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This paper reviews the chemical behaviour of heavy
metals in soil, the effect of heavy metals on plants and
humans, and describes phytoremediation, which is the

use of green plants to remove soil contaminants. The
physiological processes that support bio-accumulation
of heavy metals by plants are also described.

For environmental safety, the high concentration of heavy
metals in the soil should be removed. Mining and
manufacturing industries are main sources of heavy metals
that pollute the soil, groundwater and air in South Africa. As
one example, communities near Johannesburg in Gauteng,
South Africa, lodged complaints in court about the toxicity of
potable groundwater that was contaminated by heavy
metals from industries (Ndaba 2002). Disposal of wastes
from industries and management of contaminated soil and
water from mines have become difficult in developed
countries, because of new legislation that governments are
forced to observe. For instance, the disposal of sewage
sludge (now called biosolids) in oceans was banned in the
1970s, which encouraged the ‘mushrooming’ of numerous
waste incinerators in many countries. Pollution from
incinerating waste has been recognised in South Africa, and
it has resulted in the signing of the ‘Isipingo Declaration’ by
South Africa, Mozambique and Swaziland (Carnie 2002).
This is a declaration of South Africa and the other two
mentioned countries to ban waste incineration, because
incineration of waste increases the atmospheric dioxins and
cancer-associated heavy metals. The ban on dumping
biosolids in the oceans has increased pressure for land
application in the USA (Chaudri et al. 2001). Table 1 gives
typical total concentrations of heavy metals in different
fertilizer sources including biosolids, which can be an
excellent source of plant nutrients and organic matter. But
they also can harbour numerous organic and inorganic
contaminants. The US Environmental Protection Agency
(EPA) regulation limits for heavy-metal concentrations in
biosolids and drinking water are presented in Table 2.
Although land application of biosolids is not popular in South

Africa, large quantities of animal waste (manure) are applied
to agricultural fields every year. Livestock manure may
contain high concentrations of heavy metals that originate
from feed and medicines provided to the animals (Table 1).
Normal and toxic concentrations of heavy metals in soil and
plants are presented in Table 3.

According to Pierzynski et al. (1994), there are two
reasons for concern over the increase of heavy metals (also
referred to as ‘trace elements’) in the environment. [The
term ‘heavy metal’ is usually restricted to those metals that
have densities greater than 5.0 (Page 1974: 2).] First,
humans and animals may ingest these toxic elements in
contaminated food and fodder or inhale them as dust. A
prevalence of chronic ailments, such as heart and kidney
diseases, skin cancer and anaemia has been reported in
people living for more than five years in areas polluted by
heavy metals. Inhalation of arsenic (As) has been directly
associated with lung cancer and skin cancer. Second,
phytotoxic effects of elevated levels of heavy metals in soils
cause poor vegetation establishment that makes the soils
prone to erosion. This results in further dispersion of the
pollutants to new areas, which threatens the health of
greater numbers of people.

Plants grown in soil contaminated by metals accumulate
higher concentrations of metals than plants grown in normal
soil (Chang et al. 1992). Therefore, clean up of toxic metals
from agricultural land is important, because agricultural
products with high levels of toxic metals are barred from
international markets (Chaudri et al. 2001). For instance, the
European Union, Australia and New Zealand have a
cadmium (Cd) regulation limit of 0.1mg Cd kg–1 fresh weight
(Chaudri et al. 2001, Commission of the European
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Communities 2001). The 2004 World Congress on
Environmental Health highlighted that environmental metal
poisoning is becoming a major public health burden in many
African countries due to rapid globalisation and
industrialisation (Carnie 2004). The concentration of life-
threatening heavy metals such as lead (Pb), As, mercury
(Hg) and zinc (Zn) has been found to be increasing in water,
soil and air in several African countries (Carnie 2004).

Here follows a literature review on pollution by heavy
metals. It includes a method for their removal from soil called
phytoremediation, which is the use of green plants to
remove pollutants. The literature review will show that,
despite the media reporting and public outcry with regard to
environmental pollution by heavy metals, little work has
been done in South Africa to explore the possibility of
removing heavy metals from soil for the safety of the
environment. The aim of this paper is to discuss the impact
of heavy metals in the environment and the concept of
phytoremediation.

Heavy Metal Impacts on Humans and Plants

The effects on plants and humans of eight heavy metals —
Cd, copper (Cu), iron (Fe), Pb, manganese (Mn), Hg, nickel
(Ni) and Zn — that are often of most concern in the
environment are as follows:

Cadmium

The accumulation of Cd in water and soil has caused major
environmental and human health problems (Salt et al.
1995a). Cadmium is usually less adsorbed by soil and

organic matter than several other heavy metals (e.g. Pb, Cu),
which makes it more available to plants and more easily
leached by groundwater (McBride 1994: 319, Basta and
Sloan 1999, McLaughlin et al. 2000, Perronnet et al. 2000).
Gonzalez et al. (1992) showed that the availability of Cd in
biosolids-amended soil is controlled by phosphatic clay
instead of organic matter. Other studies indicate that Cd is
associated with Fe-oxides or an Fe-Mn oxide fraction in
biosolids (Dudka and Chlopecka 1990, Bell et al. 1991).

Cadmium is a toxic metal that can accumulate in the
human body and has a half-life greater than 10 years.
Elevated levels of Cd in the body can cause kidney damage
in humans (Salt et al. 1997). Studies link renal dysfunction
with a low level of Cd content in the diet (Salt et al. 1995b).
Other diseases associated with Cd exposure are pulmonary
emphysema and bone demineralisation (osteoporosis)
(Bhattacharyya et al. 1988), because Cd replaces calcium
(Ca) in bones.

