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Abstract

Let D0(n) denote the set of lattice paths in the xy-plane that begin at (0,0), terminate at (n; n),
never rise above the line y = x and have step set S = {(k; 0) : k ∈N+} ∪ {(0; k) : k ∈N+}. Let
E0(n) denote the set of lattice paths with step set S that begin at (0,0) and terminate at (n; n).
Using primarily the symbolic method (R. Sedgewick, P. Flajolet, An Introduction to the Analysis
of Algorithms, Addison-Wesley, Reading, MA, 1996) and the Lagrange inversion formula we
study some enumerative problems associated with D0(n) and E0(n).
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

For any positive integer n let C0(n) denote the set of lattice paths in the xy-plane
that:

(i) have step set S(1) = {(1; 0); (0; 1)},
(ii) begin at (0,0) and terminate at (n; n),
(iii) never rise above the line y = x.

It is of course well known that |C0(n)|=[1=(n+1)]( 2n
n ). More generally if n¿ k¿ 0

then the ballot number [(n− k + 1)=(n+ 1)]( n+kk ) counts the lattice paths that begin at
(0,0), terminate at (n; k), never rise above the line y = x and have step set S(1). The
present work originated in an attempt to enumerate the class D0(n) of lattice paths that
satisfy conditions (ii) and (iii) and have step set S={(k; 0) : k ∈N+}∪{(0; k) : k ∈N+}.

E-mail address: coker@cps.gonzaga.edu (C. Coker).

0012-365X/03/$ - see front matter c© 2003 Elsevier B.V. All rights reserved.
doi:10.1016/S0012-365X(03)00037-2

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82292598?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:coker@cps.gonzaga.edu


14 C. Coker / Discrete Mathematics 271 (2003) 13–28

Given a subset S of N × N we deEne a (lattice) path with step set S to be a
Enite sequence � = s1s2 · · · sk where si ∈ S for all i. Suppose si = (pi; qi) for each
i = 1; 2; : : : ; k. If � begins at (p0; q0) then � passes sequentially through the lattice
points (p0; q0), (p0 +p1; q0 + q1), (p0 +p1 +p2; q0 + q1 + q2), and so on, terminating
at (p; q) where p=

∑k
i=0 pi and q=

∑k
i=0 qi. By an underdiagonal path we mean a

path in the xy-plane that begins at (0,0) and never rises above the line y = x.
For integers n¿ r¿ 0 let dn;r denote the number of underdiagonal paths that termi-

nate at (n; r) and have step set S={(k; 0) : k ∈N+}∪{(0; k) : k ∈N+}. For any integer
k¿ 0 we denote by Dk the set of all underdiagonal paths that terminate on the line
x − y = k and have step set S. We deEne Dk(t) =

∑
n¿k dn;n−k tn.

Here is a summary of the paper’s contents. In Section 2 we enumerate paths in D0.
In Section 3, we present several recurrences for the generating functions Dk(t). One
of these recurrences implies that dk+r; r is divisible by 2k−1 for any integers k ¿ 0
and r¿ 0. We discuss in Section 4 a second enumeration of paths in D0 in terms of
Narayana numbers. Interrupting our study of D0 we present in Section 5 an example
of a class of underdiagonal paths with unrestricted steps. In Section 6 we enumerate
paths in D0 with respect to the number of steps. In Section 7 we brieKy study a second
class of lattice paths with step set S.

2. Enumerating paths in D0

In this section, we enumerate paths in D0 by Erst Ending a functional equation
satisEed by D0. To lend concreteness to the exposition let us calculate dn;n for a few
small values of n. If we set d0;0 = 1 and initially set all other dn;k to zero, then using
the relation dn;k =

∑k−1
j=0 dn;j +

∑n−k
j=1 dn−j; k we can generate recursively the following

partial array d:

dn;k k = 0 1 2 3 4 5 6 7
n= 0 1
1 1 1
2 2 3 5
3 4 8 17 29
4 8 20 50 107 185
5 16 48 136 336 721 1257
6 32 112 352 968 2370 5091 8925
7 64 256 880 2640 7116 17304 37185 65445

Our Erst goal is to enumerate the sets D0(n); their cardinalities appear along the
main diagonal of d. To facilitate our work we introduce another generating function:
for each integer n¿ 1 let LD0(n) denote the set of paths in D0(n) that do not intersect
the line y = x except at(0,0) and (n; n). Paths in LD0(n) are called primitive. We now
deEne LD0(t)=

∑
n¿1

Ldntn where Ldn=| LD0(n)|. Henceforth, we shall often abbreviate dn;n
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by dn. Let J denote the set of nonempty paths in D0 and let J be the corresponding
generating function. Clearly

D0 = 1 + J: (2.1)

We begin with a basic relation between the generating functions D0 and LD0.

Lemma 2.1. The generating functions D0 and LD0 satisfy

LD0 = t + 4t(D0 − 1):

Proof. We verify that
∑

n¿1
Ldntn = t + 4t

∑
n¿1 dnt

n. This is equivalent to showing
that Ldn = 4dn−1 for all n¿ 2. To prove this we note that any path in D0(n− 1), say
� = s1s2s3 · · · sk , gives rise to four paths in LD0(n). In order to construct these four
paths, say �1, �2, �3, �4, let us assume that s1 =(p; 0) for some p¿ 1 and sk =(0; q)
for some q¿ 1. Put s+1 = (p+ 1; 0), s+k = (0; q+ 1), e1 = (1; 0) and e2 = (0; 1). DeEne
�1 = s+1 s2s3 · · · s+k , �2 = s+1 s2s3 · · · ske2, �3 = e1s1s2s3 · · · s+k and �4 = e1s1s2s3 · · · ske2.
Clearly these new paths �i belong to LD0(n).

