econ-
omy and many more.

Black–Scholes equation, which is proposed by Black and
Scholes (1973), is the financial model that concern with option.
An option is a contract between the seller and the buyer. It
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consists of a call option and a put option. Option valuation
depends on the underlying asset price and time. The European
option can only be exercised at the expiration date, but the

American option can be exercised at any time before expira-
tion date. The solution of Black–Scholes equation provides
an option pricing formula for European option. The analytic

solution is used in general case with basic assumption but it
is not satisfied in some conditions. Some restrictions were
appeared in the classical Black–Scholes equation that is the

weakness of this model. Original assumptions were relieved
by other models such as models with transaction cost (Barles
and Soner, 1998; Davis et al., 1993), Jump-diffusion model
(Merton, 1976), Stochastic volatility model (Hull and White,

1987) and fractional Black–Scholes model (Bjork and Hult,
2005; Wang, 2010).

Fractional Black–Scholes model is derived by many

researchers. Some restrictions were appeared in the classical
Black–Scholes equation that is the weakness of this model
(Song and Wang, 2013). The fractional Black–Scholes models

are derived by substituting the standard Brownian motion with
fractional Brownian motion.

In this paper, we propose a numerical method based on

meshless local Petrov–Galerkin (MLPG) method to solve a
fractional Black–Scholes equation. The MLPG is a truly mesh-
less method, which involves not only a meshless interpolation
for the trial functions, but also a meshless integration of the

weak-form, (Atluri and Shen, 2002). MLPG2 is chosen for this
research so the Kronecker delta is the test function. This
method will avoid the domain integral in the weak-form.

2. Problem formulation

The Black–Scholes equation is the outstanding financial equa-

tion that solves the European option pricing without a transac-
tion cost. Moreover, underlying asset price distributed on the
lognormal random walk, risk-free interest rate, no dividend

and no arbitrate opportunity are fundamental assumption.
Fractional calculus is used in financial market for description
the probability of log-price, which is a benefit to specify the

variability in prices. Fractional Black–Scholes models are
derived by substitution standard Brownian motion with
fractional Brownian motion. Some restrictions of original
Black–Scholes equation are improved by many methods. The

fractional Black–Scholes equation is a choice for reinforce-
ment of original equation. The fractional Black–Scholes
equation is following

@au

@sa
þ rðsÞs @u

@s
þ 1

2
r2ðs; sÞs2 @

2u

@s2
� rðsÞu ¼ 0;

ðs; sÞ 2 Rþ � ½0;T�; ð2:1Þ
with the terminal and boundary condition

uðs;TÞ ¼ maxðs� E; 0Þ; s 2 Rþ; uð0; sÞ ¼ 0; s 2 ½0;T�;
where u(s,s) is the value of European call option at underlying

asset price s at time s, T is the expiration date, r is the risk-free
interest rate, r is the volatility of underlying asset price and E
is the strike price.

From Eq. (2.1), when s goes to zero then degenerating will
occur in approximation. We transform the Black–Scholes
equation into a nondegenerate partial differential equation

by using a logarithmic transformation x= ln s, t= T � s,
and define the computational domain for convenient in
numerical experiments by X= [xmin,xmax] � [0,T], where
xmin = �ln (4E), xmax = ln (4E) , Haung and Cen, 2014.
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where u(x, 0) = max (ex � E, 0), x e (xmin,xmax),

uðxmin; tÞ ¼ 0; uðxmax; tÞ ¼ exmax � Ee
�
R t

0
rðsÞds

; t 2 ½0;T�:
The fundamental definition of fractional calculus as

following

Definition 1. The Riemann–Liouville fractional integral oper-
ator of order a > 0, of a function fðtÞ 2 Cl; l P �1 is defined

as (Podlubny, 1999),

JafðtÞ ¼ 1

CðaÞ
Z t

0

ðt� sÞa�1
fðsÞds; ða > 0Þ;

J0fðtÞ ¼ fðtÞ:
For the Riemann–Liouville fractional integral we have:

Jatc ¼ Cðcþ 1Þ
Cðcþ aþ 1Þ t

aþc

Definition 2. The fractional derivative of f(t) in the Caputo
sense is defined as (Caputo, 1969),

Da
s fðtÞ ¼ Jm�aDmfðtÞ ¼ 1

Cðm� aÞ
Z t

0

ðt� sÞm�a�1
fðmÞðsÞds;

for m� 1 < a 6 m; m 2 N; t > 0:

For the Riemann–Liouville fractional integral and the Caputo

fractional derivative, we have the following relation

JasD
a
sfðtÞ ¼ fðtÞ �Pm�1

k¼0 f
ðkÞð0þÞ tk

k!
.

