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1. INTRODUCTION

Throughout this paper, all rings are associative with identity. Given a
w xring R, the polynomial ring over R is denoted by R x . This paper

concerns the relationships between Armendariz rings and reduced rings,
w xbeing motivated by the results in 1, 2, 7 . The study of Armendariz rings,

w xwhich is related to polynomial rings, was initiated by Armendariz 2 and
w xRege and Chhawchharia 7 . A ring R is called Armendariz if whenever

Ž . m Ž . npolynomials f x s a q a x q ??? qa x , g x s b q b x q ??? qb x0 1 m 0 1 n
w x Ž . Ž . Žg R x satisfy f x g x s 0, then a b s 0 for each i, j. The converse isi j

.obviously true. A ring is called reduced if it has no nonzero nilpotent
w xelements. Reduced rings are Armendariz by 2, Lemma 1 and subrings of

Armendariz rings are also Armendariz obviously. We emphasize the con-
nections among Armendariz rings, reduced rings, and classical quotient
rings. Moreover several examples and counterexamples are included for
answers to questions that occur naturally in the process of this paper.
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2. ARMENDARIZ RINGS

First we consider some examples and counterexamples for Armendariz
w xrings. Rege and Chhawchharia 7 showed that every n-by-n full matrix

ring over any ring is not Armendariz, where n G 2. We have a similar
result in the following.

EXAMPLE 1. Let R be a ring. We claim that n-by-n upper triangular
matrix rings over R are not Armendariz, where n G 2. It is enough to show
that the 2-by-2 upper triangular matrix ring over R is not Armendariz
because each subring of an Armendariz ring is also Armendariz. Let S be

1 0Ž . Ž .the 2-by-2 upper triangular matrix ring over R, and let f x s q0 0
1 y1 0 0 0 1Ž . w x Ž . Ž .Ž . Ž . Ž .x and g x s q x be polynomials in S x . Then f x g x0 0 0 1 0 1

1 0 0 1Ž . Ž .s 0, but / 0. So S is not Armendariz and consequently every0 0 0 1

n-by-n upper triangular matrix ring over R is not Armendariz.

But we may find subrings of the 3-by-3 upper triangular matrix rings
which may be Armendariz as in the following.

PROPOSITION 2. Let R be a reduced ring. Then

a b c
S s N a, b , c, d g R0 a d½ 5ž /0 0 a

is an Armendariz ring.

w xProof. We employ the method in the proof of 7, Proposition 2.5 . First
notice that for

a b c a b c1 1 1 2 2 2

0 a d 0 a d, g S1 1 2 2� 0 � 00 0 a 0 0 a1 2

we can denote their addition and multiplication by

a , b , c , d q a , b , c , d s a q a , b q b , c q c , d q dŽ . Ž . Ž .1 1 1 1 2 2 2 2 1 2 1 2 1 2 1 2

and

a , b , c , d a , b , c , dŽ . Ž .1 1 1 1 2 2 2 2

s a a , a b q b a , a c q b d q c a , a d q d a ,Ž .1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

w xrespectively. So every polynomial in S x can be expressed in the form
Ž Ž . Ž . Ž . Ž .. Ž . w xp x , p x , p x , p x for some p x ’s in R x .0 1 2 3 i
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Ž . Ž Ž . Ž . Ž . Ž .. Ž . Ž Ž . Ž . Ž .Let f x s f x , f x , f x , f x and g x s g x , g x , g x ,0 1 2 3 0 1 2
Ž .. w x Ž . Ž . Ž . Ž .g x be elements of S x . Assume that f x g x s 0. Then f x g x s3

Ž Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .f x g x , f x g x q f x g x , f x g x q f x g x q0 0 0 1 1 0 0 2 1 3
Ž . Ž . Ž . Ž . Ž . Ž ..f x g x , f x g x q f x g x s 0. So we have the following system2 0 0 3 3 0

of equations:

0 f x g x s 0;Ž . Ž . Ž .0 0

1 f x g x q f x g x s 0;Ž . Ž . Ž . Ž . Ž .0 1 1 0

2 f x g x q f x g x q f x g x s 0;Ž . Ž . Ž . Ž . Ž . Ž . Ž .0 2 1 3 2 0

3 f x g x q f x g x s 0.Ž . Ž . Ž . Ž . Ž .0 3 3 0

w x Ž . Ž . Ž .Use the fact that R x is reduced. From Eq. 0 , we see that g x f x s 0.0 0
Ž . Ž . Ž . Ž . Ž .If we multiply Eq. 1 on the right side by f x , then f x g x f x q0 0 1 0