In this construction every path in LD0(n) arises exactly once from some path in
D0(n− 1), as is easily seen by reversing the process. The result now follows.

By applying (2.1) we can rewrite the statement of Lemma 2.1 in the form

LD0 = t(1 + 4J ): (2.2)

We obtain a further relation between LD0 and J by noting that every path in J decom-
poses uniquely into a path in LD0 followed by a path in D0 (the Erst return decompo-
sition). This immediately implies

J = LD0(1 + J ): (2.3)

Eliminating J from (2.1) and (2.3) gives

D0(1 − LD0) = 1: (2.4)

Eliminating LD0 from (2.2) and (2.3) gives

J = t(1 + 4J )(1 + J ): (2.5)

Eliminating J from (2.1) and (2.5) gives D0 − 1 = tD0[1 + 4(D0 − 1)].
Rearranging terms in this last equation yields

4tD2
0 − (1 + 3t)D0 + 1 = 0; (2.6)

which implies that

dn + 3dn−1 = 4
n−1∑
k=0

dn−k−1dk (2.7)

for all n¿ 1.
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The referee outlined an elegant derivation of (2.5) that subsumes Lemma 2.1; here
are the details. Consider underdiagonal paths with step set S(1)={E; N} where E=(1; 0)
and N = (0; 1). We call the vertex between a pair of consecutive Es a double-east
point and that between a pair of consecutive N s a double-north point. These are the
counterparts of the better-known doublerise and doublefall points [5] of classical Dyck
paths. Assume the double-east and double-north points come in two colors, say red
and blue. Let P0 denote the set of these two-colored underdiagonal paths.

It is easy to see that P0 and D0 are in bijective correspondence.
Furthermore, every nonempty path �∈P0 is the concatenation of a primitive path

E�1N with a path �2. If �1 is nonempty then E�1N has one of the four forms Er�∗rN ,
Er�∗bN , Eb�∗rN and Eb�∗bN , where r and b indicate the colors of the corresponding
double points and �∗ ∈P0. It follows that if we let G denote the generating function
of the paths in P0 then G = 1 + t[4(G − 1) + 1]G; this is equivalent to (2.5) since
J = G − 1.

Let us now enumerate paths in D0.

Theorem 2.2. (a) The generating function D0(t) is given by D0(t) = 1=8t[1 + 3t −
(9t2 − 10t + 1)1=2]. Moreover, for all n¿ 1, dn =

∑n
k=�n=2� [1=(k + 1)]( 2k

k )( k+1
n−k ) ×

(−9)n−k52k−n+1=2n+3.
(b) For all n¿ 1, dn =

∑n
k=1 (1=n)( nk )(

n
k−1 )4

n−k .

(c) For all n¿ 1, dn = (1=4)
∑n

k=0 [1=(n+ 1)]( n+1
k )( 2n−k

n−k )3k .
(d) The generating function LD0(t) is given by LD0(t)=(1=2)[1−3t−(9t2−10t+1)1=2].

Moreover, for all n¿ 2, Ldn=
∑n−1

k=�(n−1)=2� [1=(k+1)]( 2k
k )( k+1

n−k−1 )(−9)n−k−152k−n+2=2n.

(e) For all n¿ 2, Ldn =
∑n−1

k=0 (1=n)( nk )(
2n−k−2
n−k−1 )3k .

Proof. (a) Solving for D0 in (2.6) gives D0(t) = (1=8t)[1 + 3t − (9t2 − 10t + 1)1=2].
Using the binomial theorem to expand (9t2 − 10t + 1)1=2 we End

D0(t) = 1 + t +
∑
n¿2

n∑
k=�n=2�

1
k + 1

(
2k

k

)(
k + 1

n− k

)
(−9)n−k102k−n+1

4k+2 tn:

Thus for all n¿ 2,

dn =
n∑

k=�n=2�

1
k + 1

(
2k

k

)(
k + 1

n− k

)
(−9)n−k52k−n+1

2n+3 :

Notice that this identity also holds for n= 1.
(b) Solving for t in (2.5) gives t= J=(1 + J )(1 + 4J ) =H (J ), say. By the Lagrange

inversion formula [2,12,14] we End [tn]H−1(t) = (1=n)
∑n−1

k=0(
n

n−1−k )(
n
k )4

k . Replacing
the index k by n− k yields

dn = [tn]H−1(t) =
1
n

n∑
k=1

(
n

k − 1

)(
n

n− k

)
4n−k =

n∑
k=1

1
n

(
n

k − 1

)(
n

k

)
4n−k

for all n¿ 1.
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(c) By part (b) we End

dn =
n∑
j=1

1
n

(
n

j

)(
n

j − 1

)
4n−j =

1
4

n−1∑
j=0

1
n

(
n

j + 1

)(
n

j

)
4n−j

=
1
4

n−1∑
j=0

1
n

(
n

j + 1

)(
n

n− j

) n−j∑
k=0

(
n− j

k

)
3k

=
1
4

n∑
k=0

n−k∑
j=0

1
n

(
n

j + 1

)(
n

k

)(
n− k

n− k − j

)
3k

=
1
4

n∑
k=0

1
n

(
n

k

)
3k

n−k∑
j=0

(
n

j + 1

)(
n− k

n− k − j

)
:

By Vandermonde’s convolution formula the inner sum is ( 2n−k
n−k+1)= (2n−k

n−1 ). Thus dn =

(1=4)
∑n

k=0 (1=n)( nk )(
2n−k
n−1 )3k . The result now follows since (1=n)( nk )(

2n−k
n−1 ) = [1=(n +

1)]( n+1
k )( 2n−k

n−k ).
(d) By (2.4) and part (a) we End LD0(t) = 1

2 [1 − 3t − (9t2 − 10t + 1)1=2]. In the
proof of Lemma 2.1 we saw that Ldn = 4dn−1 for all n¿ 2. Consequently part (a)
implies that

Ldn =
n−1∑

k=�(n−1)=2�

1
k + 1

(
2k

k

)(
k + 1

n− k − 1

)
(−9)n−k−152k−n+2

2n

for all n¿ 2.
(e) This follows from part (c) together with the fact that Ldn=4dn−1 for all n¿ 2.

Other representations for dn, for example,

dn =
n−1∑
k=0

1
n

(
n

k

)(
2n− k

n+ 1

)
3k

can easily be found as in the proof of part (c) of Theorem 2.2. In the intervening
months since the initial submission of this manuscript Sulanke [16] and Woan [18]
(see also [19]) independently published enumerations of D0. I thank the referee for
bringing these works to my attention.

3. Recurrences involving Dk(t)

Let c be the inEnite lower triangular array with (n; r)-entry cn;r = [(n− r + 1)=(n+
1)]( n+rn ); here n¿ r¿ 0. And for each integer k¿ 0 let Ck(t)=

∑
n¿k cn;n−k tn be the

generating function for the kth diagonal of c. It is easy to see that Ck = tC0Ck−1 for
all k¿ 1. Iterating this gives Ck =(tC0)kC0 for all k¿ 1. Since tC2

0 =C0−1 it follows
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that Ck = (tC0)k−1(C0 − 1) for all k¿ 1 and Ck = Ck−1 − tCk−2 for all k¿ 2. In this
section, our goal is to End analogous recurrences for the generating functions Dk(t).

Our Erst theorem relates the generating functions D1 and D0.

Theorem 3.1. The generating functions D1 and D0 satisfy D1 = tD0(2D0 − 1).

Proof. Let A be the subset of D1 consisting of those paths that intersect the main
diagonal y= x only at the origin, and let B=D1\A. We claim that any nonempty path
�0 ∈D0 gives rise to two paths in A. To see this suppose �0 = s1s2s3 · · · sk , where, say
s1 = (p; 0) for some p¿ 1. As in the proof of Lemma 2.1 we set s+1 = (p+ 1; 0) and
e1 = (1; 0). Then �1 = e1�0 and �2 = s+1 s2s3 · · · sk are the desired paths. It follows that
if we let t mark path length in the horizontal direction then A has generating function
t + 2t(D0 − 1).

Any path in B decomposes uniquely into a nonempty path �0 ∈D0 followed by a
path �∈A. Therefore, B has generating function (D0−1)[t+2t(D0−1)]. Consequently
D1 has generating function D1=t+2t(D0−1)+(D0−1)[t+2t(D0−1)]=tD0(2D0−1).

An argument similar to that of Theorem 3.1 proves our Erst recurrence for Dk .

Theorem 3.2. Let Dk be the generating function for the kth diagonal of d. Then
Dk = 2tD0Dk−1 for all k¿ 2.

Proof. Let A be the subset of Dk consisting of those paths that intersect the main
diagonal y = x only at the origin, and let B= Dk\A. As in the proof of Theorem 3.1
any path �∈Dk−1 gives rise to two paths in A. Thus A has generating function 2tDk−1.
And any path in B decomposes uniquely into a nonempty path �0 ∈D0 followed by
a path �1 ∈A. Thus, B has generating function (D0 − 1)2tDk−1. Therefore, Dk has
generating function Dk = 2tDk−1 + (D0 − 1)2tDk−1 = 2tD0Dk−1.

Corollary 3.3. For all k¿ 2, Dk = 2k−1(tD0)k(2D0 − 1). In particular every entry on
the kth diagonal of d is divisible by 2k−1 = dk;0.

Proof. Iterating the result in Theorem 3.2 gives Dk =(2tD0)k−1D1. From Theorem 3.1
we thus obtain Dk =(2tD0)k−1tD0(2D0 − 1)=2k−1(tD0)k(2D0 − 1). In particular every
entry on the kth diagonal of d is divisible by 2k−1 = dk;0.

From (2.6) and Theorem 3.1 it follows that

2D1 = −1 + (1 + t)D0: (3.1)

We can in turn use (3.1) to derive an expression for D2. We begin by applying
Theorem 3.2 to write D2 = tD0 · 2D1 = tD0[ − 1 + (1 + t)D0] = t(1 + t)D2

0 − tD0.
Therefore 2D2 =(1+ t)2tD2

0−2tD0 =(1+ t)(tD0 +D1)−2tD0 =2D1 +(t−1)(tD0 +D1),
that is,

2D2 = 2D1 + (t − 1)(tD0 + D1): (3.2)

Eq. (3.2) is a special case of the following result.
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Theorem 3.4. Let Dk be the generating function for the kth diagonal of d. Then
2Dk = 2Dk−1 + (t − 1)

∑k−1
i=0 tk−i−1Di for all k¿ 2.