Plants show a disturbed water balance when grown on
Cd-laden soil (Poschenrieder et al. 1989). The metal is
readily taken up by roots and translocated to aerial organs
where it accumulates to high levels (Baryla et al. 2001).
Cadmium affects stomatal function, water transport and cell
wall elasticity (Bazzaz et al. 1974, Kirkham 1978, Baszynski
et al. 1980). Poschenrieder et al. (1989) reported an
increase in the stomatal resistance of plants that were
treated with Cd, and similar results were reported by
Kirkham (1978) and Baryla et al. (2001). The increase in
stomatal resistance strongly correlated with increase of the
abscisic acid (ABA) level in leaves (Poschenrieder et al.
1989). Inhibition of photosynthesis is another toxic effect of
Cd, which is brought about by reduced stomatal

Table 1: Typical concentrations (mg kg–1) of heavy metals in biosolids, farm manure, phosphate fertilizers and lime (adapted from Ross 1994b)

Metal Biosolids Farm manure Phosphate fertilizers Lime
Manganese (Mn) 60–3 900 30–969 40–2 000 40–1 200
Copper (Cu) 50–8 000 2–172 1–300 2–125
Zinc (Zn) 91–49 000 15–566 50–1 450 10–450
Nickel (Ni) 6–5 300 2.1–30 7–38 10–20
Cadmium (Cd) 1–3 410 0.1–0.8 50–190 0.04–0.1
Lead (Pb) 2–7 000 0.4–27 4–1 000 20–1 250
Mercury (Hg) 0.1–55 0.01–0.36 0.01–2 0.05

Table 2: The permitted limits of heavy metals in biosolids and
drinking water

Metal a Biosolids (mg kg–1) b Drinking water (mg l–1)
Iron (Fe) None 0.30
Manganese (Mn) None 0.05
Copper (Cu) 4 300 1.30
Zinc (Zn) 7 500 5.00
Nickel (Ni) 420 None
Cadmium (Cd) 85 0.005
Lead (Pb) 840 0.015
Mercury (Hg) 57 0.002
Arsenic (As) 75 0.010

a US EPA (2002a); b US EPA (2002b)

Soil Plants
Metal element Normal Toxic Normal Toxic
Iron (Fe) 200 None 50 1 000
Copper (Cu) 2 60 5 20
Manganese (Mn) 7 1 000 30 300
Zinc (Zn) 1 70 20 100
Nickel (Ni) 0.4 100 0.1–5 10
Cadmium (Cd) 0.06 3 0.1–5 0.1
Lead (Pb) 10 100 0.1–12 30

Table 3: Normal and toxic total concentrations (µg g–1) of heavy
metals in the soil and plants (from Kirkham 1975, Alloway 1995,
Fageria et al. 2002)
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conductance in response to metal toxicity and sensitivity of
photosystem II to high Cd concentration (Baryla et al. 2001).
Cadmium may affect PS II on both the oxidising (donor) and
reducing (acceptor) side (Haag-Kerwer et al. 1999). Rubisco
activity in the Calvin cycle is inhibited by high Cd (Rivera-
Becerril et al. 2002). The most clear symptom of Cd
phytotoxicity is leaf chlorosis (Kirkham 1978, Baryla et al.
2001). Replacement of Fe by Cd in the centre of a precursor
of the chlorophyll molecule was speculated as one of the
causes of leaf chlorosis (Küpper et al. 1998).

High Cd concentration in the plant induces increased
respiration and activities of the tricarboxylic acid cycle as
well as other pathways of carbohydrate utilisation (Arisi et al.
2000). This increase in respiration was found to relate to the
increased demand for ATP, which compensates for deficits
in photophosphorylation (Ernst 1980).

Copper

Copper has been described by Alloway (1990) as an
important pollutant of the air and agricultural soils. Intensive
use of fungicides and herbicides, as well as sludge and
manure application, has been identified as the main cause
of agricultural soil contamination by Cu (Panou-Filotheou et
al. 2001). Ingestion of elevated levels of Cu causes
gastrointestinal distress, while long-term exposure to high
Cu concentration causes liver and kidney damage (US EPA
2002a).

Panou-Filotheou et al. (2001) found that Cu toxicity
resulted in reduction of stem height and root volume in the
oregano plant (Origanum vulgare). Toxicity of Cu in roots is
crucial, because roots provide entry into the plant of water
and nutrients. Therefore, any remarkable reduction of root
volume due to Cu toxicity also reduces water and nutrient
uptake by the plant. Leaf chlorosis is another symptom of Cu
phytotoxicity (Srivastava and Gupta 1996: 152). Leaf
chlorosis due to Cu toxicity is strongly related to reduced
volume and number of mesophyll cells (Panou-Filotheou et
al. 2001) and displacement of Fe from physiologically active
centres (Srivastava and Gupta 1996: 152).

Copper toxicity may cause damage to the plasma
membrane of both plants and animals (Hall 2002, Demidchik
et al. 2001), which results in the linking of the cytosolic
electrolytes. Concentration of Cu above 3–5µmol l–1

increases non-specific plasma membrane permeability,
inhibits Cl– channels, and suppresses plasma membrane H+-
ATPase (Demidchik et al. 1997). Non-specific conductance
and H+-ATPase inhibition are destructive to a cell because
they are accompanied by plasma membrane depolarisation,
disruption of ionic homeostasis and subsequent perturbation
of enzymatic reactions (Demidchik et al. 2001, Hall 2002).

Iron

Although Fe is classified as an element with a low toxicity in
plants (McBride 1994: 326), it is potentially noxious if taken
up by plants in excess quantities. High levels of Fe in plants
promote the formation of reactive oxygen species, which
damage vital cellular constituents, especially membranes
that are known to be susceptible due to lipid peroxidation

(Schmidt 1999, Schützendübel and Polle 2002). Above-
optimal levels of Fe may result in coalesced tissue, necrosis
or bronzing, flaccidity and blackening of the roots (Laan et al.
1991). No serious human disease has been linked directly to
an excessive concentration of Fe, which seems to be the
reason that Fe has been given no regulation limit in biosolids
by the US Environmental Protection Agency (Table 2).

Lead

Soil pollution by Pb occurs mostly through activities such as
mining, smelting, land application of biosolids and the past
use of antiknock gasoline additives such as tetramethyl and
tetraethyl lead (Badawy et al. 2002).

People are usually exposed to Pb through drinking
water, breathing Pb-laden dust and consuming food that
accumulates high concentrations of Pb, because it has
been grown on soil contaminated by Pb (Ogola et al.
2002). Lead impairs the nervous system and has effects on
the foetus, infants and young children that results in a low
intelligence quotient (United Nations 1998). Lead is
classified as a possible human carcinogen because it can
cause cancer. Low levels of exposure to Pb may cause
ailments such as heart disease, abnormalities in children,
testicular atrophy, anaemia and interstitial nephritis (United
Nations 1998).

