
Electronic Notes in Theoretical Computer Science 36 (2000)
URL: http://www.elsevier.nl/locate/entcs/volume36.html 21 pages

Rewriting Semantics of Meta-Objects and
Composable Distributed Services 1

G. Denker and J. Meseguer

Computer Science Laboratory
SRI International

Menlo Park, CA 94025
USA

Email: denker@csl.sri.com

C. Talcott

Computer Science Department
Stanford University
Stanford, CA 94305

USA
Email:clt@cs.stanford.edu

Abstract

Communication between distributed objects may have to be protected against ran-
dom failures and malicious attacks; also, communication timeliness may be essential
or highly desired. Therefore, a distributed application often has to be extended with
communication services providing some kind of fault-tolerance, secrecy, or quality-
of-service guarantees. Ideally, such services should be defined in a highly modular
and dynamically composable way, so that the combined assurance of several services
can be achieved by composition in certain cases, and so that services can be added
or removed from applications at runtime in response to changes in the environment.
To reason about the formal properties of such composable communication services
one first needs to give them a precise semantics. This paper proposes a rewriting
logic semantics for the so-called “onion skin” model of distributed object reflection,
in which different meta-objects, providing different communication services, can be
stacked on top of a basic application object. Since the correct behavior of a service
depends on the type of hostile environment against which the service must protect
the application, rewriting logic should also be used to specify such hostile environ-
ments. The service guarantees are then guarantees about the behavior specified by
the union of the rewrite theories specifying the basic application, the services, and
the hostile environment.

c©2000 Published by Elsevier Science B. V. Open access under CC BY-NC-ND license.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82292485?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by-nc-nd/3.0/

Denker, Meseguer & Talcott

1 Introduction

In distributed computing and in communications software there is a great in-
terest in modular and composable approaches. In particular, services such
as security or fault-tolerance and services intended for boosting performance
that may in practice be “hard-wired” across different parts of the code of a
distributed system should be treated in a much more modular way, so that
they can be dynamically added to a system, and so that several such services
can be composed to obtain their combined benefits. Besides the good software
engineering reasons of thus making the systems much more easily reusable and
adaptable, modularity and composability are also crucial at runtime, in the
sense that some of these services, that may have a cost in performance, should
not be used always and everywhere. Instead, they should be installed dynam-
ically and selectively at runtime, in those areas or domains of the distributed
system where they are needed in response to some security threat, failure,
need for boosting performance, and so on.

A number of authors, in the areas of distributed computing and networks
(see for example papers by Agha (cited below) and [15,10,17]), and also re-
searchers in formal methods (c.f. [24,26,21]), have proposed some concepts and
solutions to deal with the problems posed by composition of distributed ser-
vices. The notion of “weaving” [14] is also a mechanism that could be used to
deal with some of these problems. There has also been some work on modular
specification and reasoning (see below). To achieve modularity and adapt-
ability several of these approaches use distributed object-oriented reflection 2 ,
that is, the ability to reprogram the semantics of communication and object
creation. All of these approaches recognize that the goal of achieving truly
modular and composable distributed services, and ensuring good properties
in compositions of such services is quite subtle.

To begin with, a satisfactory formal semantics of what is meant by compos-
able distributed services has not yet been given, nor have the reflective aspects
of such compositions been adequately formalized. Chandy and Misra [5] pro-
pose a “rely-guarantee” discipline for treating global and local properties of
a system separately, and Abadi and Lamport [1] propose a method for de-
scribing open components of concurrent systems using assumption/guarantee
assertions [13]. However, the above approaches address what might be called
parallel composition of systems. We are not aware of any systematic approach
to the formal semantics of services composed in a reflective and layered way.

This paper proposes a semantic approach to make precise the reflective

1 Supported by DARPA through Rome Laboratories Contract F30602-97-C-0312, by
DARPA and NASA through Contract NAS2-98073, by Office of Naval Research Contract
N00014-99-C-0198, and by National Science Foundation Grants CCR-9505960 and CCR-
9633363, and CCR-9900334.
2 The specific features of distributed object-oriented reflection that we will discuss in this
paper will not need the full power of rewriting logic reflection [7,8]; they can in fact be
expressed at the object level without any need for using rewriting logic metalevel features.

2

Denker, Meseguer & Talcott

concept of composable service in a distributed object-oriented system. Our
approach is based on the executable formal semantics for distributed object-
oriented systems provided by rewriting logic [19] and explicitly addresses the
reflective distributed object-oriented properties that are essential for having
a truly modular notion of service. The formal model that we present seems
promising not only for formal analysis and symbolic simulation, but also as
a semantic foundation on top of which one could develop theorem proving
methods to formally verify important properties of services and their compo-
sitions. We have been strongly influenced by the onion skin model of actor
reflection developed by Agha and his collaborators [3,12,29,11,2,28,4] which
we generalize and formalize in this paper within the framework of rewriting
logic.

Plan

The remainder of this paper is organized as follows. In the rest of this section
we informally discuss the onion skin model (§1.1) and illustrate it with a sim-
ple example (§1.2) to motivate the generalization and formalization of these
ideas in the main body of the paper. In §2 we present a rewriting semantics of
concurrent meta-objects. We begin with a review of the rewriting logic axiom-
atization of concurrent objects and specialize this to concurrent asynchronous
objects in the spirit of the actor model (§2.1). In §2.2 we then describe the
representation of meta-objects and encapsulation of layers of meta-objects in
towers. Finally, we show how concurrent objects can be transformed to equiv-
alent single object towers that are then suitable for installation of additional
meta-layers (§2.3). In §3 we present a case study illustrating our meta-object
semantics. We use the rewriting logic based language Maude to specify our
examples. The case study employs an encryption service and a client-server
application in which the server may create helper objects and delegate requests
to them. In §4 we explain how our work on composable services includes the
formal specification of the hostile environment in which those services are
installed. Conclusions and future work are discussed in §5.

