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Over the past several years, the study of a hereditary tumor syndrome, tuberous sclerosis complex
(TSC), has shed light on the regulation of cellular proliferation and growth. TSC is an autosomal
dominant disorder that is due to inactivating mutations in TSC1 or TSC2 and characterized by benign
tumors (hamartomas) involving multiple organ systems. The TSC1/2 complex has been found to play
a crucial role in an evolutionarily-conserved signaling pathway that regulates cell growth: the
mTORC1 pathway. This pathway promotes anabolic processes and inhibits catabolic processes in
response to extracellular and intracellular factors. Findings in cancer biology have reinforced the
critical role for TSC1/2 in cell growth and proliferation. In contrast to cancer cells, in the CNS, the
TSC1/2 complex not only regulates cell growth/proliferation, but also orchestrates an intricate and
finely tuned system that has distinctive roles under different conditions, depending on cell type,
stage of development, and subcellular localization. Overall, TSC1/2 signaling in the CNS, via its
multi-faceted roles, contributes to proper neural connectivity. Here, we will review the TSC signaling
in the CNS.
� 2011 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction

TSC is a multisystem disorder, in which 90–95% of the affected
individuals have CNS symptoms or signs. Neurologically, TSC can
manifest with intellectual disability, behavioral abnormalities,
autism spectrum disorders (ASD), and seizures [1]. Epilepsy occurs
in 80–90% of all patients, often with medically refractory seizures.
Close to 45% of patients have mild-to-profound intellectual
disabilities and ASD occurs in up to 50% of patients [1,2]. TSC can
be diagnosed in the pre- or perinatal period [3], and many neuro-
pathological features such as cortical tubers and histological
abnormalities are present by the second trimester in utero indicat-
ing that neurological manifestations of the disease develop during
the embryonic period [4,5]. Clinical signs can be variable with
some individuals within a family having minimal symptoms while
others carrying the same mutation being severely affected.

The neuropathological findings in the brain usually take the
form of (1) subependymal nodules, (2) subependymal giant cell
astrocytomas (SEGA) and (3) cortical tubers [6]. Subependymal
nodules are lesions found along the wall of the lateral ventricles
in the brain. In 5–10% of cases, these benign lesions can grow into
SEGAs that block the circulation of cerebrospinal fluid resulting in
hydrocephalus. Tubers are made up of a collection of abnormally
large neurons and glia and are most commonly found in the
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cerebral cortex. It has been proposed that the presence of cortical
tubers contribute to the severity of the disorder, but studies have
presented conflicting findings on which aspects of the tubers are
most critical indicators. More recent studies indicate that the
tuber volume is a better reflection of the severity of cognitive
impairment than tuber number alone, and also that the location
of the tubers (frontal/occipital/temporal/cerebellar) has differen-
tial associations with comorbid neuropsychiatric disorders [7–9].
Sophisticated analysis of the neuronal function of TSC1/2 genes
in vitro and in animal models has revolutionized our understand-
ing of the disease mechanisms and potential treatment options.

1.1. TSC1 and TSC2 protein complex

TSC1 (on chromosome 9) and TSC2 (on chromosome 16) are tu-
mor suppressor genes that integrate extrinsic and intrinsic signals
of the cellular energy status and growth. Proteins encoded by TSC1
and TSC2 genes, also known as hamartin and tuberin, respectively,
bind to each other to form a GTPase activating protein (GAP) com-
plex that plays a critical role in the regulation of protein synthesis,
controlling cell growth and size [10]. Both proteins are required for
the proper function of the complex, and thus a mutation in either
gene is sufficient to cause the clinical disease. TSC1 is required to
stabilize TSC2 and prevent its degradation. On the other hand,
the functional GAP domain resides in TSC2, making each protein
obligatory for each other’s functional role. In fact, studies in Dro-
sophila have shown that the Tsc1;Tsc2 double mutants phenocopy
either single mutants and that overexpression of both proteins is
lsevier B.V. All rights reserved.
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required to render a gain of function phenotype [11,12]. Nonethe-
less, patients with TSC2 mutations have a worse overall prognosis
than those with TSC1 mutations [13], and the conditional Tsc2
knockout mouse model has a more severe phenotype than the con-
ditional Tsc1 knockout in the same conditional genetic background
[14]. These differences could be due to the fact that the two pro-
teins have additional independent functions. Another possibility
is that, although both TSC1 and TSC2 are subject to ubiquitin-med-
iated degradation if not bound to each other, some enzymatic
activity of TSC2 remains and is able to carry out some of its func-
tion before its degradation. TSC1, which has no such catalytic do-
main, would be ineffective in suppressing mTOR activity on its
own [15]. Investigations into the protein interactors of TSC1/2 have
begun in non-neuronal cell lines [16–18], but the question of
which proteins interact with the TSC1/2 complex in CNS cells –
at different times during development and at different subcellular
locations – has not yet been explored.