Lead toxicity can cause plasma membrane alteration in
plants because Pb2+ is physiologically similar to Ca2+

(Srivastava and Gupta 1996: 221). Elevated Pb interferes
with chlorophyll formation and the normal metabolism of Fe
(Kacabova and Natr 1986). High concentration of Pb has
been linked to poor seed germination, high stomatal
resistance, inhibited CO2 uptake and low photosynthetic rate
(Poskuta et al. 1987).

Manganese

Manganese toxicity mostly occurs in waterlogged
environments (McBride 1994: 334, Hopkins 1995). A
symptom of Mn toxicity is the occurrence of dark brown
spots on older leaves. These necrotic spots result from the
local accumulation of oxidised Mn and phenolics (Horst
1988) and provide an index of the degree of Mn toxicity in
plants (Horst and Fecht 1999, Wang et al. 2002). Elevated
concentrations of Mn in the growing medium can also
interfere with the absorption, translocation and utilisation of
other elements such as Ca, magnesium (Mg), Fe and
phosphorus (P) (Wang et al. 2002, Hopkins 1995). High
concentrations of Mn in tissues can alter the activities of
enzymes and hormones, which may render essential Mn-
requiring processes non-functional or less active (Horst
1988). Effects of Mn toxicity on animals and humans are
essentially not known.

Mercury

Mercury occurs in both organic and inorganic forms, but it is
the organic form of Hg that is highly poisonous. The vapour
from volatised Hg is also toxic to animals and humans
(McBride 1994: 333). Coal combustion, metal refineries and



waste incineration are the main anthropogenic sources of
Hg (US EPA 2002b, Shanley et al. 2002). Elevated
concentrations of Hg in soil are strongly correlated with soil
organic matter content (McBride 1994: 334). The toxicity of
Hg is now taken seriously in the developed countries. For
instance, the number of states in the USA that have issued
Hg-related advisories on fish consumption increased from
27 states in 1993 to 43 states in 1999 (Shanley et al. 2002).
However, Hg is still used for commercial applications such
as making fluorescent bulbs, thermometers, electronic
switches and other products (Shanley et al. 2002).

Methylated forms of Hg in the environment accumulate at
the apices of food webs, which poses a health risk to children
and pregnant women, especially those who eat fish (Shanley
et al. 2002). Organic Hg enters the food chain mainly by its
ingestion by fish and other aquatic organisms, which, when
consumed by humans, is easily absorbed by the gastric and
intestinal organs and then transported in the blood to the
brain, liver, kidney and foetus (Ogola et al. 2002). Toxicity
effects of Hg are confined primarily to the human central
nervous systems (Shanley et al. 2002). Their effects are
characterised by numbness and unsteadiness in the legs and
hands, awkward movements, tiredness, ringing in the ears,
narrowing of the field of vision, loss of hearing, sense of smell
and taste, slurred speech, forgetfulness and kidney damage
(Ogola et al. 2002, US EPA 2002a). Minamata is the
Japanese name for the disease caused by eating Hg-
contaminated fish or shellfish (Ogola et al. 2002). Specific
effects of Hg toxicity in plants are essentially not known.

Nickel

Contamination of the environment by Ni is mostly from traffic
or refinery emissions and industrial or municipal wastes
(McBride 1994: 336, Barbafieri 2000). Nickel toxicity inhibits
cell division in the meristem of the roots and limits the root
expansion zone (Robertson 1985). It interferes with the
translocation of Mn, Fe, Cu and Zn to the shoots (Anderson
et al. 1973). This antagonistic effect causes symptoms typical
of Mn and Fe deficiency in leaves (Anderson et al. 1973).

In animals and humans, Ni toxicity inhibits
spermatogenesis, amylase enzymes, insulin formation and
kidney function (Srivastava and Gupta 1996: 233). The most
health-threatening form of Ni is nickel carbonyl (Ni(Co)4) in
cigarette smoke, which causes pulmonary fibrosis
(respiration disorders) and renal disorders (Srivastava and
Gupta 1996: 233).

Zinc

Primary sources of Zn pollution are industrial wastes and
sewage sludge (McBride 1994: 329). Farm manures also have
high concentrations of Zn (Mikkelsen 2000), which make them
a promising amendment for Zn-deficient soils.

Zn toxicity affects plant growth by causing malformation of
the nucleus and nucleolus of meristematic cells of the roots
and also by disrupting cell division (Bobák 1985).
Chlorophyll and root length are reduced with increased Zn
concentrations in the growing media (Bekiaroglou and
Karataglis 2002). Khurana and Chatterjee (2001) reported a

reduction in biomass, seed number, seed weight and soluble
proteins in sunflower (Helianthus annuus) plants grown in
Zn-laden soil. Effects of Zn toxicity on humans and animals
are unclear.

Bioavailability of Heavy Metals

Changes that control concentration and free metal activity of
heavy metals in soil affect their bioavailability and uptake by
plants (Spurgeon and Hopkin 1996). Soil properties that
control the retention, transformation and mobility of metals
include pH, redox potential, organic matter content and soil
mineralogy (Calace et al. 2002). The effects of these
different soil properties on plant metal uptake are detailed
below.

pH

Soil pH is the major factor affecting metal availability for
plant uptake (McBride 1994: 315, McLaughlin et al. 2000).
Most heavy metals are soluble and mobile in acid soils. High
pH increases the complexation of metals by functional
groups of organic matter and oxides, which results in the
reduction of metal concentration in the soil solution (Yoo and
James 2002). According to Yoo and James (2002), pH
controls the solubility of metals by influencing the extent of
metal-complexation with organic C-based ligands. Lead
(Pb2+), for example, predominates in soil with a pH <6, and
changes to the form PbOH+ (solid phase) at pH levels
between six and eleven (Pierzynski et al. 1994). The solid
phases formed by heavy metals may also have pH-
dependent solubilities that control their bioavailability
(Pierzynski et al. 1994).

Redox potential

Soil redox potential is an important parameter that affects
heavy metal transformation, solubility and uptake by plants
(Carbonell-Barrachina et al. 1999). Metals with more than
one oxidation state (e.g. Fe and Mn) are generally less
soluble in their higher oxidation states (Ross 1994a).
Reducing soil conditions in flooded areas promote high
chemical reduction of Fe and Mn compounds, which results
in increased solubility of Fe and Mn (McBride 1994: 317).
The solubilised metals also can re-precipitate (Ross 1994a),
limiting their movement to roots for absorption or uptake.

