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The statistical analysis of a periodic signal x(t) accompanied by additive 
noise n(t) [assumed stationary and independent of x(t)] is of importance 
in the study of communication theory and modulation pr0eesses.l Thus, 
we consider y(t) = x(t) + n(t), where x(t) is a known periodic function, 
and p&(t) is as described above. The usual approach treats y(t) - and 
therefore x(t) -. as stationary, so that the second order properties of l?(t) 
can be most easily calculated. But except in certain trivial cases, x(t) 
is nonstationary, and the results obtained via a stationarity assumption 
are erroneous.* This difficulty is avoided by using x(t + a) in place of 
x(t), where a is a random variable uniformly distributed over the period 
of s(l), and independent of x(t) and ,m(t).3p4 

* This work was supported by the National Aeronautics and Space Administra- 
tion under research grant NsG-2-59. 

i See, e.g., RICE, S. 0. Mathematical analysis of random noise. Bell System 
Teclr. J. (1944-5). Reprinted in WAX, N. ” Selected Papers on Noise and Stochastic 
Processes,” art 3.10. Dover, New York, 1954. 

” .I check of a number of texts and papers indicates that this erroneous assump- 
tion is frequently made. 

3 .\ random variable X is said to be uniformly distributed over a set E of finite 
Lebesgue measure m(E) > 0 if for any measurable set F we have Prob (XE F) 
= nz(E n F)/m(E). By the Radon-Nikodym theorem this corresponds to a probabil- 
ity density positive constant on E, and zero on the complement of E. 

J. An equivalent assumption is made by Rice (see footnote 1). Some of the more 
rigorous engineering texts introduce x(f f t.) explicitly, with t uniformly distrib- 
uted. See DAVENPORT, W.B., AND ROOT, W.L., “.%n Introduction to the Theor! 
of Random Signals and Noise,” section 8-6. McGraw-Hill, New York, 1958. 
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26 BEUTLER 

At best, intuitive reasoning has been used in the literature to argue 
that a uniformly distributed a should be added to the argument of x(t) 
to insure stationarity. In this paper, we shall show that the above 
procedure is actually sufficient to guarantee stationarity. More generally, 
those probability distributions of a for which x(t + a) is stationary can 
be completely characterized in terms of certain properties of -z(t) itself. 
Most important among these is the description of the a-field which is 
induced on the real line by x(t). 

Throughout this work we shall assume x(t) Bore1 measurable, non- 
random, and periodic with periodicity 1. The random variable a is taken 
to be finite valued, so that x(t + a) remains unchanged if we take 
t = a(mod 1) in place of a. Finally, we shall read t + t as “(t + t) (mod 1) .I’ 

Let -4, = (tlz(t, + r) < aj}, and take A = 6 dj. Evidently, A is 
1 

a Bore1 set on the unit interval for arbitrary n, and any ai, ti, j = 1, 2,. . . ,u. 
Thus, x(t + t) is defined as a random process; indeed, the probabilities 
P(t E A) [which we shall write P(A)] are the multivariate distribution 
functions which describe the process x(t + r). 

The indicator function IA ( .) is defined as usual, with the understanding 
that its argument be taken (mod 1). By considering the minimum o-field 
generated by sets such as A, we arrive at S(A), which is a subfield of 
the Bore1 sets on the unit interval.5 

The definition of stationarity is most conveniently expressed in terms 
of indicators ; x(t + t) is stationary if and only if the expectation 

E[Ig(t + t) - IB(t - h + t)] = 0 (1) 

for every B E S(A), every t, and every h. 
For the first result, we characterize the probability distributions of t 

which render x(t + t) stationary in terms of the Fourier expansion of 
indicators. Accordingly, we define for every set Be E S(A) the Fourier 
coefficients end = Ji IB&t) e--i2nnf dt of the corresponding indicator. We 
then call Nd = (njc,,d # 0}, and take N = U Ng, the union extending 

n 
over all 6 such that B6 E S(A). 

We are now able to state: 

THEOREM 1: A necessary cod&on for the stationarity of x(t + t) is 
that F(t) (the probability distributiolt function of T) solves the trigonometric 
moment problem 

- 
6 In theorem 4, we shall also have occasion to consider S(A), the completion 

of S(A). There is no need to do this as long as our considerations are confined to 
Bore1 measurable x(t). 
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. 

un = ei2m= dF(T) 
I (4 
J 
I) 

7therr the 0% satisj 

uo= 1, (3) 

un == 0 for all 11 EN, n # 0. (4) 

The u, are nonnegatizle definite. (5) 

Comersely, let F(t) be any absolutely continuous function satisfying 

(3), (4), and (5). Then F(t) is a probability distributiott. function, and 
.x(t + 7) is stationary if T is distributed according to F(t). 