Ž . Ž . Ž . Ž . Ž . Ž . Ž .f x g x f x s 0. So f x g x s 0 and hence f x g x s 0. Also if1 0 0 0 1 1 0
Ž . Ž . Ž . Ž . Ž .we multiply Eq. 3 on the right side by f x , then f x g x f x q0 0 3 0

Ž . Ž . Ž . Ž . Ž . Ž . Ž .f x g x f x s 0. So f x g x s 0 and hence f x g x s 0. Now if3 0 0 0 3 3 0
Ž . Ž . Ž . Ž . Ž .we multiply Eq. 2 on the right side by f x , then f x g x f x q0 0 2 0

Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .f x g x f x q f x g x f x s 0. So f x g x s 0 and hence Eq.1 3 0 2 0 0 0 2
Ž .2 becomes

39 f x g x q f x g x s 0.Ž . Ž . Ž . Ž . Ž .1 3 2 0

Ž . Ž . Ž . Ž .If we multiply Eq. 39 on the right side by f x , then we have f x g x1 1 3
Ž . Ž .s 0 and so f x g x s 0.2 0

Now let

aX bX cX
a b c j j ji i in m

X Xi j0 a d0 a df x s x and g x s x ,Ž . Ž . j jÝ Ýi i
Xis0 js0� 0 � 00 0 a 0 0 ai j

Ž . n i Ž . n i Ž . n i Ž .where f x s Ý a x , f x s Ý b x , f x s Ý c x , f x s0 is0 i 1 is0 i 2 is0 i 3
n i Ž . m X j Ž . m X j Ž . m X jÝ d x , g x s Ý a x , g x s Ý b x , g x s Ý c x , andis0 i 0 js0 j 1 js0 j 2 js0 j
Ž . m X j X X X Xg x s Ý d x . Then we obtain that a a s 0, a b s 0, b a s 0, a c3 js0 j i j i j i j i j

s 0, b dX s 0, c aX s 0, a dX s 0, and d aX s 0 for all i, j by the preced-i j i j i j i j
w xing results, the condition that R is reduced, and 2, Lemma 1 . Conse-

quently

aX bX cX
a b c j j ji i i

X X0 a d0 a d s 0j ji i
X� 0 � 00 0 a 0 0 ai j

for all i, j and therefore S is an Armendariz ring.
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Let S be a reduced ring and let

¡ ¦a a a ??? a12 13 1n

0 a a ??? a23 2 n~ ¥0 0 a ??? aR s N a, a g S .3nn i j
. . . . .. . . . .� 0. . . . .¢ §0 0 0 ??? a

Based on Proposition 2, one may suspect that R may be also an Armen-n
dariz ring for n G 4. But the following example erases the possibility.

EXAMPLE 3. Let S be a ring and let

¡ ¦a a a a12 13 14

0 a a a23 24~ ¥R s N a, a g S .4 i j0 0 a a34� 0¢ §
0 0 0 a

Let

0 1 0 0 0 1 y1 0
0 0 0 0 0 0 0 0f x s q xŽ .
0 0 0 0 0 0 0 0� 0 � 0
0 0 0 0 0 0 0 0

and

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1g x s q xŽ .
0 0 0 1 0 0 0 1� 0 � 0
0 0 0 0 0 0 0 0

w x Ž . Ž .be polynomials in R x . Then f x g x s 0, but4

0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1

/ 0.
0 0 0 0 0 0 0 1� 0 � 0
0 0 0 0 0 0 0 0

So R is not Armendariz. Similarly, for the case of n G 5, we have the4
same result.

Given a ring R and a bimodule M , the trï ial extension of R by M isR R
Ž .the ring T R, M s R [ M with the usual addition and the multiplication

r , m r , m s r r , r m q m r .Ž . Ž . Ž .1 1 2 2 1 2 1 2 1 2
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r mŽ .This is isomorphic to the ring of all matrices , where r g R and0 r
m g M and the usual matrix operations are used.

w xCOROLLARY 4 7, Proposition 2.5 . Let R be a reduced ring. Then the
Ž .trï ial extension T R, R is an Armendariz ring.

Ž .Proof. Notice that T R, R is isomorphic to

a b 0
U s N a, b g R0 a 0½ 5ž /0 0 a

and that each subring of an Armendariz ring is also Armendariz. Thus
Ž .T R, R is an Armendariz ring by Proposition 2.

