Invariant Approximations and \(R \)-Subweakly Commuting Maps

Naseer Shahzad

Department of Mathematics, Faculty of Science, King Abdul Aziz University, P. O. Box 9028, Jeddah 21413, Saudi Arabia

Submitted by J. Horváth

Received April 10, 2000

The existence of invariant approximations for \(R \)-subweakly commuting mappings is proved. Our results extend most of the known results to a new class of noncommuting mappings.

Key Words: \(R \)-subweakly commuting map; common fixed point; best approximation; normed space.

1. INTRODUCTION AND PRELIMINARIES

Let \(S \) be a subset of a normed space \(X = (X, \| \cdot \|) \) and \(T, I \) self-mappings of \(X \). Then \(T \) is called (1) nonexpansive on \(S \) if \(\|Tx - Ty\| \leq \|x - y\| \) for all \(x, y \in S \); (2) \(I \)-nonexpansive on \(S \) if \(\|Tx - Ty\| \leq \|Ix - Iy\| \) for all \(x, y \in S \); (3) an \(I \)-contraction on \(S \) if there exists \(k \in [0, 1) \) such that \(\|Tx - Ty\| \leq k \|Ix - Iy\| \) for all \(x, y \in S \). The set of fixed points of \(T \) (resp. \(I \)) is denoted by \(FT \) (resp. \(FI \)). The set \(S \) is called (4) \(p \)-starshaped with \(p \in S \) if for all \(x \in S \), the segment \([x, p]\) joining \(x \) to \(p \) is contained in \(S \) (that is, \(kx + (1-k)p \in S \) for all \(x \in S \) and all real \(k \) with \(0 \leq k \leq 1 \)); (5) convex if \(S \) is \(p \)-starshaped for every \(p \in S \). The convex hull \(co(S) \) of \(S \) is the smallest convex set in \(X \) that contains \(S \), and the closed convex hull \(cco(S) \) of \(S \) is the closure of its convex hull. \(T \) and \(I \) are said to be (6) commuting on \(S \) if \(ITx = TIx \) for all \(x \in S \); (7) \(R \)-weakly commuting on \(S \) [7] if there exists a real number \(R > 0 \) such that \(\|ITx - ITx\| \leq R \|Tx - Ix\| \) for all \(x \in S \). Suppose \(S \subset X \) is \(p \)-starshaped with \(p \in F(I) \) and is both \(T \)- and \(I \)-invariant. Then \(T \) and \(I \) are called (8) \(R \)-subweakly commuting on \(S \) if there exists a real number \(R > 0 \) such
that \(||Txx - ITxx|| \leq Rd(Ixx, [Tx, p])|\) for all \(x \in S\), where \(d(y, A) = \inf\{||y - z|| : z \in A\}\) for \(A \subset S\) and \(y \in S\). It is clear from the definitions that commutativity implies \(R\)-subweak commutativity, but the converse is not true in general. To see this, we consider the following examples:

1. Let \(X = \mathbb{R}\) with norm \(||x|| = |x|\), and let \(T, I\) be given by \(Tx = 4x - 3, \quad Ix = 2x^2 - 1\) for all \(x \in X\). Then \(T\) and \(I\) are \(R\)-subweakly commuting on \(S = [1, \infty)\). However, they are not commuting on \(S\).

2. Let \(X = \mathbb{R}^2\) with norm \(||(x, y)|| = \max(|x|, |y|)\), and let \(T, I\) be defined by \(T(x, y) = (2x - 1, y^3), \quad I(x, y) = (x^2, y^2)\) for all \((x, y) \in X\). Then \(T\) and \(I\) are \(R\)-subweakly commuting on \(S = \{(x, y) : x \geq 1, y \geq 1\}\) but they are not commuting on \(S\).

Remark. Let \(T\) and \(I\) be \(R\)-subweakly commuting self-mappings of a \(p\)-starshaped subset \(S\) of \(X\) with \(p \in F(I)\).

1. If \(Tx = Ix\), then \(Txx = ITxx\).

2. Suppose \(T_{x_n}, I_{x_n} \to y\) for some \(y \in S\). (a) If \(T\) is continuous at \(y\), then \(ITx_n \to Ty\). (b) If \(T\) and \(I\) are continuous at \(y\), then \(Ty = Iy\) and \(Tyy = ITy\).