COROLLARY 1: If r is uniformly distributed over the unit interval 
then x(t + t) is stationary. 

COROLLARY 2: Suppose every n E N. Then x(t + t) is stationary if 
and only if t is uniformly distributed over the unit interval. 

COROLLARY 3: Let MB be the completion in L,(O, 1) of the linear 
manifold generated by translations of IBg(t), where such translations are 
defined by T” IBg(t) = IB6(t - a), 0 < a < 1. Suppose there exists a 
Bd E S(A) such that Md = L,(O, 1). Then x(t + t) is stationary if and 
only if t is uniformly distributed over the unit interval. 

COROLLARY 4: Suppose that x(t) E L,(O, l), and that the subspace 
in L2(0, 1) generated by translations T” x(t) = ?I@ - n) is complete in 
L,(O, 1). Then x(t + r) is stationary if and only if t is uniformly distributed 
on the unit interval. 

(.‘C)ROLLARY 5: If the complement of N (designated s) contains 
integers other than n = 0, there exist a nondenumerable set of absolutel! 
continuous distribution functions (for z) which render s(t + T) sta- 
tionary. 

PROOF OF THEOREM: For any Bd E S(A), let z(t, T, h) = JBd(t f T) 
le,(f - h + t) and 

zn(t, t, h) = 2 Ckg zLk(h) e’2nkt eenkr 

-n 
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where cka are the Fourier coefficients of IB&), and zdk(lt) = 1 - e-*Znkh 
with k to be chosen later. Because any indicator is in L2(0, I), we have 
l.i.m.n+X z”(t, t, h) = z(t, t, lz) for all r and /z. There follows a fortiori 

for an arbitrary 2 E (0, 1). 
Since (7) certainly holds for all (finite valued) t, we may take the 

expectation on both sides. On the right side, z(t, t, h) is bounded, jointly 
measurable, and therefore certainly integrable on the product space of 
t and t; hence, Fubini’s theorem is applicable. On the left side, we observe 
that Jizn dt converges to Jiz dt for every (finite valued) t; further, 
successive application of the Schwarz and Bessel inequality shows that 
lJizzn dtl < 1 for all (finite valued) t. Hence, Lebesgue’s bounded conver- 
gence theorem is applicable. Putting these results together enables us 
to obtain 

E{ Elzmdt} =[E[z, dt. 

0 0 

We now verify the necessity condition of the theorem. If x(t + z) 
is indeed stationary, E [z] = 0 for all t and h follows from (1) and the 
definition of z(t, T, k). Hence, the left side of (8) must be zero for all A 
and h. Evaluating this side by carrying out the indicated operations 
yields 

with the ok as defined by (2). We shall show that (9) implies that 

CkdUk(h)& = 0 all K. all h. (10) 

Indeed, if a Fourier series Zb,,etinti has Zlb,[2< 00, there exists a 
f(t) E L,(O, 1) having the b, as Fourier coefficients. For any Fourier series, 
convergent or not, term by term integration is valid over any interval [I]. 
An application of this fact is that 

f(t) dt = Ab, + 2 km (eizma - 1). 

0 ?I?=0 

(11) 
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Suppose now that the right side of (11) is zero for every 1. Since f(t) is 
integrable, a standard measure theoretic result leads to the conclusion 
that f(t) = 0 a.e. Consequently, b, = 0 for all 12. 

In our problem, the role of b, is played by c,,a ~,#)a,. For any h, 
\zi,,(h)\ < 2. Since F(r) is a probability distribution, /unJ < 1. Finally, 
IBM EL,(O, l), so that ,E’\c~\~ < ~3. Thus we may make use of the 
preceding paragraph, and (10) follows. 

If h. is any irrational number 16,,(h) # 0 unless II = 0. It is clear, 
therefore, that (10) is satisfied only if a, = 0 whenever >I E N,+ The 
above argument may be repeated for any Ba E S(A), so that we conclude 
on = 0 for every IZ E U Nd = N. This is precisely the condition (4). 

d 
As for (3) and (5), we need only observe that these are automatic because 
F(T) is a probability distribution function [2]. 