From Corollary 4, one may suspect that if R is Armendariz then the
Ž .trivial extension T R, R is Armendariz. But the following example elimi-

nates the possibility.

a b� 4Ž .EXAMPLE 5. Let T be a reduced ring. Then R s N a, b g T is an0 a

A B� 4Ž .Armendariz ring by Corollary 4. Let S s N A, B g R and let0 A

0 1 0 0 0 1 y1 0ž / ž / ž / ž /0 0 0 0 0 0 0 y1
f x s q xŽ .

0 0 0 1 0 0 0 1� 0 � 0ž / ž / ž / ž /0 0 0 0 0 0 0 0

and

0 1 0 0 0 1 1 0ž / ž / ž / ž /0 0 0 0 0 0 0 1
g x s q xŽ .

0 0 0 1 0 0 0 1� 0 � 0ž / ž / ž / ž /0 0 0 0 0 0 0 0

w x Ž . Ž .be polynomials in S x . Then f x g x s 0, but

0 1 0 0 0 1 1 0ž / ž / ž / ž /0 0 0 0 0 0 0 1
/ 0.

0 0 0 1 0 0 0 1� 0 � 0ž / ž / ž / ž /0 0 0 0 0 0 0 0

Thus S is not Armendariz.

w xBy Anderson and Camillo 1, Theorem 2 , polynomial rings over Armen-
dariz rings are also Armendariz. So we may conjecture that skew polyno-
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mial rings over Armendariz rings are also Armendariz. Recall that for a
ring R with an endomorphism a of R and an a-derivation d of R, the

w xOre extension of R, denoted by R x; a , d , is the ring obtained by giving
Ž . Ž .the polynomial ring over R with the new multiplication xr s a r q d r

w x w xfor all r g R. When d s 0, we write R x; a for R x; a , 0 and call it a
Ž .skew polynomial ring also called an Ore extension of endomorphism type .

However there exists an Armendariz ring R over which the skew polyno-
mial ring is not an Armendariz ring as in the following.

EXAMPLE 6. Let Z be the ring of integers modulo 2 and consider the2
ring Z [ Z with the usual addition and multiplication. Let R s Z [ Z .2 2 2 2

wThen R is a commutative reduced ring; hence R is Armendariz by 2,
x ŽŽ .. Ž .Lemma 1 . Now let a : R ª R be defined by a a, b s b, a . Then a is

w xan automorphism of R. We claim that R x; a is not Armendariz. Let
Ž . Ž . wŽ . x Ž . Ž . wŽ . xf y s 1, 0 q 1, 0 x y and g y s 0, 1 q 1, 0 x y be elements in
w xw x Ž . Ž . Ž .wŽ . x w xR x; a y . Then f y g y s 0, but 1, 0 1, 0 x / 0. Therefore R x; a is

not an Armendariz ring.

w xArmendariz obtained some results on reduced rings in 2 . We here
obtain the same results on Armendariz rings. A ring is called abelian if
every idempotent of it is central.

LEMMA 7. Armendariz rings are abelian.

w xProof. By the method in the proof of 1, Theorem 6 .

ww xxGiven a ring R, the formal power series ring over R is denoted by R x .

LEMMA 8. Suppose that a ring R is abelian. Then we ha¨e the following:

Ž . w x w x1 E¨ery idempotent of R x is in R and R x is abelian.
Ž . ww xx ww xx2 E¨ery idempotent of R x is in R and R x is abelian.

w x ww xx Ž .Proof. R x is a subring of R x and so it is enough to prove 2 . For
ww xx 2 nf g R x , assume that f s f , where f s e q e x q ??? qe x q ??? .0 1 n

Then we have the system of equations

0 e2 s e ;Ž . 0 0

1 e e q e e s e ;Ž . 0 1 1 0 1

2 e e q e e q e e s e ;Ž . 0 2 1 1 2 0 2

. . . ;

n e e q e e q ??? qe e s e ;Ž . 0 n 1 ny1 n 0 n

. . . .
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Ž .Observing that Eq. 0 yields that e is an idempotent, so it is central. If we0
Ž .multiply Eq. 1 on the left side by e , then e e q e e e s e e . But0 0 1 0 1 0 0 1

e e e s e e because e is central. So e e s 0 and so e s 0; hence Eq.0 1 0 0 1 0 0 1 1
Ž . Ž .2 becomes e e q e e s e . If we multiply Eq. 2 on the left side by e ,0 2 2 0 2 0
then e e q e e e s e e . But e e e s e e . Hence e e s 0 and so0 2 0 2 0 0 2 0 2 0 0 2 0 2
e s 0. Now assume that k is a positive integer such that e s 0 for all2 i