Proof. This follows from Theorem 3.1 and Corollary 3.3 by a straightforward but
somewhat lengthy calculation.

The functions Dk satisfy a second-order linear recurrence as given in the next the-
orem. Here again the proof, which is a straightforward calculation based on Theorem
3.1 and Corollary 3.3, is omitted.

Theorem 3.5. Let Dk be the generating function for the kth diagonal of d. Then
2Dk = (1 + 3t)Dk−1 − 2tDk−2 for all k¿ 3.

4. Enumerating paths in D0 in terms of Narayana numbers

We begin this section with what seems a natural proof of the result in Theorem
2.2(b), that is, dn =

∑n
k=1 (1=n)( nk )(

n
k−1 )4

n−k . We proceed by Erst classifying each lat-
tice path according to the number of its horizontal and vertical segments. This approach
relies on Narayana numbers.

In connection with his work regarding partial orders on integer partitions Narayana
[8] proved that for each k=1; 2; : : : ; n the number of underdiagonal paths that terminate
at (n; n) and have a total of 2k horizontal and vertical segments is given by N (n; k) =
(1=n)( nk )(

n
k−1 ). Suppose � is such a path. DeEne the shape of � denoted by �(�),

to be the underdiagonal path in D0(n) whose steps are the 2k horizontal and vertical
segments of �. We claim there are 4n−k paths �′ in D0(n) satisfying �(�′) = �(�).
To see this, let us assume that � has segments of lengths j1; j2; : : : ; j2k . For each
i = 1; 2; : : : ; 2k there are dji;0 = 2ji−1 distinct ways to construct a segment of length ji
with steps from S. It follows that there are 2j1−12j2−1 · · · 2j2k−1 = 4n−k paths �′ in
D0 satisfying �(�′) = �(�). Thus, for any n¿ 1 the total number of paths in D0(n)
is dn =

∑n
k=1 N (n; k)4n−k =

∑n
k=1 (1=n)( nk )(

n
k−1 )4

n−k .
Let F(x; t) =

∑
n¿1

∑n
k=1 N (n; k)tkxn be the generating function of the Narayana

numbers. Stanley [14, Exercise 6.36] shows that

xF2 + (xt + x − 1)F + xt = 0 (4.1)

and thus

F(x; t) =
1
2x

(1 − x − xt − [(1 − x − xt)2 − 4x2t]1=2): (4.2)

Replacing x by xt and t by t−1 in (4.2) gives F(xt; t−1) = (1=2xt)(1 − x − xt − [(1 −
x− xt)2 − 4x2t]1=2) = t−1F(x; t). DeEning Nn(t) =

∑n
k=1 (1=n)( nk )(

n
k−1 )t

n−k we obtain
F(xt; t−1)=

∑
n¿1 Nn(t)xn. For convenience we set G(x; t)=F(xt; t−1), so that G(x; t)=∑

n¿1 Nn(t)xn. It follows from the preceding remarks that dn =Nn(4) for all n¿ 1.
Therefore, 1 +

∑
n¿1 Nn(4)xn = 1 + F(4x; 4−1) = (1=8x)[1 + 3x − (9x2 − 10x + 1)1=2]

is the generating function for paths in D0, in agreement with Theorem 2.2(a).
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The function G(x; x) has an interesting interpretation: 1 + G(x; x) = (1=2x2)(1 − x +
x2 − [1−2x− x2 −2x3 + x4]1=2) is the generating function for the number of secondary
structures with n vertices; see [14, Exercise 6.43(a)] for deEnitions and references.
From the expansion

1 + G(x; x) = 1 +
∑
n¿1

Nn(x)xn = 1 +
∑
n¿1

�n=2�∑
k=0

1
n− k

(
n− k

k + 1

)(
n− k

k

)
xn

we deduce that the number of secondary structures with n vertices is
∑�n=2�

k=0 [1=(n −
k)]( n−k

k+1 )( n−k
k ). Schmitt and Waterman [11] gave a combinatorial proof of a stronger

result, namely, that (1=k)( n−k
k+1 )( n−k−1

k−1 ) = [1=(n− k)]( n−k
k+1 )( n−k

k ) is the number of sec-
ondary structures with n vertices that have exactly k pairs.

The sequences (Nn(1))n¿1 and (Nn(2))n¿1 are well known. Indeed 1 +
∑

n¿1

Nn(1)xn=1+F(x; 1)=(1=2x)[1−(1−4x)1=2] is the generating function for the Catalan
numbers cn = [1=(n+ 1)]( 2n

n ). And 1 +
∑

n¿1 Nn(2)xn = 1 + F(2x; 2−1) = (1=4x)[1 +
x− (x2 − 6x+ 1)1=2] is the generating function for the number of arbitrary bracketings
(parenthesizations) of a string of length n. The enumeration of such bracketings is
known as SchrModer’s second problem (see [14, Example 6.2.8]). It follows that Nn(2)=
sn is the nth little SchrModer number for all n¿ 1. Stanley [14, Exercise 6.39] provides
a wealth of combinatorial interpretations for sn.