The TSC1/2 complex can be regulated post-translationally by
several major signaling pathways in cells: PI3K-Akt, ERK and AMPK
(Fig. 1). The best-characterized function of the TSC1/2 complex is
as a downstream target of the phosphatidylinositol 3-kinase
(PI3K) pathway that becomes activated upon the binding of growth
factors (e.g. IGF or BDNF). Activated PI3K leads to recruitment of
PDK1 and the serine/threonine protein kinase Akt, and subsequent
phosphorylation/activation of Akt by PDK1. Activated Akt nega-
tively regulates TSC by directly phosphorylating TSC2 on five con-
sensus sites on human TSC2 [19–22]. A second kinase that can
phosphorylate and inhibit TSC2 is the extracellular signaling-regu-
lated kinase (ERK) [23]. ERK phosphorylation of TSC2 appears to be
particularly important for EphA-receptor mediated regulation of
TSC2 [24]. Both active Akt and ERK levels are found to be high in
TSC-related cortical tubers and SEGAs, and the inhibition of TSC2
Fig. 1. TSC mediated signaling in the CNS. This cartoon of TSC mediated signaling has b
signaling in the nervous system.
by these kinases has been proposed to represent a post-transla-
tional mechanism that may further amplify the loss of the first al-
lele of the TSC gene [23,25]. In addition, AMP-activated protein
kinase (AMPK) can phosphorylate TSC2 on a different set of resi-
dues than Akt and ERK and potentially increase the ability of
TSC1/2 to inhibit the mTORC1 activity, thereby protecting cells
from excessive energy use during low energy states [26,27]. TSC1
is also negatively regulated by IKK-beta, which physically interacts
with and phophorylates TSC1 at its Ser487 and Ser511 residues in
response to inflammatory pathway activation [28]. Because
TSC1:TSC2 functions as a dimer, regulation of either protein most
likely affects its overall activity level. However, relatively little is
known about the post-translational modifications affecting the
TSC1 protein and the hierarchy of the regulatory modification on
the TSC1/2 complex, particularly those involving AMPK and IKK.
Furthermore, none of these post-translational modifications ap-
pear to affect the GAP activity of TSC2 per se, but they somehow
affect the ability of the TSC1/2 complex to act as a Rheb-GAP in
cells. Whether this effect is due to changes in subcellular localiza-
tion or other cellular mechanisms are not yet clear.

