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Properties of the total least squares estimation 
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Abstract: 'Through theoretical derivation, some properties of the total least squares estimation are found. The 

total least squares estimation is the linear transformation of the least squares estimation , and the total least 

squares estimation is unbiased. The condition number of the total least squares estimation is greater than the 

least squares estimation, so the total least squares estimation is easier to be affected by the data error than the 

least squares estimation. Then through the further derivation, the relationships of solutions, residuals and unit 

weight variance estimations between the total least squares and the least squares are given. 
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1 Introduction 

In the classical least squares ( LS) approach the coeffi

cient matrix is assumed to be free from error, and all 

errors are confined to be the observation vector. How

ever, in surveying engineering application , this as

sumption is often unrealistic. The coefficient matrix is 

not a constant matrix and is not composed of constants. 

For example, the coefficient matrix is available by 

measurements or it is an idealized approximation of the 

true operator, then hoth the matrix and the observation 

vector are contaminated by some noise. So , in this 

condition , using the classical least squares approach to 

deal with the problem that both the matrix and the ob

servation vector are contaminated by noise may be not 

reasonable. An appropriate approach to this problem is 

the total least squares ( TI.S ) method. The name total 

least squares was given by Golub and Van Loan1' 1 , 
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which was developed in the field of numerical analysis ; 

but under the names orthogonal regression or errors-in

variables ( EIV) , this fitting method has a long history 

in the statistical literature. Over the years, it had been 

rediscovered many times, often independently, but on

ly in the last two decades , it started to be used in prac

tical applications1' 1• 

Now, there are many researches about the total least 

squares in algorithms and applications in the surveying 

engineering : the algorithms , such as the singular value 

decomposition ( SVD) algorithm1'-'1 and the algorithm 

based on the Lagrange approach 14 -'1 , and so 

on[to,n]; the applications, such as space resec

tion[IZ], spatial pattern analysis and :6.tting[3
•
91

, coor

dinate transformations and datum conversion[6
•
81

, geo

detic inversion[ 13
' 141 , and so on[Io,n]. There are also 

many researches on the properties of the total least 

squares and the differences between the total least 

squares and the classical least squares. The connec

tions between the TLS and the classical LS were dis

cussed and the sensitivity of both solutions and the 

SVD was compared mainly from the viewpoint of a nu

merical analyst1' 1• Then the statistical properties of 

the TLS were studied[2
J. As soon as some prior infor-
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mation about the distribution of the errors in the data 

is available , statistical properties of the TLS can be 

derived , and they prove the expected quality of the 

TLS model estimate parameters. Given the frequency 

of practical situations in which the " independent" 

variables are recorded with error, the TIS should be 

proved to be a very useful tool to data analysts. The 

TLS gives better estimates of the parameters of the 

EIV model than the LS does. The relations between 

the weighted TLS and the weighted LS solutions are 

obtained["], and the analysis is useful especially for 

rank deficient problems and generalizes the results of 

Golub and Van Loan, Van Huffel and Vandewalle. 

The existing bounds of differences between the LS re

siduals, the weighted squares residuals and the mini

mum norm correction matrices of the TLS and LS 

problems were improved["]. Different from the previ

ous studies of the properties of the TLS problem from 

the viewpoint of pure mathematics , the properties of 

the TLS solution are given and proved in our paper 

from the viewpoint of surveying adjustment. 

2 The TLS solution of the adjustment 
problem 

For a linear estimation problem, the function model is 

AX=b (1) 

where A E Rmx. ( m > n) is a full column rank coeffi

cient matrix; X e R"x 1 is the parameter to be esti

mated; b e R"' x 1 is the observation vector. 

The basic thought of TLS is consideration of the error 

E A of coefficient matrix A and the observation error e of 

the observation vector at the same time. So the error e

quation is 

That is 

ji =[I.- (X'®I.) J I:J (2) 

where, ji =AX -b. 

1f the stochastic model of adjustment problem is 

(3) 

where vee ( • ) denotes the operator that stacks one row 

of a matrix rearwards of the previous one, and then 

transposes it to obtain a column vector; ® denotes 

"Kronecker-Zehfuss product". 

Then the TLS adjustment criterion is 

(4) 

The SVD of[ A b] is 

[A b] =ULVr (5) 

where, U= [U1 Uz J, u, = [ u, u,J, Uz = 

[ un+l um J' u, R"'xl 
E ' UTU = Jm; V= 

[ Vu v,2r- [ - v, v,.+t J' . R(n+l) xl yTy 
V, E , 

v21 V22 1 

[ 
L 1 o l =1., 1 ; L = 
0 

Lz =diag(u1 , ... , u.,,) E 

Rmx(n+l)' Lt =diag(ul, ···, u,.) eRnxn, L2 = 

OJ TER(m-n)xl; _ - -O 
Ut ~ "'U~,.+I ~ 

are the singular values. 