The polynomials Nn(t)=
∑n

k=1 (1=n)( nk )(
n

k−1 )t
n−k have an additional representation

that is worth noting. To derive it we Erst observe that (4.1) entails

xtG2 + x(1 + t)G + x = G; (4.3)

a functional equation which appears in [9]. Solving for x gives x = G=(1 + G)(1 +
tG) = H (G), say. Applying the Lagrange inversion formula we End

[xn]H−1(x) =
�(n−1)=2�∑

k=0

1
k + 1

(
2k

k

)(
n− 1

2k

)
tk(1 + t)n−1−2k :

This implies that

Nn(t) =
�(n−1)=2�∑

k=0

ck

(
n− 1

2k

)
tk(1 + t)n−2k−1; (4.4)

where ck = [1=(k + 1)]( 2k
k ) is the kth Catalan number. Expanding the right side of

(4.4) and then comparing coeNcients yields N (n; k)=
∑k−1

r=0 cr(
n−1
2r )( n−2r−1

k−r−1 ). A com-
binatorial proof of this result appears in Simion and Ullman [13]. Setting t = −1 in
(4.4) gives

n∑
k=1

1
n

(
n

k

)(
n

k − 1

)
(−1)n−k =

{
0 if n= 2r;

(−1)rcr if n= 2r + 1;

an identity proved in [1] by using properties of a certain symmetric chain decomposition
of the lattice of noncrossing partitions previously constructed in [13]. Setting t = 1 in
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(4.4) gives an identity found originally by Touchard [17]:

cn =
�(n−1)=2�∑

k=0

ck

(
n− 1

2k

)
2n−2k−1: (4.5)

Eq. (4.5) has a well-known combinatorial interpretation, namely, that the Motzkin
paths of length n − 1 in which the level steps have weight 2 (i.e., can be assigned
one of two colors) are counted by the Catalan number cn. Setting t = 2 in (4.4) gives
another representation for little SchrModer numbers: sn =

∑�(n−1)=2�
k=0 ck(

n−1
2k )2k3n−2k−1.

Gouyou-Beauchamps and Vauquelin [7] applied the DSV method of SchMutzenberger to
construct a bijective proof of this last identity. Setting t = 4 in (4.4) yields another
representation for the numbers dn :dn =

∑�(n−1)=2�
k=0 ck(

n−1
2k )4k5n−2k−1. As pointed out

by the referee this implies that Motzkin paths of length n− 1 in which the level steps
have weight 5 and the down steps (or up steps) have weight 4 are counted by the
number dn. It remains an open problem to End a bijective proof of this fact.

Several authors have studied the polynomials Nn(t) in one context or another. For
instance:

(i) Rogers [9] showed that the polynomials Nn(t) satisfy the nonlinear recurrence

Nn = (1 + t)Nn−1 + t
n−2∑
k=1

NkNn−k−1 (4.6)

for all n¿ 3. In addition he showed that Nn(k) is the number of increasing
bipartite graphs, with partite sets of cardinality n, each of whose edges is colored
independently with one of k colors.

(ii) For positive integers k and n Rogers and Shapiro [10] showed that kNn(k) is
the number of ordered (i.e., rooted plane) trees with n edges in which each of
the eldest branches has weight k.

(iii) Sulanke [14] showed that the polynomials (Nn(t))n¿1 satisfy the second-order
linear recurrence N1(t) = 1, N2(t) = 1 + t and

(n+ 1)Nn(t)

=(2n− 1)(1 + t)Nn−1(t) − (n− 2)(t − 1)2Nn−2(t) (4.7)

for all n¿ 3.
(iv) Bonin et al. [1] studied a polynomial closely related to Nn(t). These authors let

SchL(n) denote the set of underdiagonal lattice paths that terminate at (n; n) and
have step set Sd = {(1; 0); (1; 1); (0; 1)}. (It is well known that |SchL(n)| is the
SchrModer number rn.) And for any path P ∈SchL(n) they let diag(P) denote the
number of occurrences in P of the step (1,1). They then deEned a q-analog of
the SchrModer number rn by the equation dn(q) =

∑
P∈SchL(n) q

diag(P). One of the
properties of dn(q) they derived is that dn(q)=

∑
k¿1 (1=n)( nk )(

n
k−1 )(1+q)k . From

this it follows that dn(q) = (1 + q)Nn(1 + q).
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5. Underdiagonal paths with unrestricted steps

Let us digress for a moment to consider a class of underdiagonal paths with unre-
stricted steps. Let G(x) = 1 +

∑
n¿1 gnx

n be the generating function for the number
of underdiagonal paths that terminate at (n; n) and have step set S∗ =N×N\{(0; 0)}.
As an application of his theorem on multiplicative decompositions of Laurent series,
Gessel [6, Example 4, p. 329] proved that G(x) = (1=8x)[1 + 2x − (4x2 − 12x + 1)1=2]
and thus

gn =
n∑

k=0

(−1)k
22n−k

2n− k + 1

(
2n− k + 1

n− k + 1; n− k; k

)
:

We show that in fact gn = 2nsn.
It is well known [14, Exercise 6.39] that there are sn underdiagonal paths that ter-

minate at (n; n) and have step set S = {(0; 1)} ∪ {(k; 0) : k ∈N+}. We claim that from
any such path �= s1s2 · · · sk we can construct 2n underdiagonal paths �′ that terminate
at (n; n) and have step set S∗. To verify this let us assume that si1 ; si2 ; : : : ; sin are the
vertical unit steps in �. For each j = 1; 2; : : : ; n we have two choices: either replace
the sequence of steps · · · sij−2sij−1sij sij+1 · · · by · · · sij−2(sij−1 + sij)sij+1 · · · or leave
it unaltered. In this way, we associate with � a total of 2n underdiagonal paths that
terminate at (n; n) and have step set S∗. Thus gn = 2nsn.