Ž .1 F i F k. Then equation k q 1 becomes e e q e e s e , and0 kq1 kq1 0 kq1
ww xxso e s 0 by the same method. Therefore f s e g R and also R x iskq1 0

abelian.

w xBy Kaplansky 3 , a ring R is called Baer if the right annihilator of every
nonempty subset of R is generated by an idempotent. Closely related to
these rings are p.p.-rings; a ring R is called a right p.p.-ring if each
principal right ideal of R is projective, or equivalently, if the right
annihilator of each element of R is generated by an idempotent. A ring R
is called a p.p.-ring if it is both a right and a left p.p.-ring. Baer rings are
clearly right p.p.-rings. We denote the right annihilator over a ring R by
Ž . Žr ] . Abelian right p.p.-rings are reduced for, letting R be an abelianR

right p.p.-ring and r 2 s 0 for r g R, then there exists e2 s e g R such
Ž . Ž . .that r r s eR; hence r g r r implies r s er s re s 0 and so they areR R

also left p.p.-rings. Thus we may obtain the following two theorems with
w xthe help of 2, Theorems A and B . However we prove them a little

independently in this paper.

THEOREM 9. Let R be an Armendariz ring. Then R is a p. p.-ring if and
w xonly if R x is a p. p.-ring.

Proof. Assume that R is a p.p.-ring. Let p s a q a x q ??? qa x m g0 1 m
w x 2 Ž .R x . There exists e s e g R such that r a s e R, for i s 0, 1, . . . , m.i i R i i

2 m Ž .Let e s e e ??? e . Then by Lemma 7, e s e g R and eR s F r a .0 1 m is0 R i
m w x Ž .So pe s a e q a ex q ??? qa ex s 0. Hence eR x : r p . Let q s0 1 m Rw x x

n Ž .b q b x q ??? qb x g r p . Since pq s 0 and R is Armendariz, a b0 1 n Rw x x i j
s 0 for all 0 F i F m, 0 F j F n. Then b g e e ??? e R s eR for allj 0 1 m

w x w x Ž .j s 0, 1, . . . , n. Hence q g eR x . Consequently eR x s r p and thusRw x x
w xR x is a p.p.-ring.

w xConversely, assume that R x is a p.p.-ring. Let a g R. By Lemma 8,
Ž . w x Ž .there exists an idempotent e g R such that r a s eR x . Hence r aRw x x R

Ž .s r a l R s eR and therefore R is a p.p.-ring.Rw x x

THEOREM 10. Let R be an Armendariz ring. Then R is a Baer ring if and
w xonly if R x is a Baer ring.

w xProof. Assume that R is Baer. Let A be a nonempty subset of R x
and let A* be the set of all coefficients of elements of A. Then A* is a

Ž .nonempty subset of R and so r A* s eR for some idempotent e g R.R
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Ž . w x Ž .Since e g r A , we get eR x : r A . Now, let g s b q b xRw x x Rw x x 0 1
t Ž .q ??? qb x g r A . Then Ag s 0 and hence fg s 0 for any f g A.t Rw x x

Ž .Thus b , b , . . . , b g r A* s eR since R is Armendariz. Hence there0 1 t R
t Žexist c , c , . . . , c g R such that g s ec q ec x q ??? qec x s e c q c x0 1 t 0 1 t 0 1

t. w x w xq ??? qc x g eR x . Therefore R x is Baer.t
w xConversely, assume that R x is a Baer ring. Let B be a nonempty

Ž . w xsubset of R. Then r B s eR x for some idempotent e g R by LemmaRw x x
Ž .8. Hence r B s eR and therefore R is a Baer ring.R

In the following text we obtain similar results for the formal power
series rings.

PROPOSITION 11. Suppose that a ring R is abelian. Then we ha¨e the
following:

Ž . ww xx1 If R x is a p. p.-ring, then R is a p. p.-ring.

Ž . ww xx2 If R x is a Baer ring, then R is a Baer ring.

Proof. By the same methods in the proofs of Theorems 9 and 10.