1.2. Downstream of TSC: mTORC1 and 2

When active, TSC2 inhibits Ras family GTPase Rheb by stimulat-
ing the conversion of Rheb-GTP to Rheb-GDP. Downstream targets
of Rheb include the serine–threonine kinase mammalian target of
rapamycin (mTOR), a central regulator of protein synthesis. mTOR
kinase exists in two distinct functional complexes, mTOR Complex
1 and mTOR Complex 2, defined by two groups of binding partners
(Fig. 1). mTORC1 is comprised of the core essential components
Raptor and LST8, while mTORC2 contains Rictor, LST8, and SIN1.
mTORC1 is bound strongly and is quickly inhibited by rapamycin,
een simplified to highlight the demonstrated biologic roles for TSC mediated mTOR
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while mTORC2 inhibition requires prolonged rapamycin treat-
ment, which blocks mTORC2 assembly [29]. However, rapamycin
does not fully inhibit mTORC1 function, with some downstream
targets being more sensitive than others [30]. mTORC1 phosphor-
ylates and activates ribosomal S6 kinases (S6K1 and S6K2) and
inhibits the translational regulator 4E-BP1 – both events that pos-
itively regulate translation of 5’capped mRNAs. mTORC1 phosphor-
ylates S6K1 on Thr389, resulting in phosphorylation of its
downstream effectors that increase mRNA translation [31]. Activa-
tion of S6Ks leads to phosphorylation of ribosomal protein S6, elon-
gation factor 2 kinase (eEF-2K), programmed cell death protein 4
(PDCD4), and eIF4B, all of which result in increased protein synthe-
sis [32–35]. Unphosphorylated 4E-BP1 is bound to eukaryotic initi-
ation factor 4E (eIF4E), inhibiting its association with the eIF-4F
cap-binding complex, thereby blocking translation initiation [36].
When phosphorylated by mTORC1, 4E-BP1 dissociates from the
eIF4E complex, initiating mRNA translation [37,38]. Thus, without
the functional TSC complex, mTORC1 is hyperactive, resulting in
constitutively phosphorylated S6 protein, disinhibited protein syn-
thesis, and subsequent cell growth [39,40]. As a central regulator of
cell growth, mTORC1 is sensitive to nutrient and redox states of the
cells, and more recently has been shown to be specifically respon-
sive to amino acids through a not yet well defined pathway involv-
ing the Rag GTPases [41–43]. The presence of amino acids
somehow alters the nucleotide-bound state of a heterodimeric
Rag complex at lysosomal membranes, and this creates a docking
site for mTORC1 [42]. Once at the lysosomal membrane, mTORC1
encounters Rheb, but it is not yet clear how or if Rheb is targeted
to the same endomembranes as mTORC1 and Rag proteins.
Whether neuronal mTORC1 has specific function at the lysosome
has yet to be investigated, and it would be interesting to find out
other cellular localization sites of TSC1/2 and mTORC1 and their
relevance to the function of this signaling pathway.

Our understanding of mTORC2 is nascent when compared to
mTORC1 (especially in the CNS), but it is emerging as a critical
component of the PI3K/mTOR pathway. While TSC1/2 negatively
regulates mTORC1, it promotes mTORC2 activity in a Rheb-inde-
pendent manner that might involve the direct binding of the
TSC1/2 complex to components of the mTORC2 complex [44–46]
Once active, mTORC2 phosphorylates and activates AKT, leading
to phosphorylation of its downstream effectors including TSC2
[47]. There also appears to be crosstalk between mTORC1 and
mTORC2, as S6K1 phosphorylates and inhibits Rictor [48]. Interest-
ingly, loss of the TSC1 or TSC2 leads to a unique cellular scenerio in
which mTORC1 is activated and mTORC2 is attenuated. An impor-
tant implication of these findings is that the ideal treatment for
loss of TSC1/2 may require not only mTORC1 inhibition but also
mTORC2 activation. As most of these initial studies were per-
formed in non-neuronal cells, it has yet to be seen whether the
pathway is conserved in the CNS and how the intricate balance be-
tween the two mTOR complexes affects neuronal function. Studies
in the last few years have begun to shed light on the role of these
proteins in several aspects of neural development and function,
and it is becoming clear that TSC1/2 protein complex is a master
regulator of neuronal connectivity.
2. Roles of TSC complex in neuronal development and function

2.1. Axon specification

In the CNS, almost all neurons have a single axon and multiple
dendrites. Establishing this unique polarized structure is critical for
proper function and directionality of the flow of information with-
in the CNS. Interestingly, TSC pathway components are expressed
in neurons in a polarized manner [49–51]. Overexpression of
Tsc1 and Tsc2 suppresses axon formation while loss of Tsc1 or
Tsc2 function leads to increased axon number [49]. This critical
function of TSC1/2 appears to be related to its ability to regulate
levels of a number of proteins such as SAD-A, a kinase required
for axon formation in the mouse brain. When TSC is non-func-
tional, SAD-A proteins levels are increased in neurons in an
mTOR-dependent manner [49]. Other proteins that are regulated
by TSC/mTORC1 include CRMP2, Tau1 and Rap1B, all of which
can play a role in neuronal polarity [50,51]. There are likely to be
other neurite proteins whose expression is regulated by TSC, and
the full repertoire of proteins regulated by TSC/mTORC1 in neurites
remains to be identified.