1.1 The Onion Skin Model of Actor Reflection

The objective of the onion skin model is to reflect on the basic actor primitives
of communication (sending and receiving messages) and actor creation while
maintaining a balance between the power of the reflective capabilities and the
encapsulation properties of the actor model.

In this model each actor has a meta-actor that defines the semantics of its
primitive actions. For example, a message send by the base actor becomes a
request to its meta-actor to transmit the message. Dually, messages delivered
to the actor are received by its meta-actor, giving it the ability to control the
receive semantics. If no explicit meta-actor behavior is defined, the underlying
system semantics provides a default meta-actor behavior. An actor together

3

Denker, Meseguer & Talcott

with its meta-actor appears to the environment like a normal actor, and thus
can be controlled by a further meta-level actor. This gives rise to layers of
meta-levels and hence the “onion skin” analogy. Distributed services for a
group of actors can be expressed in terms of meta-actor layers that coordinate
to achieve some overall property.

As proposed by Agha et al., the onion skin model provides a conceptual
foundation for separation of concerns in developing and (dynamically) adapt-
ing open distributed systems to meet changing environment conditions and
requirements. For example, application functionality, communication proto-
cols and security requirements, and failure / dependability semantics, can be
treated separately and modularly as independent layers, providing services
that may be composed, statically or dynamically, in various ways to achieve
a desired overall behavior. This model has been used to support a number of
high-level declarative programming abstractions such as synchronizers, acti-
vators, real-time synchronizers, actor spaces, and protocols that abstract over
interaction patterns. Several prototype languages have been developed based
on these ideas [11,28,25].

1.2 Example of Composing Services

In the onion skin architecture the implementation of a service is achieved by
composing one or more meta-actors on top of each of the actors that comprise
the basic distributed application. The meta-actors mediate the communica-
tion between the base actors by providing appropriate communication services.
If several meta-actors are layered on top of a base actor, a combined communi-
cation service—for example providing both security and fault-tolerance—may
thus be achieved. No knowledge of the component or modification of the base
actor itself is needed. But, of course, for the meta-actors to implement the
service correctly it may be necessary that the base actors satisfy some specific
interface or behavioral requirements. To illustrate how these mechanisms can
be used we sketch an example scenario.

Consider two actors A and B (Figure 1) where B provides some service
requested by a client A.

A B

reply

request

Fig. 1. A sends requests to B, and B replies and perhaps changes internal state.

Suppose, however, that sensitive information is being transmitted between
A and B, and the communication medium cannot be trusted. Then, to pro-
tect the information, an encryption service can be put in place by installing
encryptor meta-actors on A and B. These meta-actors take care of encrypting
outgoing messages and decrypting incoming messages without any changes

4

Denker, Meseguer & Talcott

required in A and B (Figure 2).

A B
request

reply

encrypted message

Encryptor Encryptor

Fig. 2. All messages between A and B are encrypted and decrypted by the
encryption layer.

This approach to composable services can also cope with the dynamic
aspects of actor creation, including the installation of the appropriate meta-
actors on such new actors. Suppose, for example, the variant of the above
situation in which actor B may delegate the computation of the reply to a new
actor B’ that is created by B upon reception of the request from A with the
only purpose of answering A’s request (Figure 3).

A B B’

reply

request

Fig. 3. B delegates request of A to B’. B’ replies to A.

Of course, if only A and B used encryption but B’ didn’t, secrecy would
be violated. A simple solution to this problem is to endow any encryption
meta-actor with the capacity for installing another encryption meta-actor on
any new actor that is being created by their “base” actor. In our example
this means that the encryptor meta-actor for B will add to the object cre-
ation information that it receives from B for the creation of B’ the additional
information for adding an encryption meta-actor on top of B’ (Figure 4).

A
request

reply

encrypted message

B B’

Encryptor Encryptor Encryptor

Fig. 4. B’ is created with encryption service installed. B delegates request of A to
helper B’, and B’ replies to A.

5

Denker, Meseguer & Talcott

2 Rewriting Semantics of Concurrent Meta-Objects

We briefly introduce the rewriting logic model for a distributed system config-
uration as a “soup” (multiset) of concurrent objects and messages that behave
according to a set of rewrite rules describing the behavior of individual ob-
jects. In particular, we specialize the rewriting logic object model [16,18,20] to
the case of asynchronous message passing. We then introduce meta-objects,
which can be layered to form towers that appear to their environment just
like concurrent objects.

2.1 Concurrent Objects in Rewriting Logic

We adopt the treatment of concurrent objects by rewrite theories in [19].
We call such theories concurrent object theories. The concurrent state of an
object-oriented system, often called a configuration, has typically the struc-
ture of a multiset made up of objects and messages. Therefore, we can view
configurations as built up by a binary multiset union operator, which we can
represent with empty syntax (i.e., juxtaposition) as : Configuration ×
Configuration −→ Configuration. (Following the conventions of mix-fix
notation, we use underbars “ ” to indicate argument positions.) The multi-
set union operator is declared to satisfy the structural laws of associativity
and commutativity and to have identity ∅. Objects and messages are singleton
multiset configurations (Object,Msg < Configuration), and more complex
configurations are generated from them by multiset union.

An object in a given state is represented as a term 〈O : C | a1 : v1, . . . , an :
vn〉, where O is the object’s name or identifier, C is its class, the ai’s are the
object’s attribute identifiers, and the vi’s are the corresponding values. The
set of all the attribute-value pairs of an object’s state is formed by repeated
application of the binary union operator , which also obeys structural laws
of associativity, commutativity, and identity; i.e., the order of the attribute-
value pairs of an object is immaterial. Particular systems are axiomatized by
providing additional operations and equations, specifying, for example, the
data operations on attribute values and the structure of messages.