When u,. > u,.+ 1 and vn+l,n+l ~0, the TLS solution 

is[ 2J 

where N =A r A ; I is a identity matrix. 

H the condition u,. > O'n+l and vn+l,n+l ~0 is not 

satisfied , then the minimum norm TLS solution is 

computed[2J. 

The precision evaluation of the TIS is [ 4 J 

2 

a-zcru) = u.,, 
0 m-n 

(7) 

where u; (TIS) is the estimation of mean square error 

of unit weight. 
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D(k) =u~(TLS) (N -u!.J.) -1N(N -u!.J.) -1 

(8) 

where D ( k 1s the mean square error of the TLS 

solution. 

3 The properties of the TLS solution 

3. 1 The TLS solution is the linear transformation 

of the LS solution 

When the error of the coefficient matrix is not consid

ered, the LS solution is 

(9) 

whereN=ArA. 

From the equations ( 6) and ( 9) , we can get 

XA -(N- 2 I)- 1"N- 1ATb-Zk TIJ; - U n+l n. - r.s (10) 

where 

Z = (N -u!.J) -1N =(I- u!.1N- 1) -1 ( 11) 

So, from the equation ( 10) , we can find that: the 

TLS solution is the linear transformation of the LS solu

tion. The equation ( 10) is consistent with Van Huffel 

and V andewalle[2J. 

3. 2 The expectation of the TLS solution 

Using matrix inversion formula[t?] 

(D +ACB) -1 =D-1 -D-1A(C1 +BD-1A)BD-1 

(12) 

From the equation ( 11 ) , Z can be rewritten as 

Z = (1-u!.,IN- 11) -1 =I +u!.1 (N -u!.,I) -1 

( 13) 

From the equations ( 10) and ( 13) 

A ( 2 ( 2 ) -1) A Xru = I +u •• 1 N -u •• 11 XLS (14) 

Expecting both sides of the formula ( 14) , we obtain 

So 

When the errors are confined to the observation vec

tor and the coefficient matrix, the TIS solution is unbi

ased[2J. 

( 17) 

where E ( · ) denotes the expection of kru. 
So 

(18) 

From the equation ( 15) , we can see that: the ex

pection of the TLS solution is also the linear transfor

mation of the expection of the LS solution. From the e

quation (16), we can know that: when u •• 1 becomes 

smaller gradually, the difference of the expection of the 

TLS solution and the expection of the LS solution is al

so becoming smaller gradually. From the equation 

( 18) , we can get that: only when u!.1 = 0 (that is 

u 11 + 1 = 0) , the coefficient matrix is free from error, the 

LS solution is unbiased ; and the TLS solution degener

ates to the lS solution. 

3. 3 The eigenvectors of Z are the same to the eig

envectors of N, and they are unrelated with a!., 

H the characteristic roots of N are A1 ;;:=A 2 ;:::: ···;a:: An> 

0, and the corresponding eigenvectors are A 1 , A2 , 

"',A~~., then 

NA, =A.,A,(i=l,2,···,n) ( 19) 

Both sides of the equation ( 19 ) are divided by 

1 N-1 th T , en 
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(20) 

From the equation ( 19) 

(N- u!,J)A, =(A,- u!,, )A, (21) 

So 

(N- u!,J) -'A,= 1 
2 A, 

Ai-un+l 
(22) 

The SVD of the coefficient matrix A is 

A=U'l;'V'r (23) 

where U'[ U' 1 U'2 ], U1 = [ u'1 

[ u'n+l ' J ' Rmxl U'TU' [ um,ue' =m.; 

V = [ v'1 l:' = 

d
• ( ' ' ) Rmxn 1 _ _ r 0 
zagu 1 ,···,u 11 E ;ut::::::=::"':::::==Un>· 

characteristic roots of ( N - u!, 1 I) are ( A, - u!, 1 ) 

( i = 1 , 2 , .. · , n ) , the characteristic roots of ( N -

u!,J)- 1 are 
1

2 (i=l,2,···,n), andthechar-
Ai-un+t 

acteristic roots ofZ are A, 2 (i=l,2,···,n); the 
Ai -un+l 

eigenvectors of them are Ai ( i = 1 , 2, · · · , n) , and are 

the same to the eigenvectors of N, but unrelated with 
2 

0' n+l' 

3. 4 The relations between the TLS solution XTLS 
and the LS solution kLs 

From the equations (9) and (14) 

(29) 

Nonniug both sides of the formula ( 29) , we get 

(30) 

From the interlacing theorem for singular values[ts] , So 

we get[2l 

(24) 