Stanley [14, Exercise 6.39] shows that 4gn = 2n+2sn is the number of simple graphs
G(V; E) on the vertex set V = {1; 2; : : : ; n+ 2} with the property that if a¡b¡c¡d
belong to V then it is not the case that both {a; c} and {b; d} belong to E. Such
graphs are called noncrossing. We refer the reader to [4] for an interesting study of
noncrossing combinatorial conEgurations.

Let LG(t)=
∑

n¿0 Lgntn where Lgn denotes the number of primitive underdiagonal paths
that terminate at (n; n) and have step set S∗. In order to End the coeNcients Lgn we
Erst note that the same argument that justiEes (2.4) also implies G(1 − LG) = 1, or
LG = (G− 1)G−1. Since G = (1=8x)[1 + 2x − (4x2 − 12x + 1)1=2] we obtain LG = 1

2 [1 −
2x − (4x2 − 12x + 1)1=2]. As is well known the generating function of the SchrModer
numbers rn is given by R(x) =

∑
n¿0 rnx

n = (1=2x)[1 − x − (1 − 6x + x2)1=2]. Since
R(2x) = (1=4x)[1− 2x− (1− 12x+ 4x2)1=2] we End

∑
n¿1 2nrn−1xn = 2xR(2x) = 1

2 [1−
2x − (4x2 − 12x + 1)1=2] = LG(x) =

∑
n¿1 Lgnxn. Equating coeNcients gives Lgn = 2nrn−1

for all n¿ 1.

6. Enumerating paths in D0 with respect to number of steps

We resume our study of D0. For any path �∈D0(n) let '(�) denote the number
of steps in �. In this section, we propose to enumerate paths in D0(n) with respect to
the parameter '. To this end we deEne the polynomial Pn(s) =

∑
�∈D0(n) s

'(�). If for
each j= 2; 3; : : : ; 2n we let 'j denote the number of paths �∈D0(n) that have exactly
j steps then Pn(s) =

∑2n
j=2 'js

j. Our goal is to compute explicitly the coeNcients 'j.
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Let G(t; s) =
∑

n¿0 Pn(s)tn be the generating function of the polynomials Pn(s),
where t marks size and s marks number of steps. In the same way that (2.6) was
derived for the generating function D0(t) one can show that

G − 1 = tG[s2 + (1 + s)2(G − 1)]: (6.1)

The Lagrange inversion formula now gives Pn(s) = [tn]G(t; s) =
∑n

k=1 (1=n)( nk )(
n

k−1 )
s2k(1 + s)2n−2k . Let us summarize these remarks.

Theorem 6.1. For any positive integer n de4ne Pn(s) =
∑

�∈D0(n) s
'(�) where '(�)

denotes the number of steps in �. Then Pn(s) =
∑n

k=1 (1=n)( nk )(
n

k−1 )s
2k(1 + s)2n−2k .

Moreover, the number of paths in D0(n) with j steps is given by 'j = [sj]Pn(s) =∑n
k=1 (1=n)( nk )(

n
k−1 )(

2n−2k
j−2k ).

From the equation Pn(x)=
∑n

k=1 (1=n)( nk )(
n

k−1 )x
2k(1+x)2n−2k we immediately obtain

Pn(x)=x2nNn((1+x−1)2). Simply for illustration we exhibit the Erst few polynomials
Pn(x):

P1(x) = x2;

P2(x) = x2 + 2x3 + 2x4;

P3(x) = x2 + 4x3 + 9x4 + 10x5 + 5x6;

P4(x) = x2 + 6x3 + 21x4 + 44x5 + 57x6 + 42x7 + 14x8;

P5(x) = x2 + 8x3 + 38x4 + 116x5 + 240x6 + 336x7 + 308x8 + 168x9 + 42x10;

P6(x) = x2 + 10x3 + 60x4 + 240x5 + 680x6 + 1392x7 + 2060x8

+2160x9 + 1530x10 + 660x11 + 132x12:

It follows from (6.1) that the polynomials Pn(x) satisfy the nonlinear recurrence
P1 =x2, P2 =x2[x2 +(1+x)2] and Pn=[x2 +(1+x)2]Pn−1 +(1+x)2 ∑n−2

k=1 PkPn−k−1

for all n¿ 3. Using the fact that Pn(x)=x2nNn((1+x−1)2), n¿ 1, together with (4.7)
one can also show that the polynomials Pn satisfy the second-order linear recurrence
P1 = x2, P2 = x2[x2 + (1 + x)2] and (n+ 1)Pn(x) = (2n− 1)[(1 + x)2 + x2]Pn−1(x)−
(n− 2)(1 + x)2[(1 + x)2 − x2]Pn−2(x) for all n¿ 3.