The associativity and commutativity of a configuration’s multiset structure
make it very fluid. We can think of it as “soup” in which objects and messages
float, so that any objects and messages can at any time come together and
participate in a concurrent transition corresponding to a communication event
of some kind. In general, the rewrite rules describing the dynamics of an
object-oriented system can have the form

r(x̄) : M1 . . . Mn 〈O1 : F1 | atts1〉 . . . 〈Om : Fm | attsm〉
−→ 〈Oi1 : F ′

i1
| atts ′i1〉 . . . 〈Oik : F ′

ik
| atts ′ik〉

〈Q1 : D1 | atts ′′1〉 . . . 〈Qp : Dp | atts ′′p〉
M ′

1 . . . M ′
q if Cond

6

Denker, Meseguer & Talcott

where r is the rule’s label, x̄ is a list of the variables occurring in the rule,
the Ms are message expressions, i1, . . . , ik are different numbers among the
original 1, . . . , m, and Cond is the rule’s condition 3 . That is, a number of
objects and messages can come together and participate in a transition in
which some new objects may be created, others may be destroyed, and others
can change their state, and where some new messages may be created. If
two or more objects appear in the lefthand side, we call the rule synchronous,
because it forces those objects to jointly participate in the transition. If there
is only one object in the lefthand side, we call the rule asynchronous . A
concurrent object rewrite theory is called an asynchronous object theory if the
rules are asynchronous, with exactly one object and at most one message on
the lefthand side. In addition, we assume that message expressions have the
form O � M , where O is an object identifier and M is a term representing
the information to be communicated. We call messages of this form message
packets . An asynchronous object configuration is then a multiset of objects
and message packets in the context of an asynchronous object rewrite theory.

2.2 Meta-Objects and Towers

Meta-objects are composable, concurrent objects that implement individual
layers of layered objects, called meta-object towers . Each layer serves as the
meta-object for the layered object below, interpreting requests from the layer
below to send messages and create new objects, and requests from the layer
above or the environment for delivering messages. The communication be-
tween any two contiguous layers of a meta-object tower is synchronous. This
is achieved by giving each meta-object four message lists: out and in lists
for sending messages to and receiving messages from its upper level (another
meta-object or the environment); and up and down lists for interaction with
the lower level.

All meta-objects belong to a subclass of the class MetaObject, an object
class with five distinguished attributes: in, down, out, up, base. The attribute
in is a list of incoming messages representing messages to be delivered from
the layer above or from the outside. The attribute down is a list of messages
to be forwarded to the layer below. The attribute out is a list of configu-
ration requests—that is, multisets of request packets—consisting of outgoing
requests for message transmittal and object creation. The attribute up is a list
of configuration requests that are to be forwarded to the layer above. The at-
tribute base is an object identifier corresponding to the identity of the object
at the bottom of the stack. We further require that meta-object rules do not
explicitly consume or create configuration elements. They may only remove
items from the in and up lists and place items in the out and down lists and
modify other attributes. To interact with other meta-objects or with the en-

3 We adopt the Maude convention that attributes that are not changed or used in rules do
not need to be mentioned.

7

Denker, Meseguer & Talcott

vironment a meta-object must be part of a meta-object tower. A meta-object
tower is a structure of the form

{ 〈 Ok : MC k | attsk, base : O0 〉 ◦ . . . ◦ 〈 O0 : MC 0 | atts0, base : O0 〉 }

built by means of an associative stack concatenation operation ◦ with iden-
tity nil, and where the rightmost object (with identifier O0) is the base layer
of the stack, and the leftmost object (with identifier Ok) is the top layer of
the stack. Each class MC i is a subclass of MetaObject, and the value of base
in each element of the tower is O0. The following rewrite rules explain how a
layer of a meta-object tower communicates with the layers above and below
it, and, in the case of the top layer, how the meta-object tower communicates
with the environment.

in: O0 � M { 〈 Ok : MC k | base : O0, in : L 〉 ◦ MOS }
−→ { 〈 Ok : MC k | base : O0, in : L · M 〉 ◦ MOS }

out: { 〈 Ok : MC k | out : cfReq · cL 〉 ◦ MOS }
−→ { 〈 Ok : MC k | out : cL 〉 ◦ MOS } CreateConf (cfReq)

up: 〈 O′ : MC ′ | up : cL′ 〉 ◦ 〈 O : MC | out : cfReq · cL 〉
−→ 〈 O′ : MC ′ | up : cL′ · cfReq 〉 ◦ 〈 O : MC | out : cL 〉

down: 〈 O′ : MC ′ | down : M · L′ 〉 ◦ 〈 O : MC | in : L 〉
−→ 〈 O′ : MC ′ | down : L′ 〉 ◦ 〈 O : MC | in : L · M 〉

where MOS is a possibly empty lists of meta-objects, L, L′ are lists of mes-
sages cL, cL′ are lists of configuration requests, M is a message, cfReq is a
message configuration containing requests for creation of a meta-object tower,
and in the ‘out’ rule CreateConf (cfReq) is the meta-object tower configuration
whose creation is requested by cfReq . For instance, the delegation application
in §1.2 requests the creation of a clone of itself which will reply to a request
of another object.

In order to deal with meta-object tower creation we have to extend the rules
of meta-object towers. In §3.3 and §3.4 we propose rules for meta-objects and
meta-object towers that can handle dynamic creation of meta-object tower
configurations.

Figure 5 shows a meta-object tower with base object O, message packet O�
M coming in from the surrounding environment, configuration CreateConf (cfReq)
being created, message M ′ ready to move from the ‘down’ list of meta-object
MO to the ‘in’ list below, and creation request cfReq ′ ready to move from the
‘out’ list of MO to the ‘up’ list above (possibly to the environment).

Note that, by remarking that the internal communication up and down a
meta-object tower is invisible to outside observers, we can regard a meta-object
tower with base object identifier O as behaving to the outside environment like
an object with identifier O. Therefore, we can view the specification of any

8

Denker, Meseguer & Talcott

system in which meta-object towers communicate with each other by asyn-
chronous message passing as a natural generalization of asynchronous object
rewrite theories. We call the rewrite theories specifying such asynchronously
communicating systems of meta-object towers meta-object rewrite theories.