However, most heavy metals (e.g. Cu, Cd) are strongly
immobilised by reducing conditions and are only available
for plant uptake in oxidising environments (Yen et al. 1998,
Pierzynski et al. 1994). For example, some studies show
that Zn deficiency in rice grown in flooded paddy fields is a
problem (Ross 1994b). The reduction of As5+ to As3+

increases the solubility and mobility of As in soils and
sediments (Carbonell-Barrachina et al. 1999).

Organic matter, clay and oxide minerals

Bioavailability of metals decreases in soil with high amounts
of organic matter, clay or oxides (McBride 1994: 121–164).
Metals such as Cu and Pb form stable complexes with
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organic matter. The quantities of organic matter, clay and
oxides control metal speciation, movement and
bioavailability, because the metal cations react with those
components that have high specific areas and cation
exchange capacity (Martinez and McBride 1999, Han et al.
2000). The complexation of metals by organic matter
reduces the activities of metals in solution (Gardner 1999).
Some heavy metals may be bound to humic substances in
the inner-sphere complexes and become non-exchangeable
(Xia et al. 1997, Yoo and James 2002).

Phytoremediation of Heavy Metals

Phytoremediation of soil contaminated by heavy metals is
one of the emerging technologies that uses living plants
either to extract these metals from the soil or render them
harmless in situ (Lombi et al. 2001). Plant remediation
provides a means of reducing environmental contamination
(Salt et al. 1997). It has an advantage over other remedial
options, because roots are present that can limit metal
seepage in moist environments and dispersal by wind
(Pierzynski et al. 1994). Phytoremediation allows a value-
added, non-agricultural use of plants and will continue to
expand in the future (Gleba et al. 1999).

Croplands polluted by heavy metals need to be
rehabilitated, because stricter laws limiting concentrations of
toxic metals in food crops will limit their availability for crop
cultivation (Gr…man et al. 2001). The rehabilitation of metal-
contaminated sites is necessary to restore sites, keep them
continually productive and limit human exposure to toxic
elements.

Methods other than phytoremediation to clean up metal-
contaminated sites have been applied. They include
complete excavation of contaminated material, which is
followed by treatment or in situ encapsulation (Pierzynski et
al. 1994). A conventional remediation method involves soil
excavation, transport to a decontaminating site, soil
cleansing using chemical or physical treatments, and then
return of the clean soil to its original site (Lasat et al. 2001).
Conventional methods disturb the soil’s physical properties
and landscape, while in situ phytoremediation maintains
them (Perronnet et al. 2000). Phytoremediation technology
is cheaper to implement and has greater environmental
benefits compared to conventional engineering methods
such as excavation. The market for phytoremediation in the
USA was estimated to be between $1 million and $2 million
in 1997, and it is projected to reach $70–100 million by the
year 2005 (Glass 2000). Phytoremediation of heavy metals
can be divided into three types: phytoextraction,
phytostabilisation and phytovolatilisation.

Phytoextraction

In phytoextraction, soil metal pollutants absorbed by plants
accumulate in the shoots (Salt et al. 1998), which are
harvested and incinerated. The ashes are then disposed of
in secured sites to prevent further pollution (Blaylock et al.
1997, Robinson 2001). The ratio of metal concentrations in
the soil and the plant is used to determine the effectiveness
of the plant species in metal phytoextraction (Barman et al.

2000). A ratio greater than 1.0 indicates higher accumulation
of metals in plant parts than in the soil. Plant species that
have a ratio >1.0 are considered efficient for
phytoremediation (Barman et al. 2000). The final amount of
metal pollutant extracted is determined by the total biomass
harvested, number of harvests carried out and the metal
concentration in harvested portions of the plant
(Cunningham and Ow 1996). Phytoextraction may be in the
form of continuous (natural) phytoextraction, which involves
natural hyper-accumulator plants or as induced
phytoextraction, which involves adding soil amendments,
especially synthetic chelating agents, to increase metal
bioavailability and uptake (Salt et al. 1998). Chelates will be
discussed in the next section.

Mejáre and Bülow (2001) divided metal-hyper-
accumulating plants into three groups according to the metal
that they tend to accrue, namely: Cu/cobalt(Co), Zn/Cd/Pb
and Ni. Hyper-accumulators are usually small, weedy plants.
The most studied metal hyper-accumulators to date include
Brassica juncea, Brassica oleracea, Berkeya coddii, Allysum
bertolonii and Thlaspi caerulescens, some of which can
accumulate more than 1% of a specific metal in their shoot
dry weight. Baker and Brooks (1989) defined metal hyper-
accumulators as plants that can accumulate greater than
100µg g–1 (0.01%) of Cd; 1 000µg g–1 (0.1%) of Co, Cu,
chromium (Cr), Pb and Ni; or more than 10 000µg g–1 (1%) of
Mn or Zn in their tissues. There exist natural hyper-
accumulators for specific metals. For instance, B. juncea is
a hyper-accumulator for Cd, T. caerulescens of Zn and Cd,
and B. coddii, A. bertonii and Thlaspi goesingense of Ni
(Lasat et al. 2000). The limitation associated with this kind of
phytoextraction is that hyper-accumulator plant species are
rare and often grow slowly, producing small amounts of
harvestable biomass (Ebbs et al. 1997, Salt et al. 1998).
Some metals such as Pb are mostly immobile in soil, which
reduces their bioavailability and thus their uptake by the
plant (Lombi et al. 2001). Consequently, hyper-accumulators
of Pb are uncommon.

One important feature that is found only in metal hyper-
accumulators is that they allocate a smaller concentration
of a heavy metal to the roots compared with leaves and
stems (Baker et al. 1994). This is attributed to the efficient
translocation of such metals from the roots to the shoots
(Küpper et al. 2000) and is considered an advantageous
strategy in plant heavy-metal tolerance, because the
primary target of heavy-metal toxicity is the root system
(Godbold et al. 1984).