COROLLARY 12. Suppose that a ring R is an Armendariz ring. Then we
ha¨e the following:

Ž . ww xx1 If R x is a p. p.-ring, then R is a p. p.-ring.

Ž . ww xx2 If R x is a Baer ring, then R is a Baer ring.

Proof. Combining Lemma 7 and Proposition 11.

Ž .Remark. The converse of Corollary 12 1 is not true in general by the
w Ž .xfollowing argument. Take the ring R in 5, Example 1 1 . Notice that R is

a Boolean ring and hence it is a p.p.-ring. R is also an Armendariz ring
ww xxbecause it is reduced. However R x is not a p.p.-ring by the argument in

w x4, Example 4 .

Ž .Let R be a reduced ring. Then the trivial extension T s T R, R is
0 rŽ . Ž .Armendariz by Corollary 4; notice that the prime radical P T of T is 0 0

Žwith r g R hence it is Armendariz by applying the definition of Armen-
. Ž .dariz rings to rings without identity and that TrP T ( R is reduced

Ž .hence it is also Armendariz . So one may suspect that if a ring R is an
Ž . Ž .abelian ring such that RrP R and P R are Armendariz, then R is

Ž .Armendariz, where P R is the prime radical of R. However, the following
example erases the possibility.
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EXAMPLE 13. Let Z be the ring of integers and let

a cR s N a y b ' c ' 0 mod 2 .Ž .½ 5ž /0 b

0 cŽ . � Ž .4 Ž .Ž .Then P R s N c ' 0 mod 2 and so P R is Armendariz. Also the0 0

0 0 1 0Ž . Ž .only idempotents of R are and . So R is abelian.0 0 0 1

Ž .Next note that RrP R is reduced and so it is Armendariz. In fact,

a 0RrP R s N a y b ' 0 mod 2Ž . Ž .½ 5ž /0 b

( a, b N a y b ' 0 mod 2 .� 4Ž . Ž .

Ž .2 Ž 2 2 . Ž .If a, b s a , b s 0, 0 , then a s 0 and b s 0.
2 2 0 2Ž . Ž . Ž .Now we claim that R is not Armendariz. Let f x s q x and0 0 0 0

0 2 0 2 2 2 0 2Ž . Ž . Ž .Ž . Ž . Ž . Ž .g x s q x. Then f x g x s 0, but / 0. Therefore R0 y2 0 0 0 0 0 0

is not an Armendariz ring.

Moreover we conjecture that R is an Armendariz ring if for any nonzero
proper ideal I of R, RrI and I are Armendariz. However, we also have a
counterexample to this situation as in the following.

EXAMPLE 14. Let F be a field and consider the ring

F FR s .ž /0 F

Then by Example 1, R is not Armendariz.
Now we show that RrI and I are Armendariz for any nonzero ideal I of

F F 0 F 0 FŽ . Ž . Ž .R. Note that the only nonzero proper ideals of R are , , and .0 0 0 F 0 0
F FŽ .First, let I s . Then RrI ( F and so RrI is Armendariz. So we claim0 0

Ž . Ž . w x Ž . Ž .that I is Armendariz. For f x , g x g I x , suppose that f x g x s 0,
Ž . n Ž . mwhere f x s a q a x q ??? qa x and g x s b q b x q ??? qb x .0 1 n 0 1 m

a b c di i j jŽ . Ž .Let a s and b s , where 0 F i F n and 0 F j F m. Assumei j0 0 0 0
that a / 0 and b / 0. Then a c s 0 s a d . If a / 0, then c s 00 0 0 0 0 0 0 0
and d s 0, which is a contradiction. So a s 0 and hence b / 0. This0 0 0
implies that a b s 0 for all j, 0 F j F m. Hence the coefficient of x in0 j
Ž . Ž .f x g x is a b s 0. Then a c s 0 s a d . If a / 0, then c s 0 and1 0 1 0 1 0 1 0

d s 0, which is also a contradiction. So a b s 0 for all j, 0 F j F m.0 1 j
Continuing this process, we have a b s 0 for all i, j, 0 F i F n 0 F j F m.i j
Therefore I is Armendariz.
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0 FŽ .Next let J s . Then RrK ( F and so RrJ is Armendariz. By the0 F
same method, we have that J is Armendariz.