❚
❚

✁✁✁

❚
❚

✁
✁
✁

❆
❆
❆ ✁

✁
✁

❆
❆
❆

✁
✁
✁

❆❆
❆

✁✁
✁

O

MO

out

up

out

up

in

down

down

in

CreateConf(cfReq)

cfReq’

O � M

M’
in

out

Fig. 5. A meta-object tower

2.3 Transforming Asynchronous Objects into Meta-Objects

We define a mapping from asynchronous object rewrite theories to meta-object
rewrite theories, and show that this mapping preserves behavior. We assume
an object theory in which the attribute identifiers of object classes are distinct
from the distinguished meta-object attribute identifiers. To each asynchronous
object class OC we associate a meta-object class o2m(OC). o2m(OC) is a
subclass of MetaObject and has as additional attributes those of OC . An
asynchronous object of the class is transformed into a single-layer meta-object
tower as follows. Let MOatts(O) = (base : O, up : nil, dwn : nil, in :
nil, out : nil) be the initial meta-object attributes for O. Then

o2m(〈O : OC | atts〉) = { 〈 O : o2m(OC) | atts ,MOatts(O) 〉 }.

The mapping is extended homomorphically to asynchronous object configura-
tions (multisets of objects and messages) by defining o2m to be the identity
on messages.

For each rule of the object class there is a corresponding rule of the meta-
object class obtained as follows. An object rule

r: O � M 〈O : OC | atts〉 −→ 〈O : OC | atts ′〉 oCf

where oCf is an asynchronous object configuration, is mapped to the meta-

9

Denker, Meseguer & Talcott

object rule

o2m(r): 〈O : o2m(OC) | atts , out : cL, in : M · L 〉
−→ 〈O : o2m(OC) | atts ′, out : cL · o2r(oCf), in : L 〉

where o2r(oCf) is the request for creation of o2m(oCf):

CreateConf (o2r(oCf)) = o2m(oCf).

Theorem 2.1 Given any asynchronous object class OC , in the union of the
rewrite theories for the classes OC and o2m(OC) the objects

〈O : OC | atts〉 and o2m(〈O : OC | atts〉)
are observationally equivalent. More generally, let oCf be any asynchronous
object configuration then oCf and o2m(oCf) are observationally equivalent
configurations.

To make sense of the above theorem we need to say what is meant by
observational equivalence. We say that two asynchronous object configura-
tions are observationally equivalent if they have the same set of observations.
There are many possible choices of observation. Here we pick a simple one that
records the sequence of messages delivered. Let γ be a computation (proof
term) (starting from an object configuration oCf) that is in sequential form,
that is γ is a sequence of single rewrite rule applications r(θ). In the case of
simple asynchronous object theories, we say that application of r(θ) delivers
the message O � M if the rule instance has the form:

r(θ) : O � M 〈O : OC | atts〉 −→ 〈O : OC | atts ′〉 oCf

In the case of meta-object theories, we say that the application of r(θ) delivers
the message O � M if the rule instance has the form:

r(θ) : 〈O : MC | atts , out : cL, in : M · L 〉
−→ 〈O : MC | atts ′, out : cL · o2r(oCf), in : L 〉

For a rewrite rule application r(θ), we define obs(r(θ)) to be the singleton
sequence containing the message O � M delivered, if any, and the empty se-
quence otherwise. The observation obs(γ) of a rewrite computation γ is then
the concatenation of the observations of the basic rewrites of γ, and obs(oCf)
is the set of observations for all finite computations with source oCf . Two
asynchronous object configurations are then observationally equivalent if they
have the same set of observations. This notion of observation is similar to one
studied in [30], and is also related to the partial order of event semantics for
asynchronous object theories of [20].

Proof sketch: The idea is to extend o2m inductively to sequential com-
putations with source oCf by mapping r(θ) to αin; o2m(r)(θ′);αout, where the

10

Denker, Meseguer & Talcott

input/output rule instances αin, αout can easily be computed from r(θ), and
where θ′ extends the substitution θ to take care of matching the meta-object
class attributes appropriately. It is easy to see that obs(γ) = obs(o2m(γ)).
Thus obs(oCf) ⊆ obs(o2m(oCf)). For the other direction we note that if
γ′ is any sequential computation of o2m(oCf), then there is a computation
γc such that obs(γ′) = obs(γc) and γc has a canonical form in which the in-
ternal queues effectively remain empty and each rule application o2m(r)(θ)
appears in a context αin; o2m(r)(θ);αout, where αin is the delivery of the mes-
sage consumed by r(θ) if any, and where αout emits the configuration elements
created by r(θ). From γc one can obtain a computation γ of oCf such that
obs(γ) = obs(o2m(γ)).

3 A Composable Communication Service Example

In the following we illustrate how the encryption service and the delegating
client-server application of §1.2 are formalized in our semantics.

Due to space limitations we cannot present the complete Maude specifica-
tion. However, we provide the main parts of the specification. The following
modules make use of some of Maude’s builtin modules and theories, such
as the sort parameter theory TRIV, and the modules, BOOL for booleans with
sort Bool, and MACHINE-INT for integers, with sort MachineInt, and the Full
Maude module CONFIGURATION with sort Configuration for multisets of objects
and messages. We also assume a module METAOBJECT with class MetaObject

and sorts MetaStack and MetaTower (subsorts of Configuration) that repre-
sents meta-objects and meta-object towers following closely the presentation
in §2.2.