\Ve turn now to the proof of the second part of the theorem. In the 
first place, (3) and (5) suffice to assure that F(t) is a probability distribu- 
tion function [2]. Since (4) is satisfied by hypothesis, (10) holds for any n 
such that B6 E S(A), and for all h. Therefore, E [z,] = 0 for all 6, t, and h. 

For each n, .a&, r, h) is bounded and jointly measurable. This permits 
an interchange of integrations, i.e.. ES i z, dt = Ji E[z,i df = 0. In other 
words, (8) implies that 

{E [I@ + T) - I&& - la + z)]} dt = o (12) 
0 0 

for any A E (0, 1). Let us call E [z(t, T, Iz)] = g(t) (we suppress the h). 
Then (12) is equivalent to g(t) = 0 a.e. To complete the proof we must 
show that g(t) = 0; we accomplish this by exhibiting the continuity 
of g(t) as a consequence of the absolute continuity of F(t). 

The derivative f(r) = F’( t exists a.e., and it follows from the absolute ) 
continuity of F(z) that F(r) = J:/(c) d<. Then for any number a we 

have the easily verified inequality0 

. 
I&) - & - 41 d 1 (fb) - fb + 41 at. (13) 

Since i(t) E L,(O, l), the right side of (13) becomes zero as a 3 0. The 
latter is a familiar result which may also be proved by Lusin’s theorem 
and the absolute continuity of the integral: we omit the proof here. 

B Wherever a probability density function appears its argument is to be taken 
(mod 1). 
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PROOF OF COROLLARY 1: If z is uniformly distributed, probability 
measure is absolutely continuous with respect to Lebesgue measure 
(see footnote 3). From the same footnote, it follows that I;(t) = t if T 
is uniformly distributed. Substituting this F(t) in (2) gives o, = 1, 
o, = 0 when n # 0. These values of o,, satisfy the conditions (3), (4), 
and (5); in particular, (4) is satisfied for any N whatsoever. The desired 
result is then a direct consequence of the second part of Theorem 1. 

A proof of this corollary can also be given independent of Theorem 1. 
The proof rests on the fact that the Lebesgue measure [equivalent to 
probability measured when F(t) = t] of any Bore1 set is invariant under 
translation. 

PROOF OF COROLLARY 2: “If” is true in any case from Corollary 1. 
To show “only if,” observe that if every iz EN, (3) and (4) require that 
a, = 1, o, = 0 for all n # 0. Since the trigonometric moment problem 
has a unique solution (when all a,, are specified) up to an arbitrary additive 
constant, that solution must be F(t) = t 133. 

PROOF OF COROLLARY 3 : We show that the hypothesis of this corollary 
implies that every 12 E N; then Corollary 2 is applicable. That every 
,n E N follows in turn from the “if” part of the following lemma: Let 
f(t) E L&O, l), and let M be the completion in L,(O, 1) of the linear manifold 
generated by tralzslatio%s of f(t), where such a translation is defined b> 
r” f(t) = f(t - a). Let c, be the Fourier coefficients of f(t) (as previowly 
defined). Then c, # 0 for every n if and only if M = L,(O, l).’ 

The proof of the lemma follows. The condition is necessary; if c, = 0 
then g(t) = eiennt is orthogonal to f(t - a) for every a. For sufficiency, 
assume c, # 0 (all II), and suppose there exists a nontrivial g(t) E L,(O, 1) 
which is orthogonal to f(t - a) for every a. Now by Parseval’s relation 

2 * i2nm= l 
cngne 

5 
f(t - a)g*(t) dt = 0 all a (14) 

0 

where the g, are the Fourier coefficients of g(t), and * denotes complex 
conjugacy. It follows from the uniqueness property of Fourier series 
that c,, g,* = 0 for every H, so that indeed g, = 0 (for every rz). Hence 
g(t) can be orthogonal to the f(t - a) only if it is zero a.e. 

7 This result is undoubtedly well known, although the author has been unable 
to find it in the literature. A Fourier transform analogue is given by BOCHNER, S. 
AND CHANDRASEKHAR, K., Fourier transforms. Ann. Math. Studies 19, 148-149 
(1949). 
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PROOF OF COROLLARY 4: In this proof only, let z(t, r, k) = s(t + r) - 
.u(t - h + T). If x(t + T) is stationary, we can demonstrate that E x 
esists, and that indeed E [z] = 0 for every t and h. 

