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Abstract 

An overview of the nature of convection-diffusion problems and of the use of finite volume methods in their solution is 
given. 
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1. Convection-diffusion problems 

The simplest mathematical model  of a convection-diffusion problem is a two-point  boundary  
value problem of the following form: 

- gu"(x)  + a ( x ) u ' ( x )  ---f(x) for 0 < x < 1 (1) 

with u(O) and u(1) given, where e is a small positive parameter and a and f a r e  known functions. 
Here the term u" corresponds to diffusion, u' represents convection, whi le f i s  a driving term. If the 
coefficient e of u" is small compared with the coefficient a(" ) of u', then problem (1) is said to be of 
convection-diffusion type. 

Example 1. Suppose that 

- eu" (x )  + u ' ( x )  = l f o r 0 < x < l  

with u(0) = u(1) = 0 and 0 < e<< 1. 
Clearly 

e -  1/e - -  e - ( 1  -x)/e 

u ( x )  = x + 1 - e -1 / e  = x - e -~1 -x)/~ + O(e -1 /~) .  

(2) 

(3) 
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These three terms have the following interpretations.  The first is the solution of the initial value 
problem 

v'(x) = 1 on (0, 1) subject to v(0) = 0. (4) 

(This problem is obtained by formally setting e equal to zero in (2) and taking one of the original 
boundary  conditions.) The second term in (3) has a negligible influence on the solution when x is 
not  near 1 (recall that  e is positive and small). It is essentially a correction to the solution of (4) 
which is required in order  that  the other boundary  condi t ion u(1) = 0 of the original problem be 
satisfied. The last term in (3) is of negligible size. 

Thus  from (3) we can see that  a graph of u = u(x) will closely approximate  the straight line u = x 
on almost  all of [0, 1). When  x approaches  1, the graph (while, of course, remaining continuous)  
suddenly departs from this straight line and plunges downwards  to satisfy the condi t ion u(1) = 0. 
We say that  the graph has a boundary layer at x = 1. 

We summarize  this behaviour  as follows. Except on a narrow region near one of the boundaries,  
the solut ion of the original boundary  value problem closely approximates  the solution of an 
associated initial value problem. 

In two dimensions the si tuation is similar, as we now explain. 

Example  2. Consider  the second-order  problem 

- eAu + V.(au) = f  on f2, (5) 

where f2 is the unit  square in ~2 and e is a small positive parameter.  We assume that  a = (al, a2), 
with al and a2 smooth  functions that  are positive on ~, and that  feL2(f2) .  

We impose the following fairly general boundary  conditions. Write F for the boundary  of I2 and 
n for the outward-poin t ing  unit  normal  to F. Set 

F_ = { p e r ' :  a . n  < 0 at p} and F+ = { p e r ' :  a . n  > 0 at p}; 

thus F_  consists of the two sides of f2 that  lie on the coordinate  axes. Fol lowing the terminology of 
fluid dynamics,  we call F_  the inflow boundary  and F+ the outflow boundary.  Suppose that  F is 
the union of two disjoint sets, FD and FN, where F_ ___ FD. Our  boundary  condit ions are 

~u 
u = 9  o n F D  and ~nn=h  o n F N ,  

where 9 and h are given well-behaved functions. 
These hypotheses together  imply that  (5) has a unique solution u(x, y). 
It is well-known (see, e.g, [7]) that, except near F+ ~ F o ,  the solution u of (5) is equal (modulo 

a little diffusion) to the solution v of the first-order hyperbolic problem 

V.(av) = f  on f2 (6) 

with initial data  v = 0 on F_.  We call (6) the reduced problem; it is obtained by formally setting 
e = 0 in (5). 
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At F+nFo the function u will have a boundary layer; that is, close to F+AFD the solution 
u changes rapidly in order to satisfy the boundary condition u = g on FD. This is analogous to the 
behaviour of (3). The situation is represented schematically in Fig. 1. We think of the solution as 
propagating or flowing from the inflow boundary F_ across t2 until it nears the Dirichlet outflow 
boundary, where it changes rapidly. 

A discontinuity in the data on F_ will in general cause an internal layer in the solution; this is 
a narrow region, centred on one of the characteristic traces of the first-order hyperbolic problem (6) 
- -  i.e., following the direction of flow - -  in which the solution changes rapidly. That is, the solution 
of the reduced problem (6) is smoothed in this region by the diffusion term present in (5). 

For further examples in two dimensions (and some graphs of solutions) see [2, p. 188]. 