0 FŽ .Finally, let K s . Then RrK ( F [ F and so RrK is Armendariz.0 0
Also K 2 s 0 and so K is Armendariz.

Notice that for any nontrivial idempotent e g R, if R is an Armendariz
Ž .ring then so is eRe; but Mat R is not Armendariz and so ‘‘Armendariz’’n

is not a Morita invariant property. But one may suspect that if eRe is an
Armendariz ring for any nontrivial nonidentity idempotent e of R then R
is an Armendariz ring. However, it is not true in general, by the following
example.

EXAMPLE 15. Let Z be the ring of integers modulo 2 and consider the2
Z Z2 2Ž .ring R s . Then by Example 1, R is not Armendariz. Notice that the0 Z 2

only nontrivial nonidentity idempotents of R are

1 0 0 0 1 1 0 1, , , and ,ž / ž / ž / ž /0 0 0 1 0 0 0 1

and that eRe ( Z is an Armendariz ring for any nontrivial nonidentity2
idempotent e in R.

3. ARMENDARIZ RINGS AND REDUCED RINGS

w xIn 1 , Anderson and Camillo assert that it does seem possible for R to
Ž .be reduced but the classical quotient ring Q R of R is not reduced. But

we have the following affirmative result.

THEOREM 16. Suppose that there exists the classical right quotient ring
Ž . Ž .Q R of a ring R. Then R is reduced if and only if Q R is reduced.

Ž .Proof. It is enough to show that if R is reduced then Q R is reduced.
Ž . 2Let q be a nonzero element of Q R with q s 0. Then there exist

a, b g R with b regular such that q s aby1. So aby1aby1 s 0. Clearly
y1 Ž . y1b a g Q R and so there exist c, d g R with d regular such that b a s

y1 Ž .y1 y1 y1 y1 y1cd . Then ac bd s acd b s ab ab s 0 and so ac s 0. Hence
Ž .2 y1 y1ca s 0 and so ca s 0 since R is reduced. Now from b a s cd , we

Ž .have ad s bc in Q R . So ada s bca s 0. Thus ad s 0 and so a s 0 since
Ž .d is regular, which is a contradiction. Therefore Q R is reduced.

Anderson and Camillo also assert that for a semiprime left and right
Ž .Noetherian ring R, R is Armendariz if and only if Q R is reduced in the

w xargument after 1, Theorem 6 . In the following corollary we add another
condition.
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COROLLARY 17. Let R be a ¨on Neumann regular ring and suppose that
Ž .there exists the classical right quotient ring of R, Q R . Then the following

statements are equï alent:

Ž .1 R is Armendariz.
Ž .2 R is reduced.
Ž . Ž .3 Q R is reduced.
Ž . Ž .4 Q R is Armendariz.

Ž . Ž . Ž . Ž . Ž . Ž . wProof. 3 « 2 and 4 « 1 are straightforward. 2 « 1 : By 2,
x Ž . Ž .Lemma 1 . 1 « 3 : Assume that R is Armendariz. Then by Lemma 7, R

Ž .is abelian von Neumann regular and so it is reduced; hence Q R is
Ž . Ž . w xreduced by Theorem 16. 3 « 4 : By 2, Lemma 1 .

w xAnderson and Camillo 1, Theorem 7 proved that if R is a prime ring
which is left and right Noetherian, then R is Armendariz if and only if R
is reduced. We obtain this result under a weaker condition.

PROPOSITION 18. Suppose that R is a semiprime right and left Goldie ring.
Then R is Armendariz if and only if R is reduced.

w xProof. Since reduced rings are Armendariz by 2, Lemma 1 , it is
enough to show that if R is Armendariz then R is reduced. By hypothesis,

Ž .R has the right and left classical quotient ring Q R , which is semisimple
Ž .Artinian up to isomorphism by the Goldie theorem. Since we have right

Ž . wand left common denominators for finite sets of elements in Q R by 6,
x Ž . Ž . Ž .w xLemma 2.1.8 , it follows that for f x , g x g Q R x there exist regular

Ž . Ž . w xelements a and b in R such that af x , g x b g R x . Assume that
Ž . Ž .f x g x s 0. Recall that R is Armendariz and that a, b are regular;

Ž . Ž .hence each coefficient of f x annihilates each coefficient of g x . Thus
Ž . Ž .Q R is Armendariz. On the other hand, Q R is von Neumann regular;

Ž . w xhence Q R is reduced by 1, Theorem 6 and so R is reduced.

COROLLARY 19. Suppose that R is a semisimple Artinian ring. Then R is
an Armendariz ring if and only if R is a finite direct sum of dï ision rings.

Proof. By Proposition 18.
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