For ever) (finite valued) r, j$ Ix(t + T)] dt = LW < cc. Then 
ES: jx(t + T)! dt = j: Elx(t + r)I dt = M by Fubini’s theorem, so that 
E [l.x(t+t)ij< C-J for a.e. t. But stationarity implies P(Th;~j)=P(rZi) for all 
-J1 and h, where A, is aspreviouslydefined, and ThAj =(rjs(t, - h+r)<czij. 
Therefore, E[lx(t + T)I] = E[jx(t - h + t)l] for all h, and hence 
E[lx(t + T)/] = M, the constant mentioned abox-e. Since all necessar! 
integrals exist, we may repeat the argument with x(t + T) replacing 
lx(t + T)!. Th en also E [x(t + t)] = E [.x(t - h + T) /, i.e., E[zl exists 
and is zero.s 

Now let zn(t, T, 12) = Pz ck ?C&) eiZnkf fPkr, where the c,$ are the 
Fourier coefficients of x(t). Then JA /z,I dt is uniformly bounded with 
respect to (finite valued) t and h (use the Bessel and Schwarz inequal- 
ities). Furthermore, the preceding considerations have already shown that 
EJ-; IzI dt < “M. These bounds permit us to repeat the arguments of 
Theorem 1 \.-erbatim, with the result that c,$ ok = 0 for each k # 0. B! 
the lemma in Corollary 3, all ck # 0, so that ok = 0 for all k f 0. This, 
together with or, = 1, leaves F(t) = t as the unique solution (up to some 
arbitrary constant) of the trigonometric moment problem which yields 
the required ok. 

PROOF OF COROLLARY 5: Because each IB&(~) is real, ?I E &’ implies 

- z E x, and conversely. Therefore, if m n (1~ f 0} is nonempty (as 

assumed in the hypothesis), there exists an 1~ 2 I belonging to g’. 
Let s be any real number, 1 < s < bo, and consider 

fS(T) = 1 + (s - 1) 2 s-n cos 2nnr. (15) 

?&>l 

n&T 

It is clear that f,(t) is a probability density function on iO, l), so that (3) 
and (5) are satisfied. Direct verification of (4) is an easy calculation. 
Therefore, the {/Jx)}, 1 < s < 00, are a nondenumerable set of densities 
each satisfying the sufficiency conditions of Theorem 1, and implying the 
stationarity of x(t + T). 

The characterization of stationarity properties of x(t + T) provided 
by theorem one and its corollaries is indirect at best; in specific cases 
verification of stationarity is rendered difficult if not impossible. The 

8 In the engineering literature, E[z] = 0 is sometimes (erroneously) taken as 
a definition for, rather than a consequence of, stationarity. 
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next two theorems are devoted to types of x(t) for which stationaritJ 
properties can be readily determined. The first of these (Theorem 2) makes 
use of the ideas of Theorem 1, while the second (Theorem 3) employs 
measure theoretic concepts which emphasize the relationship of sta- 
tionarity conditions to the a-field induced by x(t). 

THEOREM 2: Let there exist an a # 0 such that x(t + a) = x(t) /OY 

every t. Then we have: 
(i) If a is irrational, and x(t) is left (OY right) continuous at some point to, 

thelz x(t + t) is stationary irrespective of the probability distribution of 7. 

(ii) If a is rational, call a = p/q, where p and q are relatively prime 
integers. Then x(t + z) is stationary if 7 is mifomly distributed over any 
interval9 of length k/q, k = 1, 2,. . . , q. 

PROOF: For (i) we show that x(t) is identically a constant, i.e., that 
x(t,) = x(to - t) for arbitrary t. If this is true, IB(t + z) = IB(t + t - h) 
identically for any B E S(A), and every t, 7, and 12. Thus, (1) is satisfied 
for any distribution of t. 

To demonstrate the constancy of x(t), we first let t = to - t, and 
obtain x(t, - t + na) = x(t, - t) by induction for any integer W. 
Therefore,lO x(t, - 5 + t,,) = x(t, - t), where {r,,} is a denumerably 
dense set in [0, 1). Let t, L z if x(t) is right continuous at to (otherwise, 
take 7,, 7 z); the desired result follows. 

In the proof of (ii), the periodicity of x(t) permits us to assume that 
p < q. Again using induction, we get x(t + rip/q) = x(t). It is easily 
shown that some 0 < IZ < q gives (rip/q) (mod 1) = l/q; hence x(t) is 
actually periodic with period l/q. 

Taking Ai = {tlx(ti + 7) < ai} as before, we note that t E Ai if 
(7 + k/q) E Ai for each k = 1, 2,. . . , q. This relationship is preserved 
under set operations, so that for every Bg E S(A), t E B6 if (T + k/q) E Bd. 
Therefore, all Isa(t) are periodic with period l/q. Consequently, the 
Fourier coefficients of any IEd are given by 

q--l v? 