3.1 Security Service

As an example (meta)service, a simple security service is specified. The meta-
object class EncrService below specifies a composable service designed to
provide secure message transmission in the presence of intruders that may
observe, intercept, or fake messages. The encryption service uses public-key
encryption. The data being encrypted is called a “field” (Field) and Pkey

is the sort for keys. op { } : Field PKey -> Field is the de/encryption
operator. A key K1 that that constitutes a keypair with another key K2 can
be used to decrypt a field that has been encrypted using K2. That is the
following axiom holds ceq {{F}PK}SK = F if keypair(PK,SK) . We assume a
module CRYPTO-DT in which all cryptographic operators, sorts and axioms are
specified.
(omod ENCR is

protecting METAOBJECT .

protecting CRYPTO-DT .

class EncrService .

subclass EncrService < MetaObject .

11

Denker, Meseguer & Talcott

vars X A B : Oid . vars PK SK : PKey . vars cL cL’ : List[ConfReq] .

var M : Msg .

rl [up/Encryption] :

< X : EncrService | up : (B <| M) * cL, out : cL’, base : A >

=> < X : EncrService | up : cL, out : cL’ * (B <| {A,M}pk(B)) > .

rl [in/Decryption] :

< X : EncrService | in : ({B,M}PK) * cL, down : cL’, base : A >

=> if keypair(sk(A),PK)

then < X : EncrService | in : cL, down : cL’ * M >

else < X : EncrService | in : cL > fi .

endom)

3.2 A Simple Client-Server Application

A simple client-server application is specified as an ordinary asynchronous ob-
ject system module SIMPLEAPP. In the module SIMPLEAPP, the class SimpleClient
models a client that has a list of data items for which it will request its server
to carry-out a simple operation and wait for a reply. The class SimpleServer
replies to such requests by applying a function f and replying with the result-
ing data.
(fth DATA is sort Data . endfth)

(view Data from TRIV to DATA is sort Elt to Data . endv)

(omod SIMPLEAPP is

inc DATA .

protecting LIST * (op __ to _*_) [Data] .

class SimpleClient | tasks : List[Data] , ready : Bool , server : Oid .

op reply : Data -> Msg .

op simple : Data Oid -> Msg .

vars X Y : Oid . var D : Data . var dL : List[Data] .

rl [sendSimple] :

< X : SimpleClient | tasks : (D * dL) , ready : true , server : Y >

=>

< X : SimpleClient | tasks : dL , ready : false > (Y <| simple(D,X)) .

rl [rcvReply] :

< X : SimpleClient | ready : false > (X <| reply(D))

=>

< X : SimpleClient | ready : true > .

class SimpleServer | .

op f : Data -> Data .

rl [rcvSimple] :

< Y : SimpleServer | > (Y <| simple(D,X))

=>

< Y : SimpleServer | > (X <| reply(f(D))) .

*** Creating an initial Client-Server configuration iCf

op oA oB : Oid .

op d1 d2 d3 : Data .

op serverO : Oid -> Object .

op clientO : Oid List[Data] Oid -> Object .

op iCf : Configuration .

12

Denker, Meseguer & Talcott

eq serverO(Y) = < Y : SimpleServer | > .

eq clientO(X,dL,Y) =

< X : SimpleClient | tasks : dL , ready : true , server : Y > .

eq iCf = clientO(oA,(d1 * d2 * d3),oB) serverO(oB) .

endom)

To make the client and server composable, we apply the o2m transfor-
mation of §2.3 to SIMPLEAPP, obtaining SIMPLEAPPMO. The module SAMPLECONF

composes the encryption service with the Client-Server application. Now com-
munication between the two is secure.
(omod SIMPLEAPPMO is

inc DATA .

inc METAOBJECT .

protecting LIST * (op __ to _*_) [Data] .

class SimpleClientMO | tasks : List[Data] , ready : Bool , server : Oid .

subclass SimpleClientMO < MetaObject .

op reply : Data -> Msg .

op simple : Data Oid -> Msg .

vars X Y : Oid . var D : Data . var dL : List[Data] .

var cL : List[ConfReq] . var L : List[Msg] .

rl [sendSimple] :

< X : SimpleClientMO | tasks : (D * dL), ready : true, server : Y, up : cL >

=>

< X : SimpleClientMO | tasks : dL , ready : false,

up : cL * (Y <| simple(D,X)) > .

rl [rcvReply] :

< X : SimpleClientMO | ready : false , in : (X <| reply(D)) ; L

=>

< X : SimpleClientMO | ready : true , in : L > .

class SimpleServerMO | .

op f : Data -> Data .

rl [rcvSimple] :

< Y : SimpleServerMO | in : (Y <| simple(D,X)) * L , out : cL >

=>

< Y : SimpleServerMO | in : L , out : cL * (X <| reply(f(D))) >.

op oA oB : Oid .

op d1 d2 d3 : Data .

op serverMO : Oid -> MOStack .

op clientMO : Oid List[Data] Oid -> MOStack .

eq serverMO(Y) = < Y : SimpleServerMO | moAtts(Y) > .

eq clientMO(X,dL,Y) =

< X : SimpleClientMO | tasks : dL , ready : true , server : Y, moAtts(X) > .

endom)

(omod SAMPLECONF is

inc ENCR .

inc SIMPLEAPPMO .

op motA motB : MOTower .

op moConf : Configuration .

op moA moB : Oid .

eq motA =

{ < moA : EncrService | moAtts(oA) > o clientMO(oA, (d1 * d2 * d3), oB) } .

eq motB = { < moB : EncrService | moAtts(oB) > o serverMO(oB) } .

13

Denker, Meseguer & Talcott

eq moConf = motA motB .

endom)

The configuration moConf = motA motB corresponds to the picture in Fig-
ure 2.

3.3 Adding dynamic object creation to Client-Server application

Now the functionality of the SimpleServer is extended to handle complex re-
quests by creating an object of the Helper class to do the computation, thus
freeing the server to answer other requests. The SimpleClient class is also
extended to make complex requests.