2.2. Axon guidance

One of the most critical steps in neural development is the for-
mation of precise neuronal networks. Importantly, there is growing
appreciation of the role of protein translation in axons as a crucial
substrate of axonal development. Axons have long been thought to
lack active translation as rough ER and polyribosomes are hardly
detectable in mammalian axons. However, axons severed from
their soma can synthesize proteins readily [52–54] and many func-
tional aspects of the axonal growth cone involve local mRNA trans-
lation. It is possible that monoribosome or other functional analogs
can be used to synthesize proteins in axons [55]. Using either com-
partmentalized culture systems or direct laser capture of axons, re-
cent studies have revealed that hundreds of mRNAs are present in
axons [56,57]. Blockade of local translation not only affects growth
cone collapse and turning in culture systems but also impairs nor-
mal axon guidance, circuit development and regeneration [24,58–
60]. Indeed, Sema3A-induced growth cone collapse, which requires
local translation of RhoA, is blocked by rapamycin treatment [61].
Many other guidance cues, including netrin-1, slit1, ephrins, regu-
late axonal protein synthesis through either ERK- and/or mTOR-
dependent pathways [24,62,63].

One of the first pieces of evidence for aberrant axon guidance in
TSC-deficient neurons came from Drosophila. The investigators
showed that increases and decreases in TOR signaling via Rheb cor-
related, respectively with changes in synaptic overgrowth and
reduction [64]. Additionally, mutant photoreceptor neurons lack-
ing Tsc1 formed disorganized lamina plexus and aberrant projec-
tions into the medulla [64]. More detailed molecular study done
using a Tsc2 heterozygous mouse model has shown that haploin-
sufficiency of Tsc is sufficient to produce aberrant neuronal projec-
tions. Axons of retinal ganglion cells find their synaptic targets in
the lateral geniculate nucleus of the thalamus by interacting with
a group of repulsive axon guidance molecules called ephrins,
which bind to cell surface receptors called Eph receptors. Tsc2 het-
erozygous axons display abnormal growth cone collapse in re-
sponse to ephrins [24]. Therefore, abnormal collapse of these
structures in Tsc haploinsufficient neurons and subsequent incor-
rect projections into the thalamus show the intimate interweaving
of the TSC pathway with Ephrin/Eph pathway, which may play a
similar role in other axon projections.

2.3. Synapse formation and function

It has long been recognized that neuronal soma size and den-
dritic growth positively correlate with innervation and the release
of trophic factors. In particular, BDNF is reported to be involved in
regulating dendritic complexity and soma size [65]. However, the
signaling cascades mediating the effects of such trophic factors
are not well understood. Recently, several groups have reported
that the PI3K/Akt/mTOR pathway regulates soma size, dendritic
arborization and spine morphogenesis [66–68]. Activation of
PI3K and Akt both increased cell size and dendritic complexity



976 J.M. Han, M. Sahin / FEBS Letters 585 (2011) 973–980
while inhibition of endogenous PI3K and Akt decreased cell size
and dendritic branching [66,67]. These effects appear to be medi-
ated through mTOR, as treatment with rapamycin or mTOR RNAi
decreased dendritic branching [66,67]. Interestingly, Tsc1 or Tsc2
loss increased spine length and head width and decreased the den-
sity of dendritic spines in hippocampal slice cultures [68]. Similar
decrease in spine density was observed in Tsc1 null neurons
in vivo [69].

In addition to structural changes in dendrites, the mTOR path-
way is reported to play a role in post-synaptic AMPA receptor
expression [70]. In Tsc1 deficient hippocampal neurons, the
AMPA/NMDA receptor current ratio was significantly increased
relative to that in controls, suggesting an aberrant relative
enhancement of synaptic AMPA receptors [68]. In wild-type neu-
rons, the effect of mTOR activation on spine formation appears to
be immediate in induction of synapse associated proteins Arc, syn-
apsin I, PSD95, and GluR1 [71]. In this study, the investigators used
antidepressant ketamine to activate mTOR, which led to increased
spine density and increased EPSCs in response to 5-HT in prefrontal
cortical neurons [71]. Although the exact mechanism of how the
NMDA receptor antagonist ketamine regulates mTOR activation
is unclear, it requires ERK and/or Akt, suggesting that TSC is possi-
bly involved as well. Finally, staining of cortical tubers from TSC
patients has indicated a decrease in GluR2 and NR2A staining in
giant cells and dysplastic neuron cell bodies [72]. Whether these
changes also reflect a reduction in cell surface GluR2 and NR2A
expression and the mechanisms leading to these changes are not
yet clear. Together, the pre- and post-synaptic roles that the TSC/
mTOR pathway plays strongly indicate that abnormalities in this
pathway are likely to result in defects in synapse formation, elim-
ination and plasticity, likely correlating with the neurological and
developmental symptoms of TSC disease.