Suppose \(\hat{x} \in X\). An element \(x \in S\) is called the best \(S\)-approximant to \(\hat{x}\) if \(||x - \hat{x}|| = d(\hat{x}, S)\), where \(d(\hat{x}, S) = \inf\{||\hat{x} - y|| : y \in S\}\). We denote the set of all such elements by \(P_S(\hat{x})\) and define \(C_2(\hat{x}) = \{x \in S : Ix \in P_S(\hat{x})\}\). Let \(\mathfrak{S}_0\) represent the class of closed convex subsets of \(X\) containing \(0\). Then for \(S \in \mathfrak{S}_0\), we set \(S_\ell = \{x \in S : ||x|| \leq 2||\hat{x}||\}\). Obviously \(P_S(\hat{x}) \subset S_\ell \in \mathfrak{S}_0\).

Theorem 1.1. Let \(T\) be a nonexpansive self-mapping of \(X\), \(S\) a finite dimensional \(T\)-invariant subspace of \(X\), and \(\hat{x} \in F(T)\). Then \(P_S(\hat{x}) \cap F(T) \neq \emptyset\).

In 1981, Smoluk [14] made his contribution replacing the finite dimensionality of \(S\) by the requirement “\(cl(T(D))\) is compact for every bounded \(D \subset S\) and \(T\) is linear.” Afterwards, Habiniak [4] observed that Smoluk’s result remains valid if the linearity of \(T\) is dropped. Further generaliza-
tions of Meinardus’s result in various directions were obtained by Brosowski [2], Hicks and Humphries [5], Sahab et al. [8], Shahzad [9, 10], and Singh [12, 13]. Recently, Al-Thagafi [1] established the following extension of Habiniak’s result.

THEOREM 1.2. Let T be a self-mapping of X with $\hat{x} \in F(T)$ and $S \in \mathcal{S}_0$ such that $T(S_\hat{x}) \subseteq S$. If T is nonexpansive on $S_\hat{x} \cup \{\hat{x}\}$ and $\text{cl}(T(S_\hat{x}))$ is compact, then

1. $P_S(\hat{x})$ is nonempty, closed, and convex,
2. $T(P_S(\hat{x})) \subseteq P_S(\hat{x})$, and
3. $F(T) \cap P_S(\hat{x}) \neq \emptyset$.

Using Theorem 1.2, he also obtained the following interesting result.

THEOREM 1.3. Let I and T be self-mappings of X with $\hat{x} \in F(I) \cap F(T)$ and $S \in \mathcal{S}_0$ such that $T(S_\hat{x}) \subseteq I(S) \subseteq S$. Suppose that I is linear and nonexpansive on $S_\hat{x}$, $\|x - \hat{x}\| = \|x - \hat{x}\|$ for all $x \in S$, I and T are commuting on $S_\hat{x}$, T is I-nonexpansive on $S_\hat{x} \cup \{\hat{x}\}$, and one of the following two conditions is satisfied:

1. $\text{cl}(I(S_\hat{x}))$ is compact.
2. $\text{cl}(T(S_\hat{x}))$ is compact and T is linear on $S_\hat{x}$.

Then

1. $P_S(\hat{x})$ is nonempty, closed, and convex,
2. $T(P_S(\hat{x})) \subseteq I(P_S(\hat{x})) \subseteq P_S(\hat{x})$, and
3. $F(I) \cap F(T) \cap P_S(\hat{x}) \neq \emptyset$.

We observe that the proof of Theorem 1.3 relies heavily on commutativity of T and I. Naturally, one may raise the following question: Does the above theorem remain valid for a class of noncommuting maps? In this short note, we give a partial answer to this question. Thus we extend most of the known results to a class of noncommuting maps (e.g., [1, 4, 14, 15]).

Up to the present, inadequate efforts have been made in this direction. To the best of our knowledge, there have appeared a few articles (see, e.g., [10, 11]) which discuss the existence of invariant approximations for noncommuting mappings. The concept of R-subweak commutativity is a useful tool in establishing the existence of invariant approximations for a pair of mappings satisfying nonexpansive type conditions, as compared to other notions of noncommutativity, such as R-weak commutativity. This is evident from the proof of Lemma 2.1.
2. MAIN RESULTS

The following lemmas play a crucial role in the sequel.