Studies have shown that leaves are the main sinks for
metal accumulation in hyper-accumulators (Psaras and
Manetas 2001). Within the leaf, heavy metals are allocated
predominantly to the epidermal cells and trichomes (Psaras
and Manetas 2001, Salt et al. 1995a). The heavy metal
allocation to trichomes may be a strategy for detoxification,
because trichomes are part of the external tissue of the leaf
(Salt et al. 1995a). However, plant species differ in the types
of heavy metals that they sequester in their leaf trichomes.
For example, Pb accumulates in the trichomes of Nicotiana
tabacum, Mn in Heliathus annuus, Cd in Brassica juncea
and Ni in Alyssum lesbiacum (Martell 1974, Blamey et al.
1986, Salt et al. 1995a, Kramer et al. 1997). Accumulation of



potentially toxic metals in leaves is thought to be a plant’s
defensive strategy against herbivores.

One strategy plants may adopt to increase heavy metal
translocation from the roots to the shoot via the xylem
stream is to increase their transpiration rate (Gleba et al.
1999). Accumulation of metals is thought to be driven
primarily by mass flow caused by transpiration (Salt et al.
1995b). In fact, in a study in which plants were treated with
ABA, it was found that a large reduction in Cd
concentrations in leaves was strongly correlated with
increased stomatal resistance (Salt et al. 1995b). However,
metal translocation may be reduced by a high cation
exchange capacity on the xylem cell walls (Salt et al. 1998)
and may explain why a neutralisation of heavy metal cation
charge by chelating agents enhances the translocation of
metals to the shoots. Some studies suggest that the binding
of heavy metals in cell walls may provide a means of
detoxifying or sequestering them (Vögeli-Lange and Wagner
1996, Hart et al. 1998). In some plants, this is achieved by
depositing some metals in the form of carbonates on the cell
wall (Cunningham et al. 1995).

Several studies have shown that wheat grains accumulate
high quantities of Cd in heavy-metal-polluted sites, but it still
is unclear whether seeds of other taxa accumulate high
concentrations of heavy metals. Brooks (1998) reported that
heavy metal concentrations in seeds were negligible
compared with those in other plant parts. However, Psaras
and Manetas (2001) have reported high accumulation of Ni
in seeds of Thlaspi pindicum. In non-hyper-accumulator
plants heavy metals such as Cd are allocated more or less
equally to various plant parts. In hyper-accumulator plants
metals preferentially allocated to above-ground parts are
stored in cellular vacuoles where they are matched with low-
weight molecular compounds or adsorbed onto cell walls
(Salt et al. 1999).

One way to improve phytoextraction is through the
transfer of the genes that regulate hyper-accumulation.
Insertion of them into rapidly-growing plants with high
biomass is seen as an alternative for improving
phytoextraction (Lasat et al. 2000). Genetic engineering has
allowed the transfer of a bacterial gene for the transcription
of mercuric reductase into Arabidopsis thaliana, mutants that
tolerate and volatilise Hg (Rugh et al. 1996). Such
engineering programmes may reduce the cost of
phytoremediation (Salt et al. 1998).

Phytostabilisation

Phytostabilisation is the process by which plants immobilise
metal contaminants in the soil. This is achieved through their
absorption and accumulation by roots, adsorption onto
roots, precipitation within the root zone and physical
stabilisation in the soil (US EPA 2000). This type of
phytoremediation decreases the bioavailability and mobility
of metal contaminants and their percolation and erosion,
which thereby prevents air and groundwater contamination
(Miller 1996). This technology has been used in the
treatment of contaminated soils, sediments and sludge, and
was tested at Kansas State University and the University of
Iowa in an effort to remediate mine-tailing sites with high

levels of Cd, Pb and Zn (US EPA 2000). Successful
phytostabilisation of Pb, Zn, Cd and As in soils has been
achieved using hybrid poplars (Schnoor 1997).

Phytovolatisation

Some plants take up heavy metals such as Hg, selenium
(Se) and As and transpire them into the atmosphere or
volatilise them into modified, harmless forms.
Phytovolatilisation minimises the entry of Se into the food
chain, because most of the Se may be volatilised below
ground in the roots (Zayed and Terry 1994). The Se
accumulator Astragalus racemosus volatilises Se as
dimethyl diselenide (Evans et al. 1968, Parker et al. 1991).
Root-symbiotic bacteria assist the plants in volatilising Se
and As in the root zone (Salt et al. 1998).

As noted, the introduction of a modified bacterial mercuric
ion reductase into transgenic Arabidopsis thaliana has
increased the conversion of Hg2+ into Hg0 making the
transgenic Arabidopsis plant effective in Hg volatilisation
(Rugh et al. 1996). Factors that increase the transpiration
rate would probably increase the effectiveness of this
technology. The problem with phytovolatilisation is that
contaminants or hazardous metabolites can accumulate in
the vegetation and be translocated into edible products such
as fruit (Newman et al. 1997, US EPA 2000).

Use of Synthetic Chelating Agents for Phytoextraction

Unavailable forms of heavy metals are likely to be excluded
by the plant-uptake process unless some chemical
modification of the soil environment occurs to increase their
bioavailability (Barbafieri 2000). When a chelating agent is
added to soil, the formation of metal-chelate complexes in
the soil solution decreases free metal activity, and this results
in the desorption or dissolution of the soil-bound metals to
compensate for the shift in equilibrium (Dushenkov et al.
1997). The dissolution of metals continues until either the
chelate is saturated with metals, the supply of the metal from
the solid phases is exhausted or the solid phase is no longer
soluble. Chelate-assisted phytoextraction involves the
release of bound metals into soil solution accompanied by
transport of metals to the harvestable shoot (Salt et al. 1998).

There are two advantages associated with chemically-
enhanced phytoextraction. First, it is applicable even in
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Figure 1: The chemical structure of ethylenediamine-tetraacetic
acid (EDTA) that is used in phytoremediation (adapted from Sinex
2004)
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situations where metals are less mobile and available for
plant uptake. Second, it is a relevant technology if no natural
hyper-accumulator for the metal is known (McGrath et al.
2002). The chemical amendments mostly used for
phytoextraction are ethylenediamine-tetraacetic acid (EDTA),
diethylenetriamine-pentaacetic acid (DTPA), ethylenebis-
(oxyethylenenitrolo)-tetraacetic acid (EGTA), ethylenedia-
minedi(o-hydroxyphenylacetic) acid (EDDHA), N-(2-
hydroxyethyl)ethylenediamine-tetraacetic acid (HEDTA) and
citric acid. Of these, EDTA has been most frequently used as
an amendment for phytoextraction, because it has a strong
affinity for different heavy metals (Norvell 1991). Its chemical
structure is presented in Figure 1. The effectiveness of
different ethylene-based chelating agents in increasing
heavy-metal solubility in soil solution, plant uptake and shoot
accumulation has been reported in the sequence EDTA >
HEDTA > DTPA > EGTA > EDDHA (Huang et al. 1997,
Blaylock et al. 1997).