2.4. Axon regeneration

Regeneration potential of CNS axons following injury has been
limited at best. CNS axon regeneration research has focused on
inhibitory factors that have thwarted successful outgrowth of the
axons, but recently the TSC/mTOR pathway has emerged as a crit-
ical intrinsic modulator of the axon’s potential to regenerate after
injury. PI3K/AKT pathway is one of the major intracellular re-
sponses to neurotrophin regulated axon outgrowth and inhibition
of this pathway in neurons reduces the axon growth that occurs in
response to growth factor stimulation [73,74]. This intrinsic out-
growth signal may become diminished in adult neurons after
development has been completed and cannot be reactivated
post-injury. In fact, embryonic neurons display strong mTOR activ-
ity that then diminishes in adult neurons, and the remaining mTOR
activity in adult neurons is further suppressed by axonal injury
through a yet unknown negative regulator [75]. Consequently,
upon conditional deletion of PTEN or Tsc1 in retinal ganglion cells
(RGCs), with resulting mTOR activation, crushed axons exhibit ro-
bust long distance regeneration and increased cell survival [75].
This regenerative potential is not unique to the optic nerve, and
PTEN deletion is also able to enhance sprouting and outgrowth of
corticospinal neurons following spinal cord injury, ultimately
reforming presynaptic structures [76]. Since PTEN deletion facili-
tates the regenerated axons’ ability to grow slightly more robustly
than those lacking Tsc1, it is possible that there are other PTEN reg-
ulated targets such as GSK-3b that promote other necessary axon
growth functions such as microtubule assembly [77]. It was more
recently shown that intraocular inflammation induced oncomodu-
lin and elevation in intracellular cAMP levels, in combination with
PTEN deletion, are complementary in bolstering the long-distance
axon regeneration, showing the necessity for activation of parallel
injury response pathways for more extensive regrowth [78].
Nonetheless, the most critical component of the axon regeneration
appears to be mTORC1 dependent, probably because of its ability
to promote overall protein translation. Whether the regenerated
axons find the correct target and form functional synapses has
yet to be investigated, but the current knowledge of mTORC1’s role
in these processes predicts that a more precise and coordinated
type of modulation of mTORC1 activity may prove necessary dur-
ing the regeneration process rather than a complete hyperactiva-
tion by PTEN suppression.

2.5. Cellular stress

One of the critical homeostatic mechanisms that cells have
evolved against intracellular stress is Unfolded Protein Response
(UPR). In normal neurons, prolonged chemical induction of ER
stress leads to inhibition of the mTOR pathway. Inhibition of
PI3K pathway results in increased cleaved caspase-3, reflecting
activation of the apoptotic pathway, similar to the recently demon-
strated data with Tsc2-deficient cells [79,80]. Tsc loss results in
mTOR dependent ER stress response at baseline, and upon treat-
ment with stress-inducing agents such as thapsigargin, the Tsc2-
deficient cells exhibit a lowered threshold for induction of UPR-
regulated genes and mitochondrial cell death pathways. More
importantly, the lack of Tsc activity leads to increased expression
of the pro-apoptotic transcription factor CHOP (C/EBP homologous
protein), production of reactive oxygen species (ROS), and suscep-
tibility to apoptosis. Immunohistochemical analysis on human TSC
brain sections demonstrate similar upregulation in CHOP and
heme oxygenase (HO-1), suggesting that heightened ER stress
could lead to selective vulnerability of TSC-deficient neurons to
extrinsic insults such as seizures, hypoxia, and environmental tox-
ins. Given the reproducibility across cells types on which these
studies were performed (neurons, MEFs, kidney cells), it is likely
that other CNS cells such as astrocytes and oligodendrocytes would
also be susceptible to the damage.