Lemma 2.1. Let $S \subseteq X$ be closed and T and I self-mappings of S such that $T(S) \subseteq I(S)$. If $cl(T(S))$ is complete, T is I-contraction and continuous, and T, I are R-weakly commuting, then $F(T) \cap F(I)$ is a singleton.

Proof. Let $x_0 \in S$. Since $T(S) \subseteq I(S)$, we can define a sequence $\{x_n\}$ in S by $Ix_n = Tx_{n-1}$ for $n \geq 1$. Then

$$
\|Ix_{n+1} - Ix_n\| = \|Tx_n - Tx_{n-1}\| \leq k\|Ix_n - Ix_{n-1}\|
$$

for some $k \in [0, 1)$. This implies that $\{Ix_n\}$ is a Cauchy sequence in S and so the sequence $\{Tx_n\}$ is also Cauchy. Thus $Tx_n \to y \in S$. Consequently, $Ix_n \to y$. Following the proof of Pant [7, Theorem 1], we conclude that $F(T) \cap F(I)$ is a singleton.

Lemma 2.2. Let $S \subseteq X$ be closed and T and I self-mappings of S such that $T(S) \subseteq I(S)$. Suppose T is I-nonexpansive and continuous, I is linear, and $p \in F(I)$. If S is p-starshaped, $cl(T(S))$ is compact, and T, I are R-subweakly commuting, then $F(T) \cap F(I) \neq \emptyset$.

Proof. Define for each $n \geq 1$, a mapping T_n by $T_n x = k_n Tx + (1 - k_n)p$, where $\{k_n\}$ is a sequence with $0 < k_n < 1$ such that $k_n \to 1$ as $n \to \infty$. Then T_n is a self-mapping of S such that $T_n(S) \subseteq I(S)$ for each n. From the R-subweak commutativity of T, I and the linearity of I, it follows that

$$
\|T_nIx - IT_nx\| = k_n\|Tnx - IT_nx\| \leq k_nR\|(k_nTx + (1 - k_n)p) -Ix\|
$$

$$
= k_nR\|T_nx - Ix\|
$$

for all $x \in S$. Thus T_n and I are k_nR-weakly commuting. Also

$$
\|T_nx - T_ny\| = k_n\|Tx - Ty\| \leq k_n\|Ix - Iy\|
$$

for all $x, y \in S$. Lemma 2.1 further implies that $F(T_n) \cap F(I) = \{x_n\}$ for each n. Since $cl(T(S))$ is compact and S is closed, there exists a subsequence $\{x_{m}\}$ of $\{x_n\}$ such that $x_m \to x_0 \in S$ as $m \to \infty$. By the continuity of T, we have $x_0 \in F(T)$. Since $T(S) \subseteq I(S)$, it follows that $x_0 = Tx_0 = Iy$ for some $y \in S$. Moreover,

$$
\|Tx_m - Ty\| \leq \|Ix_m - Iy\| = \|x_m - x_0\|.
$$
Taking the limit as \(m \to \infty \) yields \(Tx_0 = Ty \). Thus \(x_0 = Tx_0 = Ty = Iy \).

Since \(T \) and \(I \) are \(R \)-subweakly commuting, it follows that
\[
\|Tx_0 - Ix_0\| = \|Ty - ITy\| \leq R\|Ty - Iy\| = 0.
\]

Hence \(x_0 \in F(T) \cap F(I) \).

We are now in a position to provide a partial answer to the above question.

THEOREM 2.3. Let \(I \) and \(T \) be self-mappings of \(X \) with \(\hat{x} \in F(I) \cap F(T) \) and \(S \subseteq \mathcal{S}_0 \) such that \(T(S_{\hat{x}}) \subseteq I(S) \subseteq S \). Suppose that \(I \) is linear and nonexpansive on \(S_{\hat{x}} \), \(\|Ix - \hat{x}\| = \|x - \hat{x}\| \) for all \(x \in S \), \(I \) and \(T \) are \(R \)-subweakly commuting on \(S_{\hat{x}} \), \(T \) is \(I \)-nonexpansive on \(S_{\hat{x}} \cup \{\hat{x}\} \), and \(\text{cl}(I(S_{\hat{x}})) \) is compact. Then

(i) \(P_S(\hat{x}) \) is nonempty, closed, and convex,

(ii) \(T(P_S(\hat{x})) \subseteq I(P_S(\hat{x})) \subseteq P_S(\hat{x}) \), and

(iii) \(F(I) \cap F(T) \cap P_S(\hat{x}) \neq \emptyset \).