A variant of the polynomial Pn(x) appeared in some recent work of Denise and
Simion [3]. As part of a program to End the generating function Gn for Dyck paths
(counted according to their length) whose number of exterior pairs is n, these authors
deEned combinatorially a sequence of polynomials Rn=Rn(x) satisfying the recurrence
R1 =1 and Rn= x2(1− x)2 ∑n−2

k=1 RkRn−k−1 +(1−2x+2x2)Rn−1 for all n¿ 1. They
further showed that Rn(x)=

∑n−1
k=0 (−1)kck+1(

n−1
k )xk(1−x)k , where ck+1 is the (k+1)st

Catalan number. Denise and Simion’s interest in the polynomials Rn(x) arose from their
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discovery that

G0 =
1 − x
1 − 2x

and Gn =
xn+2(1 − x)
(1 − 2x)2n+1 Rn for n¿ 1:

The polynomials Pn(x) and Rn(x) are related by the equation Pn(x) = t2Rn(−x),
that is,

n∑
k=1

1
n

(
n

k

)(
n

k − 1

)
x2k(1 + x)2n−2k = x2

n−1∑
k=0

ck+1

(
n− 1

k

)
xk(1 + x)k : (6.2)

This can be veriEed by a straightforward calculation. As an immediate corollary we
deduce that the number of paths �∈D0(n) with j steps is given by

'j = [tj][t2Rn(−t)] =
�( j−2)=2�∑

r=0

cj−r−1

(
n− 1

r

)(
n− r − 1

j − 2r − 2

)
: (6.3)

It is an open problem to End a combinatorial explanation for Eq. (6.2).
One can use (6.2) to generate numerical identities. For instance:

(i) setting t = 1 yields another representation for the number dn = Nn(4), namely,
dn =

∑n−1
k=0 ck+1(

n−1
k )2k ;

(ii) setting t = − 1
2 yields cn =

∑n−1
k=0 (−1)kck+1(

n−1
k )4n−k−1;

(iii) setting t = − 1
3 yields dn =

∑n−1
k=0 (−1)kck+1(

n−1
k )2kgn−k−1.

7. Arbitrary paths with step set S

For each integer n¿ 1 let E0(n) denote the set of paths with step set S = {(k; 0) :
k ∈N+} ∪ {(0; k) : k ∈N+} that begin at (0,0) and terminate at (n; n). Thus paths in
E0(n), in contrast to those in D0(n), may rise above the line y = x. Set en = |E0(n)|
and E0(t) = 1 +

∑
n¿1 ent

n. The Erst few terms of the sequence (en)n¿0 appear along
the main diagonal of the following partial array e. We denote by en;k the entry in
the nth row and kth column of e. The array e can be generated by setting e0;0 = 1,
initially setting all other en;k to zero and then recursively computing en;k =

∑n−1
i=0 ei;k +∑k−1

j=0 en;j.

en;k k = 0 1 2 3 4 5 6 7
n= 0 1 1 2 4 8 16 32 64
1 1 2 5 12 28 64 144 320
2 2 5 14 37 94 232 560 1328
3 4 12 37 106 289 760 1944 4864
4 8 28 94 289 838 2329 6266 16428
5 16 64 232 760 2329 6802 19149 52356
6 32 144 560 1944 6266 19149 56190 159645
7 64 320 1328 4864 16428 52356 159645 470010
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In this section, we study some enumerative aspects of e analogous to those of d
given in preceding sections. We begin by Ending E0.

Theorem 7.1. (a) The generating functions E0 and D0 satisfy E0 = 1 + 2(D0 − 1)E0.
(b) The generating function E0 satis4es the functional equation (9t − 1)E2

0 −
(9t − 1)E0 + 2t = 0.

(c) The generating function E0(t) is given by E0(t) = (9t − 1− (9t2 − 10t + 1)1=2)=
2(9t − 1).

Proof. (a) We note that every nonempty path in E0 either:

(i) begins with a horizontal step and thus decomposes uniquely into a nonempty path
in D0 followed by a (possibly empty) path in E0, or

(ii) is the reKection in the line y = x of a path of type (i).

The result is now immediate.
(b) Eliminate D0 from (2.6) and the equation in part (a).
(c) This follows from part (b).

One can also obtain E0 from the theory of algebraic generating functions. For if we
let F(x; t) denote the generating function of the numbers en;k then

F(x; t) =

(
1 −

∑
n¿1

xn −
∑
k¿1

tk
)−1

=
(1 − x)(1 − t)

1 − 2(x + t) + 3xt
:

Moreover, E0 is algebraic since it is the diagonal of the rational function F . One
can now extract E0 from F by means of a well-known procedure based on Puiseux’s
theorem. For a discussion of this procedure we refer the interested reader to Stanley
[14, Section 6.3].

Theorem 7.1(c) leads to a second-order linear recurrence for (en)n¿0.

Theorem 7.2. The sequence (en)n¿0 satis4es the second-order linear recurrence
nen = 2(5n − 3)en−1 − 9(n − 2)en−2 for all n¿ 3, with initial conditions e1 = 2 and
e2 = 14.

Proof. From Theorem 7.1(c) we End (9t2−10t+1)1=2=(9t−1)(1−2E0). DiOerentiating
with respect to t gives

9t − 5
(9t2 − 10t + 1)1=2 = −2(9t − 1)E′

0 + 9(1 − 2E0):

DiOerentiating this latter equation now gives

−2[(9t − 1)E′′
0 + 18E′

0] = − 16
(9t2 − 10t + 1)3=2 :
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Therefore (9t2 − 10t + 1)[(9t − 1)E′′
0 + 18E′

0] = 8=(9t2 − 10t + 1)1=2 = −4(9t − 1)E′
0.