EDTA has been used to increase the accumulation of
metals in shoots of plants such as Indian mustard (Brassica
juncea) (Blaylock et al. 1997, Huang et al. 1997, Wu et al.
1999), Chinese cabbage (Brassica rapa) (Gr…man et al.
2001) and sunflower (Heliathus annuus) (Kirkham 2000,
Liphadzi et al. 2003). Haag-Kerwer et al. (1999) showed that
about 80% of the total soil metal is solubilised and becomes
available for phytoremediation. Furthermore, application of
EDTA to Pb-contaminated fields planted with corn (Zea
mays) resulted in a 140-fold increase in Pb concentration in
the xylem sap, and a net increase in Pb translocation from
roots to shoots via the transpiration stream (Huang et al.
1997, Salt et al. 1998).

Synthetic chelating agents such as EDTA also allow plants
not classified as hyper-accumulators to be usable for
phytoremediation purposes, because EDTA induces them to
take up more heavy metals than they normally can
accumulate. The enhancement of metal uptake and
translocation by EDTA has been attributed to an alteration of
membrane permeability caused by the removal of Zn and Ca
in the plasma membrane (McGrath et al. 2002), which leads
to an efflux of K+ from the cytosol to the apoplast (Vazquez
et al. 1999). Another way in which EDTA promotes heavy
metal accumulation is that it prevents cell wall binding and
deposition of heavy metals, thereby enhancing metal
translocation to the plant shoots (Blaylock et al. 1997).

Phytotoxicity at locations highly contaminated by metals
may occur even before the application of the synthetic
chelate, and this reduces the chance of success with
phytoextraction (Sun et al. 2001). Application of EDTA after
flowering should allow perennial plants to develop a larger
biomass in the subsequent growing season (Salt et al. 1998,
Sun et al. 2001) before they suffer from the phytotoxic
effects of EDTA and EDTA-metal complexes. The harmful
effects of EDTA at high concentrations have been attributed
to its behaviour as a detergent (Sillanpaeae and Oikari 1996,
Dirilge 1998, Shahandeh and Hossner 2000).

The main environmental concern about the application of
EDTA to soils for phytoextraction and soil amendment
purposes is that the heavy metals solubilised or complexed
by EDTA, if not taken up by roots, may be leached down the
soil profile and contaminate groundwater (Gr…man et al.

2001, McGrath et al. 2002). The biological stability of EDTA
may allow metal-EDTA complexes to remain in the soil over
a whole growing season (Hong et al. 1999, Nortemann
1999, Satroutdinov et al. 2000), a disadvantage in high
rainfall areas with shallow ground-water tables.

Mechanisms for Metal Acquisition by Plants

Plant roots can produce exudates that may solubilise and/or
chelate metals for uptake. They also may be involved in
metal translocation and detoxification (Hall 2002).
Numerous studies have shown that phytosiderophores
produced by plants such as durum wheat (Triticum durum)
and barley (Hordeum vulgare) chelate metals, particularly
Fe, which facilitates their uptake (Tagaki et al. 1984, Zhang
et al. 1991, Römheld 1991, Hopkins et al. 1998, Clemens
2001). When a metal is chelated by phytosiderophores, the
phytosiderophore-metal complex is transported across the
cell membrane via specialised transporters (Von Wiren et al.
1995, 1996). Grain crops such as durum wheat are known
to accumulate high concentrations of Cd in the grains when
grown on Cd-polluted sites. This tendency by wheat and
other monocots to accumulate Cd is associated with their
high phytosiderophore production (Römheld 1991). Uptake
and shoot accumulation of Cu, Zn and Mn also increases
with phytosiderophore production in Fe-deficient soil
(Shenker et al. 2001).

Dicotyledonous plants improve metal bioavailability in soil
by extrusion of protons (H+) into the rhizosphere (Lasat
2002). Most heavy metals are soluble at acidic pH.
Moreover, an acidic environment induces the reduction of
ferric iron (Fe3+) to ferrous iron (Fe2+), which is readily taken
up by plants (Lasat 2002).

Various transporters for different metals have been identified
on the plasma membrane and tonoplast in plants (Figure 2).
The main transporters of Zn across the plasma membrane
include a zinc transporter (ZNT1), two zinc-regulated
transporters 1 and 2 (ZRT1–2) and four zinc inducible proteins
(ZIP1–4) (Clemens 2001). The zinc inducible proteins 1, 2 and
3 are confined to the roots, while ZIP4 is found in both the
shoots and the roots (Clemens 2001).

Studies on Arabidopsis indicate that Fe uptake by the
roots from the soil is mediated by an iron-regulated
transporter (IRT1) (Clemens 2001). Korshunova et al.
(1999) found that IRT1 also transports Mn, Zn and Cd
(Clemens 2001). Deficiency in Fe can induce a high uptake
of other metal ions because, when soil Fe is limited, there is
an expression of Fe-transporter proteins that facilitates
conveyance of Fe and other metals (Cohen et al. 1998).
Another family of transport proteins involved in uptake and
transport of Fe is a natural resistant associated macrophage
protein (Nramp) (Vidal et al. 1993). There also exists a Cu
transporter protein (COPT1), which is involved exclusively in
Cu translocation within the plant and is not present in the
roots (Clemens 2001).

Cadmium has no specific transporter and is thought to be
conveyed by transporters of other essential elements such
as Nramp (Guerinot 2000, Thomine et al. 2000).
Conveyance of Ca2+ also may facilitate transport of Cd
across the plasma membrane in wheat (Clemens et al.



1998). Inhibition of Cd uptake by Zn in soybean (Glycine
max) suggests that Cd uptake is mediated by a Zn transport
system (Cataldo et al. 1983). This suggestion is supported
by findings of Dowdy and Larson (1975), Cunningham et al.
(1975), and Haghiri (1974), who observed an antagonistic
relationship between Zn and Cd in which high Zn levels
reduced Cd uptake. The transport protein for Pb and Ca2+ is
lead-calcium transporter (LCT1) (Clemens et al. 1998).