Another cellular response regulated by mTOR is autophagy.
Autophagy is an evolutionarily conserved ‘‘self-eating’’ mechanism
responsible for the removal of long-lived proteins and damaged
organelles by the lysosome. During autophagy, double-membrane
autophagosomes sequester intracellular components and then fuse
with lysosomes to form autolysosomes in which cargo is degraded.
Under growth stimulating conditions, mTOR signaling is activated,
which results in inhibition of autophagy. Under starvation condi-
tions, mTOR is inhibited, leading to induction of autophagy. After
prolonged starvation, mTOR is reactivated, which reduces autoph-
agy and results in the formation of tubules and vesicles thereby
restoring lysosome numbers in the cell [81]. Both ER stress [82]
and oxidative stress [83] appear to induce autophagy through the
TSC/mTOR pathway. As most of these studies were performed in
non-neuronal cells, further studies will be needed to investigate
whether TSC1/2 plays similar roles in regulating neuronal
autophagy.
3. CNS mouse models of TSC

3.1. Heterozygous models

There are several mouse models of TSC, and although none
manifest the full complement of the CNS phenotype in humans –
cortical tubers, subependymal nodules or SEGAs – each has
provided valuable insight. The first heterozygous mouse models
of TSC established that haploinsufficiency of either Tsc1 or Tsc2
causes neurocognitive deficits such as impaired hippocampal-
dependent learning, social behavior, synaptic plasticity, learning
and memory [84,85]. Tsc2 heterozygous mice also exhibit
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abnormal mother–pup interaction as measured by ultrasonic
vocalizations (USV), establishing these mice as potential models
of autism [86]. These neuropsychiatric abnormalities are present
without obvious concomitant neuropathological alterations,
prompting more rigorous investigation of subtle molecular and
circuitry level changes. Heterozygous models display no clear ana-
tomic abnormality under pathologic evaluation, although Tsc2+/�

neurons do display abnormal axon guidance [24], providing
further support for the hypothesis that abnormal neuronal connec-
tivity may underlie the neurological symptoms in TSC disease.

3.2. Neuron-specific models of TSC

Neuron-specific knockout of Tsc1 in postmitotic neurons has
been generated using Cre recombinase under the Synapsin-1 pro-
moter (SynI-Cre) [87]. Tsc1flox/flox;SynICre mice are viable perina-
tally, but develop tremor and hyperactivity beginning the second
week of life and die starting approximately 4–6 weeks postnatally.
These mice exhibit several neuropathological abnormalities similar
to those seen in TSC patients including enlarged dysplastic neurons
throughout the cortex, hippocampus, and other subcortical grey
matter regions as well as spontaneous seizure episodes. mTORC1
inhibitor treatment has reversed some neuroanatomical abnormal-
ities associated with clinical TSC including reduction in neuron size
and improvements in biochemical/signaling profiles, as well as
clinical improvements in body weight, clasping behavior, tremor,
seizures and kyphosis [39]. Furthermore, when animals are taken
off treatment, myelination and other clinical improvements
remained intact for at least two more weeks, indicating that
regulation of neuronal mTORC1 is critical not only during neurode-
velopment but also for long term maintenance of neuronal
function.

Deletion of Tsc2 from radial glial precursors cells using hGFAP-
Cre transgenic mice results in lamination defects, cortical
enlargement, astrogliosis as well as myelination defects [88].
Tsc2flox/flox;hGFAP-Cre mice exhibited severe compromise in survival
and profound seizure episodes, suggesting again that cortical
tubers are not necessary for the observed phenotypes.