This can be rewritten in the form

(9t2 − 10t + 1)E′′
0 + 2(9t − 7)E′

0 = 0: (7.1)

Substituting the series E0 =
∑

n¿0 ent
n, E0 =

∑
n¿1 nent

n−1 and E′′
0 =

∑
n¿2 n(n −

1)entn−2 into (7.1) yields∑
n¿2

(n+ 1)[(n+ 2)en+2 − 2(5n+ 7)en+1 + 9nen]tn = 0;

which implies (n+ 2)en+2 = 2(5n+ 7)en+1 − 9nen for all n¿ 2. Replacing n by n− 2
gives nen =2(5n− 3)en−1 − 9(n− 2)en−2 for all n¿ 4. Notice that this recurrence also
holds for n= 3.

It is easy to End an explicit expression for en. For if we set K=E0−1 then Theorem
7.1(b) implies that t = K(K + 1)=(9K2 + 9K + 2). Applying the Lagrange inversion
formula now yields

Corollary 7.3. For any n¿ 1 let en = |E0(n)|. Then en =
∑n−1

k=0 (−1)n−k−12n−k9k( nk )
( 2n−2k−2
n−k−1 ).

A direct enumeration of the paths in E0(n) leads to another representation for en.

Theorem 7.4. For each n¿ 1 let en denote the number of lattice paths with step set
S = {(k; 0) : k ∈N+} ∪ {(0; k) : k ∈N+} that begin at (0,0) and terminate at (n; n).
Then en =

∑n
k=1 4n−k( n−1

k−1 )[(
n
k ) + ( n−1

k−1 )].

Proof. Any path � in E0(n) corresponds to an ordered pair (); *) of compositions
of n. The parts of ) and * are simply the lengths of the horizontal and vertical
segments of �. For any composition + of n let l(+) denote the number of parts of
+. Note that if (); *) is the composition pair associated with a path �∈E0(n) then
|l()) − l(*)|6 1. It is easy to count the number of pairs (); *) of compositions of n
satisfying |l()) − l(*)|6 1: since n has ( n−1

k−1 ) compositions into exactly k parts there
are

∑n
k=1 ( n−1

k−1 )
2 pairs of compositions (); *) for which l()) = l(*). And there are∑n

k=1 ( n−1
k−1 )(

n−1
k ) pairs of compositions (); *) for which |l()) − l(*)| = 1.

We now observe that if � has k horizontal segments and k vertical segments then
there are 22n−2k paths �′ in E0(n) with �(�′)=�(�). And if � has k+1 horizontal and
k vertical segments or k horizontal and k+1 vertical segments then there are 22n−2k−1

paths �′ in E0(n) with �(�′)=�(�). Finally we note that there are two paths in E0(n)
associated with an ordered pair (); *) of compositions of n. This is because we can
take the segments of ) to be horizontal and those of * to be vertical or vice versa. It
follows therefore that

en = 2
n∑

k=1

22n−2k

(
n− 1

k − 1

)2

+ 2
n∑

k=1

22n−2k−1

(
n− 1

k − 1

)(
n− 1

k

)
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=
n∑

k=1

22n−2k

(
n− 1

k − 1

)[
2

(
n− 1

k − 1

)
+

(
n− 1

k

)]

=
n∑

k=1

4n−k

(
n− 1

k − 1

)[(
n

k

)
+

(
n− 1

k − 1

)]
:

Our Enal result concerns the diagonals of e. For each k¿ 1 let Ek denote the set
of lattice paths with step set S = {(k; 0) : k ∈N+} ∪ {(0; k) : k ∈N+} that begin at
the origin and terminate on the kth diagonal y = x − k. Let Ek(t) =

∑
n¿k en;n−k tn

be the corresponding generating function. For convenience we rewrite the equation in
Theorem 7.1(a) in the form

D0 =
3E0 − 1

2E0
: (7.2)

Theorem 7.5. In terms of the notation introduced above:

(a) Ek = E0Dk for all k¿ 1,
(b) Ek = 2tD0Ek−1 for all k¿ 2,
(c) Ek = tEk−1((3E0 − 1)=E0) for all k¿ 2,
(d) Ek = 2k−1E0(tD0)k(2D0 − 1) for all k¿ 2,
(e) Ek = 1

2(2E0 − 1)tk((3E0 − 1)=E0)k for all k¿ 2,
(f) 2Ek = (1 + 3t)Ek−1 − 2tEk−2 for all k¿ 3.

Proof. (a) Any path in Ek decomposes uniquely into a (possibly empty) path in E0

followed by a path in Dk , whence the result.
(b) If k¿ 2 then by part (a) and Theorem 3.2 we End Ek = E0Dk = E02tD0Dk−1 =

2tD0Ek−1.
(c) This follows from part (b) and (7.2).
(d) Part (a) and Corollary 3.3 imply that Ek = E0Dk = 2k−1E0(tD0)k(2D0 − 1) for

all k¿ 2. Consequently each entry on the kth diagonal of e is divisible by 2k−1.
(e) This follows from part (d) and (7.2).
(f) If k¿ 3 then part (a) and Theorem 3.5 imply 2Ek =E02Dk =E0[(1+ 3t)Dk−1 −

2tDk−2] = (1 + 3t)Ek−1 − 2tEk−2.
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