2. F i n i t e  v o l u m e  m e t h o d s  

The name "finite volume method" seems to date from 1979, but versions of these methods appear 
as early as the 1960s. They are widely used by engineers; for example, in the aerospace industry, 
they are the preferred method for the numerical simulation of complex problems such as modelling 
the airflow over an entire aircraft. Useful introductions to the technique are given in [1, 9]. 

The basic strategy of all finite volume methods is to write the differential equation in conserva- 
tive form, integrate it over small regions (called "cells" or "finite volumes"), and convert each such 
integral into an integral over the boundary of the cell by means of Gauss's theorem. 
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More precisely, if the differential equat ion is 

Of(u) + Og(u) _ f  on Q ~ ~2, 
~x ~y 

we part i t ion (2 into a finite number  of cells by means of a grid, then for each cell C set 

ff /=ffcL ox + ey J= c [f(uh)dy-g(uh)dx]" (7) 

Here u is the unknown  solution and we use u h to denote  our discrete computed  solution; h is 
a parameter  which corresponds to the mesh diameter. In two dimensions the cells are usually 
rectangles or at least quadrilaterals. 

Note  how the conservative form of the original equat ion lends itself to an easy application of 
Gauss's theorem. Many  physical models  (e.g., the Navier-Stokes  equations) are of this form. 

The finite volume method  has certain advantages over compet ing methods  such as finite element 
and finite difference methods:  it is conceptually simple, yields a conservative discretization, is easily 
used on nonuni form grids, and facilitates multilevel solution (see [9]). Some disadvantages are that  
its precise implementa t ion  is not universally agreed (see below), and there is a lack of underlying 
theory in the case of convection-diffusion problems (consequently it is sometimes unclear how to 
proceed in complex situations). 

The two main variants of the finite volume method  compute  an approximat ion  of the solution of 
the differential equat ion at the nodes of the grid. In the cell-vertex finite volume method,  these 
nodes are the vertices of the cells, while in the cell-centre variant the nodes are (approximately) at 
the cell centres, as we explain below. 

3. Finite volume methods applied to convection-diffusion problems 

Consider  the problem 

- e A u +  g.(au)=f o n f 2 - ( 0 , 1 )  2 , 
(8) 

u = 0  o n F = O t 2 .  

As in (5), we assume that  a = (al,  a2) with al and a 2 smooth  positive functions, t h a t f ~  L2(O), and 
that  e is a small positive parameter.  

Place a rectangular grid on ~ with sides parallel to the coordinate axes. Let h denote the mesh 
diameter. Our  computed  approximate  solution u h is piecewise bilinear on this grid. We enforce the 
boundary  condi t ion by requiring u h = 0 on F. 

We begin with the cell-centre method. In order to have the nodes of the grid at the centres of cells, 
we introduce a new rectangular grid (the dashed lines in Fig. 2) whose nodes are the cell centres of 
the original grid. We integrate over each new-grid mesh rectangle C (these are the cells of (7)): 

f =  ( - -  d u  n +  V' (auh))= c -- e-~n + uh(a'n)  , (9) 
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where we have now used n as the outward-pointing unit normal to the boundary OC of C. Note  that 
the partial derivatives in the final integral of (9) are well-defined almost everywhere on each OC, as 
OC lies almost entirely in the interiors of the original rectangles. 

The cells of the new mesh omit a narrow strip bordering on F. If we wish to retain the 
conservative property of the basic method, we can choose enlarged cells near F in order to cover all 
of t2, as in Fig. 3. 

If N e u m a n n  boundary condit ions were present in this problem, we would of course no longer 
specify u h on that part of F, and would approximate the Neumann  condition by means of finite 
differencing (see I-9, p. 23]). 

We now move on to the cell-vertex method for (8). Here no new grid is introduced; we simply 
integrate over each cell formed by the original grid. Thus once again we have (9), where the C's are 
now different from before. There is an immediate question of interpretation: since each t3C is 
precisely where the piecewise bilinear solution u h may lose smoothness,  it is not clear what is meant 
by 

fo OUh - ( l o )  
c ~n 
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Fig. 4. 