&a = 
( 2 e - (i2nlmm)lq 

)s 

IB, (t) e - &mf & 
(16) 

I=0 0 

in which the summation is zero whenever m is not an integral multiple 
of q. In the notation of Theorem 1, N C {mlm = jq, j any integer}. 

9 An interval, as defined here, may also take the form [b, 1) U [0, c) where 
O<c<b<l. 

10 The proof of this claim is an almost exact copy of the verification of theorem 
l&C, HALMOS, P.R., “Measure Theory.” Van Nostrand, Princeton, New Jersey. 
1960. 
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To complete the proof through use of Theorem 1 we need only show 
that (4) is satisfied if T has one of the probability density functions 

f(t) = ( q(y 
z E [c, c + k/q) 

otherwise (17) 

where c may be chosen arbitrary,ll and k is any integer between 1 
and q. For such an f(z) 

which is zero whenever m is an integral multiple of q; i.e., (T, = 0 for 
m E N, m # 0. 

THEOREM 3: Let there exist a Bore1 set C such that D = (t]x(t) E C} 
is an interval whose Lebesgue measure m( .) is such thut 0 < m(D) < 1. 
Then x(t + z) is stationar>l if and only if T is uniforml~~ distributed over 
the unit interval. 

COROLLARY: Under the conditions of the theorem the o-field S(A) 
[of sets {tlx(ti + t) E E) g enerated by all tj E [0, 1) and all Bore1 sets El 
consists of all Bore1 sets on the unit interval. 

PROOF OF THEOREM 3: In view of the preceding results, sufficiency 
is obvious. To prove necessity, let any suitable tj be chosen, and define 
A ={tlx(lj+ ~)EC). Then A has the same length as D, i.e., m(A) =m(D). 
We may take 0 < m(A) < l/2 without loss of generality; if l/2 < m(A) < 1 
we need only consider the complementary sets A and c, and work with 
A in place of A. 

Since A has positive measure, there exists a natural number n,, such 
that m(A) > l/n,. Consider now the translation Th defined by 

Th A = {tJx(tj + t - h) EC}. VW 

Take h = + [m(A) - I/%], 12 > n,. The + or - may be chosen to 
assure that Tk A n A is a half-open interval. Indeed, Th A n A has 
length l/n, so that this set is either of the form [a, a + l/x) or (a, a + l/n], 
with the value of a depending on the particular choice of ti. 

Now observe that the sets F’“(T” A n A), j = 1, 2, . . . , n -. 1, 
partition the unit interval, and that, by stationarity, P{t E Ti’“(T’A n rl)] 

I1 If (c $ k/q) > 1, this interval becomes [c, 1) u [0, K/q). 
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is the same for all j. These facts, together with the additivit!; property 
of the probability measure, yield 

1 

nP(zEThA “A)=~~P(~ET~I=(T~A flA)) 
0 

= P (T E u Tfl”( Th A n A)} = P{z E [0, l)} = I. 
0 

Hence a second application of stationarity gives 

P{rE[ ;, q)} = P{z E T(i/“) -a ( Th A n A)} 

= P{~E Th A i-l A} = I/rt. 

Using additivity once more, we obtain for any rational Y E [0, 1) the 
distribution function of r as F(r) = P{t E [0, r)} = r. This result is 
readily extended to arbitrary t E [0, 1). For since F(t) is nondecreasing 
we have r’ < F(z) < yrr whenever Y’, 7" are rationals such that Y’ < r < r”. 
If we now consider sequences r’ 7 t and Y” \ t we see that F(t) = t, 
i.e., r is uniformly distributed over the unit interval. 

PROOF OF COROLLARY: It is clear from the proof of the theorem that 
the sets induced on the unit interval include all sets of the type [a, a + l/s), 
n > N,,, for any a. Denumerable set operations on such intervals yield 
in turn any interval of rational length, any interval of arbitrary length, 
and finally any Bore1 measurable set. Since x(t) is itself a Bore1 meas- 
urable function, all such induced sets must be Bore1 measurable, so 
that the induced o-field S(A) does indeed coincide with the a-field of 
Bore1 sets on the unit interval. 

Theorem three is readily applied to forms of x(t) that might occur 
in practice. For instance, if x(t) is monotone, any interval in the range 
of x(t) can be taken as the set C of the theorem. More generally, if x(t) 
is right or left continuous, and has a unique supremum or infimum, the 
conditions of Theorem 3 can be satisfied. Another situation in which 
Theorem 3 is applicable is that in which x(t) consists of a piecewise 
constant nonperiodic function; the construction of C in this case is left 
to the reader. 