(25) 

From the equations ( 24) and ( 25) 

(26) 

From the equation (20) 

2 

(1- 2 N-')A. = (1- u.'')A 
O'n+l J .,\.. 1 

' 
(27) 

From the equations ( 11) and (27) 

ZA, (28) 

From the above derivation, we can see that: the 

characteristic roots of N are A, ( i = 1 , 2 , · · · , n) , the 

That is 

II kiS II 
(31) 

(32) 

From the above derivation, we know that: for an es

timation problem, the coefficient matrix A and observa

tion b are frxed , so the maximum ration of the differ

ence norm II k= - k 15 II between the TLS solution 

XTIS and the LS solution X15 and the norm II XLX II of 

the LS solution X15 is a fiXed value II u!,, (N- a!,, 

I)_, II· 

3. 5 The relations between the TLS residuals 1> TLS 
and the LS residuals V LS 

The l.S criterion is 

~IS= Vi.Vr.s =(AX -b) T(AX -b) 

= II AX = b II 2 
= min (33) 
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So , the IS residuals are 

From the equations ( 9) and ( 34) 

The TIS criterion ( 4) is also equal to 

-V:r V: _(AX-b)T(AX-b) 
!"TTs - TI.S TI.S - 1 + XT X 

=IIAX-bll' min 
1 + II X II' 

So , the TLS residuals are 

From the equations ( 14) and (37) 

ll' =A "9" rs - b + rr!.,A (N- u!.J) -l_trs 

./1 + lli"ru II ' 

From the equations (37) and (38) 

Because 

Then 

From the equations ( 39) and ( 41) 

From the equations ( 9) and ( 42) 

(34) 

(35) 

(36) 

(37) 

(38) 

(39) 

(40) 

(41) 

(42) 

(43) 

Nonning both sides of the formula ( 39) , we get 

A 1 A 

II Vru; II .;; 11 1 II ( II Vrs II + 
IV 1 + II kru II ' 

II u!.,A(N-u!.J) -'j"rs II) (44) 

From the equations ( 40) and ( 44) 

lllf TI.S II "' II ll' IS II + 

II u!.,A(N -u!.J) -'j"rs II (45) 

That is 

lllf TI.S II - II ll' IS II .;; 
II u!.,A(N -u!.,I) -!xiS II (46) 

Substitoting equation ( 9) into equation ( 46) , 

lllf TI.S II - II ll' IS II .;; 
II u!.,A(N -u!.J) -IN-'Arb II (47) 

From the equations ( 43) and ( 47) , we can see: 

the difference between the TLS residuals lf ru; and the 

IS residuals lf 15 is smaller than a constant u! + 1A ( N -

u!.J) -l N-1 Arb; the difference between the TIS 

residuals norm II lf TIS II and the IS residuals norm 

lllf rs II is also smaller than a constant II u! + 1A ( N -

u!.J) -1 N-'ATb II . 

3. 6 The relations between the estimation of mean 

square error of unit weight of the TLS and the LS 

The estimation of mean square error of unit weight of 

the TIS ( 7 ) is equal to 

(48) 

The estimation of mean square error of unit weight of 

the IS is 
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u(I.S) = v::,vr.s = (Ai'r.s -b)T(Ai'r.s -b) <49 ) 
m-n m-n 

Because 

Then 

A( ) (AXTLS-b)T(AXTLS-b) u TLS .;; _-__.=--'-'---""------'
m-n 

From the equations ( 14) and ( 48) 

(50) 

(51) 

<AXa. -b}'(AXa., -b)= (Ai'L'l -b)'(Ai'"'-b) + 

(tlr.s -b) T (Au!., (N- u'"n + 11) _, Xr.s) + 

(Au!.,(N-u!.,I) -'x"')T • (Ai'"'-b) + 

(Au!., (N- u!.,I) _, XLS) T (Au!., (N-

(52) 

From the equations (49), (51) and (52) 

u~( TLS) .;;{r~(LS) + 

-
1-1 (tlr.s -b(' (Au!., (N -u!.,I) -'k) + 

m-n 

(Au!.,(N -u!.,J) -l_tr.s)T(,d'r.s -b)+ 

(Au!., (N- u!.,I) _,X"') T (Au!., (N-

(53) 

(Au!., (N -u!.,I) _,X"')T(tl"'-b) = 
(Ai'LS -b) T (Au!., (N- u!.,I) _, XLS) (54) 

(A.t, -b)'(Au!., (N -u!.,I) -'kr.s) +(Au!., (N

u!.,I) _, XLS) T (Ai'LS -b) + (Acr!., (N

cr!., I) _, kr.s) T (Acr!., (N- cr!.,I) _, kr.s) = 

2(Au!.,(N-u!.,I) _,XLS)T(AX"'-b) + 

(Au!., (N- u!.,I) _, ki.S) r(Au!., (N-

(55) 