To treat dynamic objects (objects that may create other objects) in a
uniform way, we introduce the class ObjectD and an operation newId for lo-
cally generating fresh object identifiers for newly created objects. Objects
of classObjectD have an attribute, newCnt : MachineInt, used to track the
number of objects created by this object.
(omod OBJECTD is

class ObjectD | newCnt : MachineInt .

op newId : Oid MachineInt -> Oid .

endom)

The client class is extended with the ability to send complex requests, and
the server class is extended by adding a rule for serving complex requests. It
is subclassed with ObjectD in order to create helper objects to carry out the
complex computation.
(omod DELEGATINGAPP is

inc SIMPLEAPP .

inc OBJECTD .

class ComplexClient | ctasks : List[Data] .

subclass ComplexClient < SimpleClient .

op complex : Data Oid -> Msg .

vars X Y Z : Oid . var D : Data . var dL : List[Data] .

rl [sendComplex] :

< X : ComplexClient | ctasks : D . dL , ready : true , server : Y >

=>

< X : ComplexClient | ctasks : dL , ready : false > (Y <| complex(D,X)).

class ComplexServer | .

subclass ComplexServer < SimpleServer .

subclass ComplexServer < ObjectD .

rl [rcvComplex] :

< Y : ComplexServer | newCnt : n > (Y <| complex(D,X))

=>

< Y : ComplexServer | newCnt : n+1 >

< newId(Y,n) : Helper | task : D , customer : X , done : false > .

class Helper | task : Data, customer : Oid, done : Bool .

op g : Data -> Data .

rl [doComplex] :

14

Denker, Meseguer & Talcott

< Z : Helper | task : D , customer : X , done : false >

=>

< Z : Helper | task : D , customer : X , done : true > (X <| g(D)) .

endom)

This object module is transformed into a meta-object module as before.

3.4 Adding dynamic object creation to MetaObjects

We extend the METAOBJECTmodule with syntax for creation requests and define
the class MetaObjectD of dynamic meta-objects by inheritance from the classes
MetaObject and ObjectD.
(omod DYNMETAOBJECT is

inc METAOBJECT .

inc OBJECTD .

class MetaObjectD | .

subclass MetaObjectD < MetaObject .

subclass MetaObjectD < ObjectD .

*** Extending the tower model with syntax to deal with tower creation

sort TowerReq .

op BaseO : Oid Cid AttributeSet -> TowerReq .

op AddMeta : Oid Cid AttributeSet TowerReq -> TowerReq .

subsort TowerReq < ConfReq .

op createStack : TowerReq -> Tower .

op baseId : TowerReq -> Oid .

vars cfR cfR0 cfR1 : ConfReq .

var M : Msg .

vars X Y : Oid .

vars MC : MetaObject .

var T : TowerReq .

var ATT : AttributeSet .

eq createConf(M) = M .

eq createConf(cfR0 * cfR1) = createConf(cfR0) createConf(cfR1) .

eq createConf(T) = { createStack(T) } .

eq createStack(BaseO(X, MC, ATT)) = < X : MC | ATT, newCnt : 0, moAtts(X) > .

eq createStack(AddMeta(X, MC, ATT, T))

= < X : MC | ATT, newCont : 0, moAtts(baseId(T)) > o createStack(T)

eq baseId(BaseO(X, MC, ATT)) = X .

eq baseId(AddMeta(X, MC, ATT, T)) = baseId(T) .

endom)

3.5 Composing Encryption with the Delegating Client Server

We first apply the o2m transformation to the module DELEGATINGAPP to obtain
the module DELEGATINGAPPMO with the corresponding composable client and
server classes. The module ENCRD extends the encryption service to install itself
on created towers before sending the request up the stack. The extension is
accomplished by subclassing with MetaObjectD and adding an additional rule
for tower requests. For simplicity we assume that what comes in the up list is

15

Denker, Meseguer & Talcott

either a single message or a single tower creation request.
(omod DELEGATINGAPPMO is

inc SIMPLEAPPMO .

inc DYNMETAOBJECT .

class ComplexClientMO | ctasks : List[Data] .

subclass ComplexClientMO < SimpleClientMO .

subclass ComplexClientMO < MetaObjectD .

op complex : Data Oid -> Msg .

vars X Y Z : Oid . var D : Data .

var dL : List[Data] . var cL : List[ConfReq] . var L : List[Msg] .

rl [sendComplex] :

< X : ComplexClientMO | ctasks : D . dL, ready : true, server : Y, out : cL >

=>

< X : ComplexClientMO | ctasks : dL, ready : false, base : X,

out : cL * (Y <| complex(D,X)) > .

class ComplexServerMO | .

subclass ComplexServerMO < SimpleServer .

subclass ComplexServerMO < ObjectD .

subclass ComplexServerMO < MetaObjectD .

rl [rcvComplex] :

< Y : ComplexServerMO | newCnt : n,

in : L ; (Y <| complex(D,X)) , out : cL >

=>

< Y : ComplexServerMO | newCnt : n+1 , in : L ,

out : cL * BaseO(newId(Y,n), HelperMO, (task : D, customer : X, done : false)) > .

class HelperMO | .

subclass HelperMO < Helper .

subclass HelperMO < MetaObject .

op g : Data -> Data .

rl [doComplex] :

< Z : HelperMO | task : D , customer : X , done : false , out : cL >

=>

< Z : HelperMO | task : D , customer : X , done : true

out : cL * (X <| g(D)) > .

endom)

(omod ENCRD is

protecting ENCR .

inc DYNMETAOBJECT .

class EncrDService .

subclass EncrDService < MetaObjectD .

subclass EncrDService < EncrService .

vars X A B : Oid . vars cL cL’ : List[ConfReq] .

vars PK SK : PKey . var S : PSeal .

var M : Msg . var N : MachineInt . var T : TowerReq .

rl [createWithEncr] :

< MO : EncrDService | newCnt : N, up : T . cL , out : cL’>

==>

< MO : EncrDService | newCnt : N+1, up : cL,

out : cL’ . AddMeta(newId(X,N),EncrDService,newCnt : 0,T) > .

endom)

16

Denker, Meseguer & Talcott

4 Hostile Environments

The reason why we need communication services in the first place is because
the world in not perfect. The communication medium, typically realized by
some network, in general is neither secure nor fault-free.