Transportation of heavy metals into the cell vacuole for
compartmentation may occur by a metal/H+ antiport in which
metal conveyance into the vacuole is accompanied by a
simultaneous movement of H+ out of the vacuole.
Alternatively, it may involve the activities of ATP-dependent
transporters located at the tonoplast (Salt and Wagner 1993,
Salt and Rauser 1995, Rea et al. 1998). Compartmentation
of heavy metals into vacuoles is an effective mechanism that
plants use to reduce toxicity of heavy metals in the cytosol
(Vögeli-Lange and Wagner 1990, Apse and Blumwald
2002). Several studies show that compartmentation of Ni, Zn
and Cd or Cd-PC occurs in the vacuole of plants tolerant of
metal-polluted soils (Davies et al. 1991, Ernst et al. 1992,
Brune et al. 1994, De 2000).

Another way in which heavy-metal uptake occurs in plants
is through the destruction of the integrity of the plasma
membrane (Vazquez et al. 1999). Toxicity of heavy metals

increases the permeability of the plasma membrane, a
mechanism linked to the displacement of Ca2+ from the
plasma membrane (Vazquez et al. 1999). When the plasma
membrane is damaged, K+, which is normally present in the
cytosol at high concentrations, flows out of the cytosol to the
apoplast. High K+ in the apoplast cause the development of
an electrochemical gradient between the cytosol and the
apoplast (Vazquez et al. 1999). For charge balancing, the
heavy metals already surrounding the cell then enter the
cell. This mechanism of metal uptake also was reported by
Zhu et al. (2000), who found that K+ deprivation in wheat
enhanced caesium (Cs) uptake by roots.

Translocation of heavy metals from the roots to the shoot
is thought to occur via the xylem, driven by the transpiration
force established in the leaves (Salt et al. 1995a, Hart et al.
1998). Translocation of these metals from the roots to shoots
may also be enhanced by metal-binding ligands produced
by plants (Vögeli-Lange and Wagner 1990).

Detoxification Strategies in Plants

Plants have several mechanisms at the cellular and
subcellular levels that are involved in the sequestration or
detoxification of toxic heavy metals (Hall 2002).
Antioxidation and chelation are the most studied
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Figure 2: Identified metal transporters (or transport proteins) in the plasma membrane and tonoplast in plants, where PC = phytochelatins,
BP = binding proteins, Pi = inorganic phosphate, S = sulfhydryl group, ZIP = zinc inducible protein, ZNT = zinc transporter, IRT = iron-regulated
transporter, COPT = copper transporter, Nramp = natural resistant associated macrophage proteins and LCT = lead-calcium transporter
(adapted from Clemens 2001, Rauser 1995a, 1995b)
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mechanisms. Chelation is a means of avoiding the build-up
of toxic metals at or near sensitive organelles in the cell and
thus preventing their damage (Hall 2002). In heavy metal-
tolerant plants, toxic metals are bound by chelators and
chaperones (Clemens 2001). Chelators such as metal-
binding peptides (including metallothioneins and
phytochelatins), organic acids and amino acids are involved
in metal detoxification by buffering cytosolic metal
concentrations. Chaperones deliver the metal ions to the
vacuole for vacuolisation and binding to metal requiring
proteins (Clemens 2001). Known mechanisms that plants
use to detoxify toxic metals are as follows.

Antioxidants

Heavy-metal toxicity enhances the production of reactive
oxygen species, which are deleterious to sensitive
organelles. Some plants tolerate these effects by reducing
the level of reactive oxygen species (ROS) in their tissues.
Tolerant plants keep the ROS level down through activities
of the antioxidative defence systems (Schützendübel and
Polle 2002), which include the metabolites ascobate,
glutathione and tocopherol, as well as enzymatic
scavengers of activated oxygen such as superoxide
dismutases (SOD), peroxidases and catalases (CAT),
ascobate peroxidases (APX), glutathione S-transferases
(GST) and glutathione peroxidases (GPX) (Noctor and
Foyer 1998, Asada 1999, Apse and Blumwald 2002,
Kawano et al. 2002). Some Cd- tolerant plants overcome the
metal’s toxicity by increasing their production of glutathione
(Schützendübel and Polle 2002). In general, toxicity from
transition heavy metals (e.g. Fe and Cu) may cause an
increase in production of reactive oxygen species (ROS),
which are superoxide radicals (O2

.), hydroxyl radicals (HO.)
and hydrogen peroxide (H2O2) (Dietz et al. 1999,
Schützendübel and Polle 2002). ROS are produced when
metabolism that occurs in chloroplasts and mitochondria is
inhibited during stress (Apse and Blumwald 2002).
Transition metals produce ROS by auto-oxidation, because
they are redox-active metals (Schützendübel and Polle
2002). Although ROS may be important for a plant’s defence
system against pathogens, they also are potentially
destructive to the cell because they cause oxidation of
proteins and membrane lipids or cause DNA injury (Apse
and Blumwald 2002, Schützendübel and Polle 2002).

High levels of Cd and Hg (non-redox-reactive heavy
metals) in the plant tissue cause oxidative stress, which
results in lipid peroxidation, H2O2 accumulation and an
oxidative burst (Schützendübel and Polle 2002). Elevated
Cd in plants causes a transient depletion of glutathione
(GSH) and an inhibition of anti-oxidative enzymes,
especially glutathione reductase (Schützendübel and Polle
2002). One damaging mechanism of non-redox-reactive
heavy metals in plants is that they bind strongly to oxygen,
nitrogen and sulphur atoms (Nieboer and Richardson 1980),
which results in blocking of essential functional groups in
biomolecules (Schützendübel and Polle 2002). For instance,
these heavy metals can inactivate enzymes by binding to
cysteine residues or sulfhydryl groups of enzymes or
structural proteins (Van Assche and Clijsters 1990, Vögeli-

Lange and Wagner 1990). The displacement of Mg by heavy
metals such as Ni and Zn in enzymes inactivates or inhibits
activities of the enzymes (Van Assche and Clijsters 1986).