So 

u~( TLS) -u~(LS) .;;-1-i2(Au!., (N-
m-n 

u!.,I) -lxLS)T(,d'LS -b)+ 

(Au!., (N- u!.,I) _,X"') T (Au!., (N-

2 1 A I u •• ,I)- XLS) (56) 

For LS, there is 

AT(AX"' -b) =0 (57) 

So, the equation (56) can be written as 

u~(TI.S) -u~(LS).;;-1 -(Au!.,(N-
m-n 

2 -1.... T 2 2 -1 A 

u •• ,I) XLS) (Au •• ,(N-u •• ,I) X"' (58) 

The equation ( 58 ) gives the upper limit of the 

difference between the estimation of mean square error 

of unit weight of the TLS and the LS. Equation (58) 

can also be obtained from the equations ( 4 7 ) , ( 48 ) 

and (49). 

The TLS can get better fitting data, and has a smal

ler fitting residual['·"1 

II b -..li= II,.;; II b -Akr.s II, 

Because 

2 II b -..UTLS II; u 0 ( TLS) = -"-----'=-"'-" 
m-n 

and 

u~(LS) = II b -Akr.s II; 
m-n 

Then 

(59) 

(60) 

(61) 

(62) 

From the equation ( 62) , we can see: the estimation 

of mean square error of unit weight of the TLS 

u~ ( TLS) is smaller than the LS u~ ( LS) , so the TLS 

can get a better fitting data. 

3. 7 The TLS solution is always more poorly con

ditioned than the LS solution 

For the LS, from the equation ( 23) , we can get 

(63) 
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where A max denotes the maximum eigenvalue ; A min de

notes the minimum eigenvalue. 

From the equations ( 9 ) and ( 63 ) , the condition 

number of the LS solution is 

(

A ) A_ 
cond Xu; =-

A..m 
(64) 

From the equations ( 6) and ( 63) , the condition 

number of the TLS solution is 

where An+I =u!+t' 

From the equation (24) 

where (N -u!.,I.) is not singular. 

So , from the equations ( 64) and ( 65 ) 

A •• , (A_ - A_. 1 ) >O 
A..m (A ..... -A •• ,) 

(65) 

(66) 

(67) 

From the equation ( 67) , we can see: the condition 

number of the TLS solution cond ( Xru; ) is greater than 

the condition number of the LS solution cond (Xu; ) ; 
the TLS solution is always more poorly conditioned than 

the LS solution. The LS ridge estimation improves the 

ill-posed condition by adding a positive constant to the 

diagonal elements of N; while , the TLS approach sub

tracts a positive constant to the diagonal elements of N, 

so it is a irregular process. Compared to the LS, the 

TLS solution is easier to be affected by the data error. 

Branham [20] gives a review of the condition number of 

the TLS solution, here we give a detail derivation. 

4 Conclusions 

In the surveying engineering, the coefficient matrix 

may be affected by the sampling or modeling or meas

urement errors. So both the coefficient matrix and the 

observation vector are contaminated by some noise. 

The TLS method is particularly useful in modeling situ

ations in which all the given variables in the system in

clude errors and should be treated symmetrically. In 

these situations, the TLS approach yields more accu

rate estimations than the LS approach. Through theo

retical derivation, many properties of the total least 

squares estimation are obtained. The total least squares 

estimation is the linear transformation of the least 

squares estimation, and the expection of the TLS solu

tion is also the linear transformation of the expection of 

the LS solution. When the coefficient matrix is contam

inated by some noise , the IS solution is biased , while 

the TLS solution is uubiased. The eigenvectors of Z are 

the same to the eigenvectors of N, and they are unre

lated with u!+l' The relations between the TLS solu

tion Xru; and the LS solution Xu;, and the relations be

tween the TLS residuals fr ru; and the LS residuals fr u; 

are also researched in the paper. The TLS can get bet

ter fitting data, and has a smaller fitting residual, and 

the estimation of mean square error of unit weight of 

the TLS u~ ( TLS) is smaller than the LS u~ ( LS) . The 

TLS solution is always more poorly conditioned than the 

LS solution. The LS ridge estimation improves the ill

posed condition by adding a positive constant to the di

agonal elements of N; while , the TLS approach sub

tracts a positive constant to the diagonal elements of N, 

so it is a irregular process. Compared to the LS , the 

TLS solution is easier to be affected by the data error. 

This work will be useful to the researchers and practi

tioners in surveying engineering to understand and use 

the TLS approach, and to find efficient methods for im

plementing it. 
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