In general, all this means that the communication medium may con-
tain hostile elements—either unintentional, e.g., faults, or malicious, e.g., an
intruder—and will have resource and performance limitations. Specific com-
munications services make sense as solutions to specific assumptions about
given hostile environments and/or performance limitations, and typically make
some guarantees about the correct behavior of the given application, in the
sense that, roughly, the service allows it to function as if the given problem
did not exist.

The point is that we can formally specify in rewriting logic both the services
and the assumptions about the communication environment.

In our running example, we could for example specify a class of intruder
objects that can, say, intercept and replay messages by giving appropriate
rewrite rules for such actions. We could model the knowledge of an intruder
as one particular attribute, in which every intercepted message is stored. An
intruder can replay stored messages at any time.
(omod INTRUDER is

protecting SET * (op __ to _+_) [Item] .

class Intruder | knows : Set[Item] .

vars A X : Oid . var M : Msg . var H : Set[Item] .

rl [InterceptMessage] :

(A <| M) < X : Intruder | knows : H >

=> < X : Intruder | knows : H + (A <| M) > .

rl [FakeMessage] :

< X : Intruder | knows : H + (A <| M) >

=> < X : Intruder | knows : H + (A <| M) > (A <| M) .

endom)

Even if such an intruder were not able to decrypt messages between A, B,
and B’, it could nevertheless cause other trouble, such as stealing some mes-
sages, and fooling A by replaying replies from B to previous requests, so that
the guarantees we can make are still limited. This would then suggest adding a
fault-tolerant service layer to ensure in-order/deliver-once fault-tolerant com-
munication.

5 Conclusions and Future Work

We have given a rewriting logic semantics to an important form of distributed
object-oriented reflection that permits composing different distributed services
in a modular and principled way. We have illustrated the ideas by means of
an encryption service and a client-server application in which the server may
create helpers and delegate selected tasks to them.

17

Denker, Meseguer & Talcott

We view this work as a first step in an effort to apply the methods of rewrit-
ing logic and distributed object-oriented reflection to the area of composable
distributed services. In this first step we have focused on developing adequate
semantic foundations. Based on these foundations we plan to investigate in
the future property-oriented formalisms adequate to express and prove ser-
vice guarantees about composable communication services, relative to given
assumptions about the hostile environments in which the services are placed
and about the other services or applications with which they are composed.

Although our formalism provides a means to install new service layers,
there is still a need to reason about the possible interactions between the
layers. For example, consider two meta-objects providing two different services
such as security and fault-tolerance that can be stacked on top of a basic
application. The interesting question is which of the two different composition
orders achieves the desired combination of properties. For example, stacking
the fault-tolerance service on top of the encryption service will not work. The
reason for this is that the fault-tolerance service can overcome a lossy medium,
but it is not designed to overcome a medium that corrupts or fakes messages.
If we place the fault-tolerant service as the top layer, the information used
in the fault-tolerant service is not protected, and thus, could be changed by
a malicious environment: for example, an acknowledgement could be faked.
Then the guarantees of the fault-tolerance service will no longer hold true.
However, under reasonable assumptions, a secure and reliable communication
service can be achieved by the alternate composition that places the security
service as the top layer.

To specify and reason about service guarantees such as the above, we plan
to investigate a variety of formalisms—including different temporal and modal
logics. Even a simple first-order extension of rewriting logic with Boolean
connectives and quantifiers is sufficient to state a number of useful properties.
But in general one would like to state properties about infinite behaviors that
may depend on assumptions such as fairness. Similarly, for some services real-
time and stochastic properties may be quite important, and one would then
like to use a formalism supporting real-time aspects.

Much more work remains ahead, particularly in the following aspects:

• Together with an investigation of adequate property-oriented formalisms to
express service guarantees, we plan to develop associated proof methods, in-
cluding inductive proof techniques, and both deductive and model-checking
approaches to proving temporal logic properties, taking into account work
such as [23,9,6].

• Different meta-object composition mechanisms should be investigated, in-
cluding a more detailed study of the relations between our work and that
of Agha, Astley, and Sturman [28,4]. Also, besides linear towers one should
consider other structures such as trees. Even within linear towers, mech-
anisms for localizing the services to specific groups of objects should be

18

Denker, Meseguer & Talcott

investigated, so that messages not related to such objects can bypass the
service in question. Furthermore, besides point-to-point communication we
should investigate broadcast and multicast services.

• Optimizing meta-object towers in a semantics-preserving way is also impor-
tant. We expect that theory transformation techniques will be very useful
in this regard (cf. [27]).

• Performance issues should also be dealt with by specifying in sufficient detail
the appropriate resources, such as buffers with appropriate sizes, channels,
cpu cycles, network bandwidth, and so on; and by making use of the pos-
sibilities for rewriting logic for modeling and analyzing real-time system
aspects [22].

References

[1] M. Abadi and L. Lamport. Conjoining specifications. Technical Report 118,
DEC Systems Research Center, 1994.

[2] G. Agha. Abstracting interaction patterns: A programming paradigm for open
distributed systems. In E. Najm and J.-B. Stefani, editors, Formal Methods for
Open Object-based Distributed Systems, pages 135–153. Chapman & Hall, 1997.

[3] G. Agha, S. Frølund, W. Kim, R. Panwar, A. Patterson, and D. Sturman.
Abstraction and Modularity Mechanisms for Concurrent Computing. IEEE
Parallel and Distributed Technology: Systems and Applications, 1(2):3–14, May
1993.

[4] M. Astley and G. Agha. Customization and composition of distributed
objects: Middleware abstractions for policy management. In Sixth International
Symposium on the Foundations of Software Engineering (FSE-6/SIGSOFT’98),
1998.