Definition 3. The Mittag–Leffler is defined as (Mittag, 1903)

EaðzÞ ¼
X1
k¼0

zk

Cðakþ 1Þ ; a 2 C; ReðaÞ > 0:
3. Spatial discretization

The MLPG method are used for spatial discretization. We cre-
ate the local weak form over local subdomain, which is a small

region taken for each node in global domain. Multiplying test

function vi into Eq. (2.2) and then integrate over subdomain Xi
s

yields the following expressionZ
Xi
s
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where vi is a test function that make significant for each nodes.
Rearrange Eq. (3.1), we have

Z
Xi
s
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where u;xx ¼ @2u
@x2

; u;x ¼ @u
@x
. Substituting trial function

uhðx; tÞ ¼PN
j¼1/jðxÞûjðtÞ into u in Eq. (3.2)Z

X
si

XN
j¼1

/jðxÞviðxÞ
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Z
Xi
s

XN
j¼1

/jðxÞviðxÞûjðtÞdX ¼ 0; ð3:3Þ

where N is the number of nodes surrounding point x which has

the effect on u(x) and ûj is value of option at time t. The shape

function, /j, is constructed by moving kriging interpolation
which has the Kronecker delta property, thereby enhancing
the arrangement nodal shape construction accuracy. Rear-

range Eq. (3.3) yields the following result
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This research use MLPG2 then the test function is chosen by

Kronecker delta function

viðxÞ ¼
0; x – xi

1; x ¼ xi

; i ¼ 1; 2; . . . ;N:

�

The test function will define significance for each node in

subdomain. In this case, substituting test function vi(x) to

Eq. (3.4)and then integrate over subdomain Xi
s yields the fol-

lowing result

XN
j¼1

/jðxiÞd
aûjðtÞ
dta

þ
XN
j¼1

1

2
/j;xxðxiÞþ r�1

2
r2

� �
/j;xðxiÞ� r/jðxiÞ

� �

ûjðtÞ¼ 0: ð3:5Þ
Eq. (3.5) can be written in the matrix form as following

A
daU

dta
þ BU ¼ 0; ð3:6Þ

where A ¼ ½Aij�N�N;Aij ¼ /jðxiÞ ¼ 0; i–j
1; i ¼ j

�
;

B ¼ ½Bij�N�N;Bij ¼ � 1

2
/j;xxðxiÞ � ðr� 1

2
r2Þ/j;xðxiÞ þ r/jðxiÞ;

U ¼ ½û1 û2 û3 . . . ûN�T:
Since the shape function that is constructed by the moving
kriging interpolation satisfy the Kronecker delta property, A
is the identity matrix. Therefore, Eq. (3.6) can be written as

daU

dta
þ BU ¼ 0: ð3:7Þ
4. Temporal discretization

The numerical solution of European option use the implicit
finite difference method. By a finite approximation made for

the time fractional derivative with notation @auðxi ;tnÞ
@ta

that

approximates the exact solution u(xi, tn) at time level n, we
restrict attention to the finite space domain xmin < x< xmax

with 0 < a < 1. The time fractional derivative use the implicit
finite difference (Murio, 2008), defined by

daU

dta
¼ ra;Dt

Xn
j¼1

ðUn�jþ1 �Un�jÞ þOðDtÞ; ð4:1Þ

where ra;Dt ¼ 1
Cð1�aÞ

1
1�a

1
ðDtÞa.

Hence, daU
dta

¼ DðaÞ
t Un

i þOðDtÞ.
The first-order approximation method for the computation

of Caputo’s fractional derivative is given by

DðaÞ
t Un ¼ ra;Dt

Xn
j¼1

xðaÞ
j ðUn�jþ1 �Un�jÞ: ð4:2Þ

where xðaÞ
j ¼ j1�a � ðj� 1Þ1�a

.