Polyphenolics

Polyphenolics, which include tannins and lignin precursors
(Strack et al. 1989), are potential antioxidants and have the
ability to chelate heavy metals such as Fe (Rice-Evans et al.
1996). Lummerzheim et al. (1998) found that the response to
Pb toxicity by Arabidopsis thaliana was accompanied by the
accumulation of polyphenolics. Polymerisation of
polyphenolics by peroxidases, which increases after heavy
metal uptake and detoxification, is responsible for the
binding of heavy metals in waterlily (Nymphaea) epidermal
glands (Lavid et al. 2001). Plants that are rich in tannins such
as tea plants are tolerant of elevated levels of Mn, because
tannins reduce Mn toxicity by chelating Mn (Aoba 1986).

Metal-binding peptides

Metal-binding peptides provide another mechanism for
metal tolerance by chelating heavy metals. These reduce
the intracellular concentration of free toxic heavy metals or
render them unavailable for interaction with metabolically-
active cellular compartments (Vögeli-Lange and Wagner
1990). Cadmium-binding proteins (CdBPs), which are
induced by the presence of Cd, have a high affinity for this
metal and are involved in its detoxification (Vögeli-Lange
and Wagner 1990). Studies indicate a positive correlation
between the occurrence of CdBPs and tolerance to Cd
(Stefens et al. 1986, Grill et al. 1987, Reese and Wagner
1987, Scheller et al. 1987).

Biosynthesis of metal-binding proteins in the cytoplasm
occurs when the plant is exposed to elevated levels of the
toxic metal. For instance, CdBPs form metal-binding peptide
complexes in the cytosol and are then translocated into the
vacuole (see Figure 2) (Vögeli-Lange and Wagner 1990). In
the high acidic environment in the vacuole, the metal-binding
peptide complexes are dissociated from the metal-binding
peptides (Reese and Wagner 1987) and form complexes
with organic acids or amino acids present in the vacuole
(Krotz et al. 1989). Also, the metal-binding peptides may
serve as a shuttle for transferring metals from the cytosol
into the vacuole (Vögeli-Lange and Wagner 1990). Two
types of cysteine-rich peptides that bind heavy metals in the
cell are phytochelatins and metallothioneins (Hall 2002).

Metallothioneins are cysteine-rich proteins with low
molecular weights that bind metal ions in metal-thiolate
clusters (Hamer 1986, Rauser 1995a, 1995b).
Metallothioneins are involved in the detoxification of metals,
buffering of cytosolic metals, scavenging of metals during
leaf senescence or metal secretion by the leaf trichomes
(Garcia-Hernandez et al. 1998, Rauser 1995b).

Phytochelatins (PCs) are small peptides with a general
structural formula of γ-(Glu-Cys)n-Gly (n = 2–11) that bind
metal ions (Kondo et al. 1984, Jackson et al. 1987, Hall
2002). These cysteine-rich polypeptides are synthesised
from glutathione (GSH) by γ-glutamylcysteine synthetase
and phytochelatin synthase (Zenk 1996, Cobbett et al. 1998,



Ha et al. 1999). Plants produce phytochelatins from reduced
GSH in response to heavy-metal toxicity (Hall 2002).
Phytochelatin biosynthesis is induced by different levels of a
variety of heavy metals, the most effective being Ag, Cd, As,
Cu, Pb and Hg (Cobbett 2000, Mejáre and Bülow 2001).

The sequestration of heavy metals like Cd by
phytochelatins (Schützendübel and Polle 2002) involves the
formation of low molecular weight Cd-thiolate (Cd-S)
complexes (Strasdeit et al. 1991) in the cytosol which are
transported to the tonoplast (Figure 2). They then are taken
up by active transport systems (e.g. metal/H+ antiporter) and
deposited in the vacuole, where the phytochelatin-metal
forms stable high molecular weight Cd-PC complexes by
reacting with sulphides (Tommasini et al. 1998, Rea 1999,
Clemens 2001, Hall 2002). The incorporation of sulphides
into the high molecular weight complexes of Cd-PCs (PC-
Cd-S) not only increases stability of the complexes, but also
increases the amount of Cd per molecule (Cobbett 2000).

Organic acids

The production of organic acids by plants assists in the
detoxification of heavy metals in the rhizosphere and cytosol,
thereby enhancing plant tolerance of these metals
(Shahandeh and Hossner 2000). The involvement of organic
acids in aluminum detoxification has been clearly documented
(Cobbett 2000). Citrate (Ni-citrate) is also thought to be a Ni
detoxification agent and involved in the transportation of toxic
Ni from roots to leaves (Brooks 1998). Organic acids are also
involved in xylem transport and metal storage in the shoots
(Salt et al. 1999). Citric acid is considered to be the main
ligand or chelator for Cd when Cd is present at low
concentrations (Wagner 1993) and is also involved in plant Zn
and Ni tolerance (Godbold et al. 1984, Sagner et al. 1998).
Citrate has a high affinity for heavy metals, and the metal-
citrate complexes formed seem stable in vacuoles with an
acid pH of 5.5 (McGrath et al. 2002). Another chelator for Zn
in Zn-tolerant plants is malate (Mathys 1977).

Amino acids

Histidine influences metal (especially Ni) accumulation,
tolerance and transport to shoots in both hyper-accumulator
plant species and other taxa (Shahandeh and Hossner
2000). The amount of histidine present in xylem sap strongly
correlates with the Ni concentration (Kramer et al. 1996) with
an increase in Ni concentration in the xylem sap inducing a
concomitant increase in histidine (Clemens 2001). Also, Salt
et al. (1999) reported a positive association between Zn and
histidine in roots.

Nicotianamine is a non-proteinaceous amino acid
synthesised from three molecules of s-adenosyl methionine
(Clemens 2001). Nicotianamine is a chelator of Fe and
several other divalent metal ions in the plant (Von Wiren et
al. 1999). Although nicotianamine is a precursor of a
phytosiderophore, it is not exuded by roots (Clemens 2001).

Recommendations

Decision makers should support remediation of the
environment polluted by by-products of mines and

industries. They should consider phytoremediation, which
has become a multimillion dollar industry in developed
countries. Besides being cheap, it is an on-site operation.
The construction of drainage systems below contaminated
soil layers to capture the heavy metal-laden leachates for
recycling could defray remediation costs. Furthermore,
phytoremediation may provide a means of retrieving
essential elements (e.g. Fe, Zn) in food crops to cure or
prevent diseases that are caused by lack of these nutrients.
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