[5] K. M. Chandy and J. Misra. Proofs of networks of processes. IEEE
Transactions on Software Engineering, 7(4):417–426, 1981.

[6] K. M. Chandy and J. Misra. Parallel Program Design: A Foundation. Addison-
Wesley, 1988.

[7] M. Clavel. Reflection in general logics and in rewriting logic, with applications
to the Maude language. Ph.D. Thesis, University of Navarre, 1998.

[8] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, and J. Meseguer.
Metalevel computation in Maude. Proc. 2nd Intl. Workshop on Rewriting Logic
and its Applications, ENTCS, North Holland, 1998.

[9] B. Dutertre and S. Schneider. Using a PVS Embedding of CSP to Verify
Authentication Protocols. In Theorem Proving in Higher Order Logics,
TPHOL’s 97, pages 121–136. Springer, 1997. LNCS 1275.

19

Denker, Meseguer & Talcott

[10] D. Feldmeier, A. McAuley, J. Smith, D. Bakin, W. Marcus, and
T. Raleigh. Protocol Boosters, 1999. Accepted for IEEE JSAC Special
Issue on ”Protocol Architecures for the 21st Century.” Available at URL:
http://carin.bellcore.com:8000/boosters/ under papers.

[11] S. Frølund. Coordinated Distributed Objects: An Actor Based Approach to
Synchronization. MIT Press, 1996.

[12] S. Frølund and G. Agha. A language framework for multi-object coordination.
In Proceedings of ECOOP 1993, volume 707 of Lecture Notes in Computer
Science. Springer Verlag, 1993.

[13] C. B. Jones. Specification and design of parallel programs. In R. E. A. Mason,
editor, Information Processing 83: Proceedings of the IFIP 9th World Congress,
pages 321–332, 1983.

[14] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M.
Loingtier, and J. Irwin. Aspect-Oriented Programming. In M. Aksit and
S. Matsuoka, editors, Proc. of the European Conference on Object-Oriented
Programming (ECOOP’97), Finland, pages 220–242, 1997. LNCS 1241, URL:
http://www.parc.xerox.com/spl/groups/eca/pubs/papers/Kiczales-ECOOP97/.

[15] T. F. LaPorta, D. Lee, Y.-J. Lin, and M. Yannakakis. Protocol Feature
Interactions. In S. Budkowski, A. Cavalli, and E. Najm, editors, Proc. Formal
Description Techniques And Protocol Specification, Testing and Verification,
FORTE XI/PSTV XVIII’98, 3-6 November, Paris, France, pages 59–74, 1998.

[16] P. Lincoln, N. Mart́ı-Oliet, and J. Meseguer. Specification, transformation,
and programming of concurrent systems in rewriting logic. In G. Blelloch,
K. Chandy, and S. Jagannathan, editors, Specification of Parallel Algorithms,
pages 309–339. DIMACS Series, Vol. 18, American Mathematical Society, 1994.

[17] A. Mallet, J. D. Chung, and J. M.
Smith. Operating System Support for Protocol Boosters, 1998. available at
URL: http://carin.bellcore.com:8000/boosters/ under papers.

[18] J. Meseguer. A logical theory of concurrent objects. In ECOOP-OOPSLA’90
Conference on Object-Oriented Programming, Ottawa, Canada, October 1990,
pages 101–115. ACM, 1990.

[19] J. Meseguer. A Logical Theory of Concurrent Objects and Its Realization in the
Maude Language. In G. Agha, P. Wegner, and A. Yonezawa, editors, Research
Directions in Concurrent Object-Oriented Programming, pages 314–390. The
MIT Press, 1993.

[20] J. Meseguer and C. Talcott. A Partial Order Event Model for Concurrent
Objects. In J. Baeten and S. Mauw, editors, Proc. 10th Intern. Conf.
on Concurrency Theory (CONCUR’99), Eindhoven, The Netherlands, August
1999, pages 415–430. Springer, 1999. LNCS 1664.

[21] J. Millen. Local Reconfiguration Policies. In IEEE Symposium on Security and
Privacy. IEEE Computer Society, 1999. To appear.

20

Denker, Meseguer & Talcott

[22] P. C. Ölveczky and J. Meseguer. Specification of real-time and hybrid systems in
rewriting logic. Submitted for publication. http://maude.csl.sri.com, 1999.

[23] L. Paulson. The inductive approach to verifying cryptographic protocols.
Journal of Computer Security, 6(1):85–128, 1998.

[24] J. Peleska. On a unified formal approach for the development of fault-tolerant
and secure systems. In H. Rischel, editor, Nordic Seminar on Dependable
Computing Systems, Lyngby, Denmark, August 1994. Technical University of
Denmark, pages 69–80, 1994.

[25] S. Ren. An Actor-Based Framework for Real-Time Coordination. PhD thesis,
University of Illinois at Champaign Urbana, 1997.

[26] J. Rushby. Combining system properties: A cautionary example and
formal examination. Technical report, Computer Science Laboratory, SRI
International, Menlo Park, CA, June 1995. Unpublished project report;
available at URL: http://www.csl.sri.com/ rushby/combined.html.

[27] S. F. Smith and C. L. Talcott. Modular reasoning for actor specification
diagrams. In P. Ciancariani, A. Fantechi, and R. Gorrieri, editors, Formal
Methods for Open Object-based Distributed Systems, pages 313–330. Kluwer,
1999.

[28] D. Sturman. Modular Specification of Interaction Policies in Distributed
Computing. PhD thesis, University of Illinois at Champaign Urbana, 1996.

[29] D. Sturman and G. Agha. A protocol description language for customizing
failure semantics. In The 13th Symposium on Reliable Distributed Systems,
Dana Point, California. IEEE, Oct. 1994.

[30] N. Venkatasubramanian and C. L. Talcott. Integration of resource management
activities in distributed systems. Technical report, 2000. in preparation.

21