3.3. Astrocyte-specific model of TSC

Another important observation made from Tsc1+/� and Tsc2+/�

mice was the increase in the numbers of astrocytes [89]. As homo-
zygous loss of Tsc1 or Tsc2 results in prenatal death, Gutmann and
colleagues generated Tsc1flox/flox;GFAP-Cre mice to specifically inacti-
vate Tsc1 in astrocytes in order to study the impact of the complete
loss of Tsc in these cell types [90]. Tsc1flox/flox;GFAP-Cre mice demon-
strated up to a six-fold increase in GFAP-immunoreactive cells and
subsequent enlargement of some cortical regions such as the hippo-
campus accompanied by alterations in neuronal organization [90].
Additionally, these mice developed electroencephalographically
confirmed seizures by two months of age, but they failed to mimic
additional manifestations of TSC such as cortical tubers or cortical
lamination defects. The neuropathological phenotypes in these
mice were mTORC1-dependent and treatable, as rapamycin treat-
ment prevented development of progressive astrogliosis, abnormal
neuronal organization, development of epilepsy and premature
death in these mice [91]. Epileptogenesis in these mice was attrib-
uted to the increases in extracellular glutamate levels due to
decreased astrocytic GLT-1 and GLAST glutamate transporters,
and treatment with ceftriaxone to increase the transporter expres-
sions in presymptomatic mice decreased excitotoxic neuronal death
and severity of epilepsy [92,93]. Interestingly, when the mice were
treated after the onset of seizures, ceftriaxone treatment and
subsequent increase in glutamate transporter expression failed to
have an effect on seizures, alluding to the importance of early
treatments to prevent permanent neuropathological changes [93].
Furthermore, there may be other astrocytic dysfunction or even
embryologic/perinatal alterations arising from TSC-deficiency that
may contribute to the seizures given that even the early postnatal
treatments did not prevent the seizures completely. Therefore, the
exact changes in the neuropathology and the critical time of
intervention to effectively prevent seizures require further
investigation.

3.4. Role of TSC in oligodendrocytes

Much of the focus in the field has been on astrocytes and neu-
rons, perhaps because of their direct contributions to epilepsy
and tuber formation. Nonetheless, the correlation between the
severity of cognitive impairments and degree of hypomyelination
has brought to surface that the TSC/mTOR pathway is also critical
in development and function of oligodendrocytes. Myelination def-
icits are commonly observed in the TSC brain, both focally within
tubers and more diffusely [94–96]. Focal white matter deficits
are frequently in the subcortical region underlying tubers, high-
lighted by ectopic neurons, loss of axons, giant cells, and large
astrocytes. More diffusely, this congenital defect persists through-
out adulthood, infiltrating numerous major intrahemispheric tracts
bilaterally causing approximately 15% reduction in white matter
volume [97]. Furthermore, diffusion tensor imaging studies indi-
cate that TSC patients have occult damage in the normal appearing
white matter and that this damage may contribute to neurocogni-
tive disability in these patients [96,98–100]. Despite its signifi-
cance, it has been unclear whether the defect in myelination is
cell-autonomous due to loss of TSC function in oligodendrocytes
or indirectly due to TSC-deficient neuronal dysfunction.

OLs proliferate, differentiate, and myelinate in independently
controlled events that require specific extrinsic cues for each stage
of their development. Of these, neuron-synthesized insulin-like
growth factor-1 (IGF-1) has been shown to affect all three aspects
of OL development [101,102]. Interaction of IGF-1 with IGF-1R on
OLs result in rapid transcription and de novo protein synthesis in
the OLs through PI3K/Akt, mTOR, and MEK/ERK pathway activation
as shown by respective pharmacological inhibition of each path-
way component [103]. mTOR activation is required for the termi-
nal differentiation of the oligodendorcyte precursor cells (OPCs)
by enabling intrinsic mechanisms to acquire OL-specific gene
expression [104]. Interestingly, mTORC1 and mTORC2 appear to
have distinct temporal roles in the process; mTORC1 targets
P70S6K1 and 4E-BP for phosphorylation at the onset of OPC differ-
entiation while mTORC2 substrate Akt Ser473 phosphorylation
was sustained through latter stages of differentiation [104]. Addi-
tionally, other recent studies have shown that hyperactivation of
the pathway in OL lineage cells either by selective deletion of PTEN
(Olig2-cre, Ptenfl/fl) or constitutive overexpression of Akt (PLP-Akt-
DD) both result in mTOR-dependent hypermyelination [105,106].
PI3K/mTOR pathway appears to regulate myelination by modulat-
ing the amount of protein translation; however, this process seems
to be limited to the developmental period, as Olig2-cre, Ptenfl/fl mice
did not exhibit greater remyelination following lysolecithin
induced demyelination [105].