Proof. We follow the arguments used in [1]. Since \(I \) is nonexpansive on \(S_{\hat{x}} \cup \{\hat{x}\} \), (i) follows from Theorem 1.2. Also, we have \(I(P_S(\hat{x})) \subseteq P_S(\hat{x}) \) (again by Theorem 1.2). Let \(y \in T(P_S(\hat{x})) \). Since \(T(S_{\hat{x}}) \subseteq I(S) \) and \(P_S(\hat{x}) \subseteq S_{\hat{x}} \), there exist \(z \in P_S(\hat{x}) \) and \(x_1 \in S \) such that \(y = Tz =Ix_1 \). Further, since \(T \) is \(I \)-nonexpansive on \(S_{\hat{x}} \cup \{\hat{x}\} \) and \(\|Ix - \hat{x}\| = \|x - \hat{x}\| \) for all \(x \in S \), it follows that
\[
\|Ix_1 - \hat{x}\| = \|Tz - T\hat{x}\| \leq \|z - \hat{x}\| = d(\hat{x}, S).
\]

Thus \(x_1 \in C_S(\hat{x}) = P_S(\hat{x}) \) and so (ii) holds.

Clearly, by Theorem 1.2, \(F(I) \cap P_S(\hat{x}) \neq \emptyset \) and so there exists \(p \in P_S(\hat{x}) \) such that \(p \in F(I) \). Hence (iii) follows immediately from Lemma 2.2.

The following theorem contains Theorem 1.3(b) as a special case.

THEOREM 2.4. Let \(I \) and \(T \) be self-mappings of \(X \) with \(\hat{x} \in F(I) \cap F(T) \) and \(S \subseteq \mathcal{S}_0 \) such that \(T(S_{\hat{x}}) \subseteq I(S) \subseteq S \). Suppose that \(I \) is linear and nonexpansive on \(S_{\hat{x}} \), \(\|Ix - \hat{x}\| = \|x - \hat{x}\| \) for all \(x \in S \), \(I \) and \(T \) are commuting on \(S_{\hat{x}} \), \(T \) is \(I \)-nonexpansive on \(S_{\hat{x}} \cup \{\hat{x}\} \), and \(\text{cl}(T(S_{\hat{x}})) \) is compact and convex. Then

(i) \(P_S(\hat{x}) \) is nonempty, closed, and convex,

(ii) \(T(P_S(\hat{x})) \subseteq I(P_S(\hat{x})) \subseteq P_S(\hat{x}) \), and

(iii) \(F(I) \cap F(T) \cap P_S(\hat{x}) \neq \emptyset \).
Proof. We prove only (iii). Let $D_0 = \text{clco}(T(P_s(\hat{x})))$. Then D_0 is convex and compact. Consequently, $D_1 = I(D_0)$ is convex and compact. Also

$I(D_0) \subset \text{clco}(IT(P_s(\hat{x}))) = \text{clco}(TI(P_s(\hat{x}))) \subset \text{clco}(T(P_s(\hat{x}))) = D_0$.

This shows that $I(D_1) \subset D_1$. By Theorem 4 of [4], I have a fixed point $q \in D_1 \subset P_s(\hat{x})$. Hence (iii) follows from Lemma 2.2.

Remark. (1) In Theorem 2.3, $cl(I(S))$ is convex because $S_\delta \in S$ and I is linear.

(2) In Theorem 2.4, the assumption “$cl(T(S))$ is convex” may be replaced by any condition that guarantees that $\text{clco}(T(P_s(\hat{x})))$ is compact. For example, if X is a Banach space then $\text{clco}(T(P_s(\hat{x})))$ is compact by Mazur’s theorem [3, p. 416]. In this case, Theorem 2.4 provides a positive answer to Al-Thagafi’s open question [1, p. 323]. For details, we refer the reader to [9].

Question. Does Theorem 2.4 hold if the commutativity is replaced by R-subweak commutativity?

Acknowledgment

The author is grateful to the referee for making good suggestions which improved this paper.

References