Consider the Eq. (4.2) and substitute time fractional deriva-

tive that following

ra;Dt

Xn
j¼1

xðaÞ
j ðUn�jþ1 �Un�jÞ þ BUn ¼ 0;

ra;Dt

Xn
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xðaÞ
j Un�jþ1 � ra;Dt

Xn
j¼1

xðaÞ
j Un�j þ BUn ¼ 0;
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ðaÞ
1 ðUn �Un�1Þ ¼ �ra;Dt

Xn
j¼2
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ðaÞ
1 ðUn �Un�1Þ ¼ �ra;Dt
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j¼2

xðaÞ
j ðUn�jþ1 �Un�jÞ � BUn;

We consider the first case for n= 1,

Case n = 1

ra;Dtx
ðaÞ
1 U1 þ BU1 ¼ ra;Dtx

ðaÞ
1 U0;

ðra;Dtx
ðaÞ
1 Iþ BÞ U1 ¼ ra;Dtx

ðaÞ
1 U0:

Case n P 2

ra;Dtx
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� �
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ðaÞ
1 Un�1�ra;Dt

Xn
j¼2

xðaÞ
j ðUn�jþ1�Un�jÞ:
5. Stability analysis

In this section, we are propose an analysis of the stability of
implicit finite difference method and MLPG2 by using the
matrix method. A small perturbation at nth time level is

en ¼ Un � ~Un, where Un is exact and ~Un is the numerical solu-
tion. The equation of the error en can be written as

ðra;Dtx
ðaÞ
1 Iþ BÞen ¼ ra;Dtx

ðaÞ
1 en�1 � ra;Dt

Xn
j¼2

xðaÞ
j ðen�jþ1 � en�jÞ:

ð5:1Þ
If n ¼ 1 then ðra;Dtx

ðaÞ
1 Iþ BÞe1 ¼ ra;Dtx

ðaÞ
1 e0;

e1 ¼ ðra;Dtx
ðaÞ
1 Iþ BÞ�1

ra;Dtx
ðaÞ
1 e0:

where G ¼ ðra;Dtx
ðaÞ
1 Iþ BÞ�1

ra;Dtx
ðaÞ
1 .



Figure 1 The relation between ReðkÞmax and shape parameter

ð2Þ.

Figure 2 The relation between ReðkÞmax and spatial mesh length

(h).
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It can be seen that the stability is assured if all eigenvalues

of the matrix G ¼ ðra;Dtx
ðaÞ
1 Iþ BÞ�1

ra;Dtx
ðaÞ
1 : satisfy the follow-

ing condition:

ra;Dtx
ðaÞ
1

ra;Dtx
ðaÞ
1 Iþ k

					
					 < 1 ð5:2Þ

where k is the eigenvalue of the matrix B. If q(G) < 1 and
ReðkÞmax > 0 then e1 < e0. The inequality in Eq. (5.2)is always

satisfied ReðkÞmax > 0 provided.

For case n> 1,

ðra;Dtx
ðaÞ
1 Iþ BÞen ¼ ra;Dtx

ðaÞ
1 en�1 � ra;Dt

Xn�1

j¼2

xðaÞ
j ðen�jþ1 � en�jÞ
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ðaÞ
n ðe1 � e0Þ:
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j
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ðaÞ
n e0:

6 ra;Dtx
ðaÞ
1 � ra;Dt
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xðaÞ
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j

� �
þ ra;Dtx

ðaÞ
n

 !
e0:

¼ ra;Dtx
ðaÞ
1 e0:

en ¼ ra;Dtx
ðaÞ
1 Iþ B

� ��1

ra;Dtx
ðaÞ
1 e0:

en ¼ Ge0:

where kGk < 1.

en 6 e0:

From case n = 1 and n > 1, we conclude that en 6 e0 for all n

where ReðkÞmax > 0.

The eigenvalues of matric B highly depend on the mesh
spacing parameter ‘h’ (‘h’ is defined to be the minimal distance

between any two points in the domain) and the shape param-
eter e. The present local approximation is free from these
complexities. Since it is not possible to find and explicit

relationship among the eigenvalues of matrix B, the number
of node and the shape parameter e we investigate this depen-
dent numerically and is given in Fig. 1.

Fig. 1 shows maximum eigenvalue ReðkÞ of matrix B

varies as a function of shape parameter e, when mesh spacing
parameter h is constant. Fig. 2 shows the effect of mesh
length ‘h’ for eigenvalue of matrix B, when the shape

parameter 2 is constant. Fig. 3 shows that the increasing of
volatility trends to decreasing of maximum eigenvalue at
the end. In this case, if the shape parameter increase then

eigenvalue ReðkÞ will increase. Fig. 4 presents that the risk
free interest rate is stable for all case of shape parameter
and the shape parameter increase then eigenvalue ReðkÞ will

increase (see Figs. 5–14).
Figure 3 The relation between ReðkÞmax and the volatility (r).
6. Numerical examples

In this section, we are going to present various numerical
results to evaluate proposed meshless approaches. Using the
MLPG2 method, the resulting problems for European call
options are solved via implicit finite difference method.