Despite their lack of complete demonstration of the human TSC
phenotype, each animal model generated has given valuable
insight into the function of the TSC/mTOR pathway in each cell
type. Since in the CNS, each neuronal and glial cell type has
different functions, it is likely that TSC1/2 play a number of roles
in the development and function of each of these cell types.
Conditional and inducible knockout of Tsc1 and Tsc2 in specific cell
types and developmental periods is likely to provide important
insights into the CNS biology as well as the pathogenesis of TSC
disease.
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3.5. TSC-related diseases

Findings from TSC may also have implications for other condi-
tions in which mTORC1 is hyperactive. Such conditions include ge-
netic diseases such as Neurofibromatosis type 1 (NF1), Fragile X
Syndrome (FXS), and PTEN hamartoma syndrome, all of which
have been associated with ASDs, behavioral dysregulation, or intel-
lectual disability. In addition, there is evidence of mTORC1 activa-
tion in focal cortical dysplasias [107] and gangliogliomas [108].

NF1 occurs due to loss-of-function mutations in the NF1 tumor
suppressor gene. The NF1-encoded protein, neurofibromin, func-
tions as a Ras-GTPase activating protein (RasGAP). In both NF1-
deficient primary cells and human tumors, both ras and mTOR
are hyperactivated. In fact, the activation of mTORC1 is dependent
on endogenous ras activity in these cells [109]. Furthermore,
mTORC1 activity is essential for NF1-associated tumorigenesis
[110]. These data suggest that mTOR inhibitors may represent a
viable therapy for NF1-related malignancies.

FXS is the most common form of inherited intellectual disability
and a leading genetic cause of autism [111]. Accumulating evidence
over the last few years indicates that TSC and FMRP pathways inter-
act and share several common signaling components. However,
precisely how they interact remains an open question. On the one
hand, FMRP can be phosphorylated by S6K1, an enzyme down-
stream of TSC [112]. On the other hand, mTORC1 is hyperactive in
Fmr1 knockout neurons [113], and FMRP-deficient cells display in-
creased activity of PI3K, an enzyme upstream of TSC proteins [114].
These findings have led to the hypothesis that hyperactive PI3K/
mTORC1 signaling is pathogenic in FXS [113,115,116]. These impor-
tant similarities and differences between the two genetic diseases
justify further systematic analysis of these conditions using mouse
models.

The pathways regulating TSC function have been also impli-
cated in childhood neurological problems, particularly autism.
PTEN mutations have been detected in a subset of patients with
autism and macrocephaly [117]. Furthermore, when the PTEN gene
is deleted in subsets of differentiated neurons in the cerebral cor-
tex and hippocampus, mutant mice show a profound decrease in
social interaction and nesting [118]. At a cellular level, PTEN null
axonal processes are more exuberant and project to a broader area
compared to axons in wild-type mice. Taken together, these results
suggest that PTEN inactivation in differentiated neurons is associ-
ated with increased axonal growth, ectopic axonal projections, and
autistic-like behavior in mice. Importantly, rapamycin treatment
blocks the anatomical, cellular, and behavioral abnormalities in
these knock-out mice.
4. Future directions

Emerging evidence – from abnormal white matter on neuroim-
aging of TSC patients to deficits in axonal integrity in animal mod-
els – supports the hypothesis that TSC1/2 proteins play crucial
roles in neuronal connectivity. In past 20 years since the identifica-
tion of genetic cause of TSC disease, staggering insights into basic
cell biology as well as targeted therapies have been made. Based
on clinical trials [119], the U.S. Food and Drug Administration
has approved an mTOR inhibitor everolimus in November 2010
for treatment of SEGAs in TSC patients, who are not candidates
for surgical resection. At the same time, there is growing evidence
that TSC and rheb may have mTORC1-independent functions
[120,121]. As we experimentally dissect the TSC/mTOR pathway
using more precise genetic tools, the crucial role of this pathway
in multiple areas of neural development and function is becoming
clear. To accelerate this progress, it will be important to generate
animal models that more closely replicate human disease. Major
gaps in our knowledge include: (1) the genetic and non-genetic
modifiers of TSC disease that account for the remarkable variability
of expression within the human population; (2) cell type and sub-
cellular location specific roles of TSC1/2 and their effectors; (3)
mTORC1-independent aspects of TSC regulation of neuronal func-
tion; (4) the interplay between the different neurological symp-
toms of TSC disease (epilepsy, autism etc); (5) the relationship
between neuronal energetics and the TSC/mTOR pathway. Studies
that address such questions will shed light on the interaction be-
tween TSC1/2 genes, environment, and neurodevelopment.
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