This integral is handled by some form of averaging. Mackenzie and Morton I-3] assign a value to, 
say, duh/t3X at each node by setting it equal to the average of div(u h, 0) over the diamond-shaped 
region in Fig. 4 (which surrounds the node in question), then applying Gauss's theorem to this 
integral of div(u h, 0), which expresses the average in terms of values of u h. Armed with nodal values 
of the derivatives, we then interpolate to them by piecewise bilinears and can now evaluate (10) 
easily. In I-6], the value of (10) on each face of dC is got by taking the obvious finite difference 
approximation over the parallel faces of the two neighbouring cells. While this approximation is 
simpler than that of 1-3] in the present rectangular case, it is not clear how it should be generalized 
to distorted quadrilateral meshes. 

4. Cell-centre or ceil-vertex? 

Arguments rage to and fro over this vexed question. We shall not take a stand, but merely 
compare the two finite volume variants in several ways. 

For brevity in this section, we write CCM for the cell-centre method and CVM for the cell-vertex 
approach. We shall consider the solution of problem (8) by piecewise bilinear functions on 
a rectangular grid as in Section 3. 

(i) Does the number of unknowns equal the number of equations? For the CCM, yes - -  as each 
unknown is surrounded by a cell which yields a single equation (9). For the CVM, possibly no! 
Suppose that we use the grid of Fig. 5. Its 12 cells will yield 12 equations of the form (9). As u = 0 on 
F, the only unknown values are those at the six interior nodes of the grid. It turns out [3, 5] that the 
correct procedure in this problem is to discard equations corresponding to those cells that are 
adjacent to the outflow boundary F+. This leaves six cells - -  the correct number. 

(ii) How compact is the scheme? This is an important consideration when it comes to solving the 
linear system of discrete equations. For the convection term, the CVM uses four points (the vertices 
of a single cell) while the CCM uses nine (since each new cell in (9) overlaps with four original mesh 
rectangles, all of whose nodes play a part). On the other hand, for the diffusion term, the CVM 
needs 12 points (whether we follow [3] or I-6], each of the four nodes of the cell uses its four 
immediate neighbours) while the CCM works with the same nine points that were used for the 
convection term. 
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While the CVM uses more points overall, iterative solvers may mimic the behaviour of u in 
seeking to follow the convection-driven flow, and then the more compact convection stencil of the 
CVM is helpful. 

(iii) Sensitivity to mesh deformation. As adaptive procedures are often used in convec- 
tion-diffusion problems, deformed meshes are commonplace. Numerical evidence and some 
truncation error analysis indicate that the CVM is more accurate than the CCM on certain 
nonuniform meshes. 

(iv) Parasitic modes and stability. Both CCM and CVM solutions may exhibit nonphysical 
oscillations, which may be triggered by discontinuities in the boundary conditions or changes in 
the local mesh size. Consider the case of pure convection (i.e., e = 0), with a = (1, 1), on a uniform 
square mesh. Then the null space of the discrete CVM operator includes the unwelcome chequer- 
board mode; this oscillation takes the value ( -  1) ~÷j at the node (x~, Yi)- The CCM is worse; it has 
the same chequerboard mode and in addition the two washboard modes given, respectively, by 
( -  1) ~ and ( -  1) ~ at (x~, y~). 

In convection-diffusion problems, the same parasitic modes may occur because the diffusion 
coefficient e is so small. 

Instability must always be guarded against in convection~liffusion problems; conventional 
numerical techniques, whether finite volume or other methods, will often be unstable if applied 
carelessly. Finite difference and finite element methods achieve stability by some form of upwinding; 
this means that difference approximations of the first-order derivatives are not symmetric but are 
biased in the upstream direction (i.e., in the direction of - a). See [7] for a detailed discussion of 
this issue. 

When we discarded certain cells from the CVM in (i) above, we were retaining the cells that lay 
immediately upstream of the nodes where the value of u h was unknown. This strategy is how the 
CVM upwinds. With the CCM, the cells are centred on the nodes, and upwinding is accomplished 
by choosing a quadrature rule that evaluates the convection term in dC integral of (9) in terms of 
the value ofu h at some upstream point(s). This is very similar to finite difference upwinding. See [1, 9-1. 

(v) Analysis. There is extensive numerical experience with finite volume methods, but the 
analysis of such methods for convection-diffusion problems (i.e., proofs of realistic error estimates) 
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has lagged far behind. Much less is known than for finite difference or finite element methods (see 
[7]). 

In [5] the authors analyse the CVM in one dimension and, by reformulating it as a Pet- 
rov-Galerk in  finite element method, prove an energy norm error bound. This result is extended to 
certain problems in two dimensions in [6]. Shishkin [8] has proved a pointwise convergence result 
for the CCM on a special mesh in two dimensions. 
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