Figure 4 The relation between ReðkÞmax and risk free interest

rate (r).

Figure 6 The approximate solution compare with the exact

solution for r ¼ 0:2; r ¼ 0:04; a ¼ 0:5; 0 6 t 6 T.

Figure 7 The approximate solution compare with the exact

solution for r = 0.2, r = 0.04, a= 0.99, t= T.

The meshless local Petrov–Galerkin based on moving kriging interpolation for solving fractional Black–Scholes model 115
The European call option can be modeled by Black–Scholes
PDE

@au

@sa
þ rðsÞs @u

@s
þ 1

2
r2ðs; sÞs2 @

2u

@s2
� rðsÞu ¼ 0: ð6:1Þ

(s, s) e R+ � [0, T] with the terminal and boundary condition.

u(s, T) = max (s � E, 0), s e R+, u(0, s) = 0, s e [0, T],
To illustrate accuracy of proposed method numerical simu-

lation was done for European call option with parameters

xmin = �ln (4E), xmax = ln (4E).

6.1. Example 1

We consider the fractional Black–Scholes equation in Eq.
(3.1). The numerical simulation was done for European call
option with parameters as following:

Case 1. For r = 0.2, r = 0.04, a = 0.5, T = 1.
Case 3. For r = 0.2, r = 0.04, a = 0.99, T = 1.
Case 4. For r = 0.2, r = 0.1, a = 0.99, T = 1.
Figure 5 The approximate solution compare with the exact

solution for r ¼ 0:2; r ¼ 0:04; a ¼ 0:5; t ¼ T.

Figure 8 The approximate solution compare with the exact

solution for r ¼ 0:2; r ¼ 0:04; a ¼ 0:99; 0 6 t 6 T.
6.2. Example 2

We consider the fractional Black–Scholes equation in Eq.
(5.1). The numerical simulation was done for European call
option with parameters as following:



Figure 9 The approximate solution compare with the exact

solution for r ¼ 0:2; r ¼ 0:1; a ¼ 0:99; t ¼ T.

Figure 10 The approximate solution compare with the exact

solution for r ¼ 0:2; r ¼ 0:1; a ¼ 0:99; 0 6 t 6 T.

Figure 11 The comparison of the approximate solutions of the

fractional and standard Black–Scholes equation for

r ¼ 0:06; a ¼ 0:99; t ¼ T.

Figure 12 The comparison of the approximate solutions of the

fractional and standard Black–Scholes equation for

r ¼ 0:06; a ¼ 0:99; 0 6 t 6 T.

Figure 13 The comparison of the approximate solutions of the

fractional and standard Black–Scholes equation for

r ¼ 0:06; a ¼ 0:99; t ¼ T.

Figure 14 The comparison of the approximate solutions of the

fractional and standard Black–Scholes equation for

r ¼ 0:06; a ¼ 0:99; 0 6 t 6 T.
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Case 1. For r = 0.15(0.5 + 2s)((s/100 � 1.2)2/((s/100)2 +

1.44)), r= 0.06, a= 0.99, T = 1.

xmin = �ln (4E), xmax = ln (4E).

In this case, we have unknown the exact solution.

Case 2. For r = 0.4(2 + sin x), r= 0.06, a= 0.99, T = 1.
In this case, we have unknown the exact solution.

7. Conclusion

In this paper, the fractional Black–Scholes equation are solved
by the implicit finite difference method and MLPG2 for dis-
cretizing in time variable and option price, respectively. The

stability analysis present relation between maximum eigenval-
ues of matrix and variety of parameters.

The numerical results are presented in two examples. Exam-

ple 1 presents numerical results for varieties of parameters in
four cases. For case 1 and case 2 present comparison of numer-
ical result for different volatility r = 0.1, 0.2 while variables

are fixed, a= 0.5, 0.99 show for case 2 and case 3. Difference
of risk free interest rate present for case 3 and case 4, respec-
tively. Example 2 shows the value of option for volatility func-
tion in both cases. Volatility function is r = 0.15(0.5 + 2s)
((s/100 � 1.2)2/((s/100)2 + 1.44)) and r = 0.4(2 + sin x),
respectively. Moreover, we found that the MLPG give the
value option in both volatility constant and volatility function.
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