While Theorem 3 is often useful, the condition stated therein is 
not a necessary one. To construct an example where a C as described 
in the theorem fails to exist, consider x(t) = t on the irrationals, and 
x(t) = 0 on the rationals. Even though we cannot find a proper C, x(t) 
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is such that stationarity results only if t is uniformly distributed o\-er 
the unit interval. To see this, define for any irrational h E (0, 1) and an 
arbitrary- t the set B E S(A) by B = {rjn(t + t) < b}. The Fourier 
coefficients of Is(t) are then all nonzero, and reference to Corollary 2 
of Theorem 1 shows z must be uniformly distributed if .~(t + T) is to 
be stationary. 

The abo\Te example rests upon the fact that two functions equal a.e. 
have the same Fourier expansion, so that if x’(t) and x”(t) induce o-fields 
whose component sets differ only by sets of null measure, the necessity 
conditions on the stationarity of ~‘(t + t) and ~“(t + r) will be the same. 
&4 more precise statement of this property is provided by 

THEOREM 4: Let x(t) be Bore1 measurable and periodic on th.e unit 
interzral, ad let t be distributed oveY the wait i,)devzlal with a absolutely 
cowtiwolss distribution function F(t). If Z(t) = x(t) except on a set M 
(wlhich may extend over the entire ,real I,ine and need not be periodic) having 
Lebesgzte meast$re m(M) = 0, then ?(t + T) is a random process. Further, 
R(t + T) is stationary if alad only if F(t) is such that x(t A T) is stationnr>l. 

REMARK: Because i(t) may not be periodic, its argument is not read 
(mod 1). 

PROOF: L5-e complete S(A) to S(A) as follows. Let M, E S(A) be such 
that P [t E Al,,] = 0, and consider the o-field of sets BAM, where B E S(d) 
and M c MO. From the absolute continuity of F(z), m(M,) = 0 implies 

Z 
P[t E M,) = 0, and so S(A) contains all Lebesgue measurable sets. If 

the probability field is completed, the preimage of sets in ‘(A) belong 
to the completed probability u-field. By estending the probability 
measure in the sense that P[z E BdM] = P[t E Bj, we obtain alsol 

Jsm Wd = JBW7). 

If M = {t(x(t) # a(t)), we note that for arbitrary ti Tetl 34 

= {++j + 7) # qtj + t,) 1s a translation of Al, so that rn(TFtj M) 
= m(M) = 0. Now take (for arbitrary aj) Ai = (tjx(ti + t) < aj} as 
before, and call di = {tlf(ti + 7) < ai). Then df = A, AM’, where 

M’ c T-‘i M. M’ belongs to SG). and m(W) = 0; therefore, by the 
absolute continuity, P[t E M’] = 0 also. 

I2 For a general reference to measurability and completion of measure spaces 
see HALMOS, P.R., “Measure Theory,” problem (ll), p. 80, in particular. Van 
Nostrand, Princeton, New Jersey, 1950. 
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Evidently, ai is measurable, as is a = 6 A^i for any 12, and arbitrar! 

tj, ai, j = 1, 2,. . . , n. Then P(a) is defiled, and in fact, P(A) is a 
multivariate probability for 32(t + t) ; thus Z(t + t) is a random process. 

Let A be defined as before, with the set of ti and aj the same as those 
for a. We complete the proof of the theorem by showing that 
P(A) = P(li), i.e., x(t + t) and Z(t + t) have the same distribution 
functions when a common probability distribution of t is specified for 
both. If this is true, P(Th -4) = P(Th A), where the translation is as 
defined previously for any 12. But stationarity of x(t + t) is equivalent 
to P(T’” A) = P(A), so that P(T’a) = P(A) is implied thereby, and 
&(t + t) is stationary also. Since all relations are symmetrical, the 
stationarity of i(t + t) is turn implies that x(t + t) is stationary. 

The remaining proof is easy, for we have 

IP(A) - P(a)/ < 1 (I,(z) - I;(t)1 dF(t) = 1 C(z) = P(AAA^). (22) 

AA.2 

A calculation exhibits AAA^ as at most a finite union of subsets of sets 
of null Lebesgue measure. Hence also P(t E AAA^) = 0. 

We remark that the above result cannot be extended to an F(z) with 
a jump component. As a counterexample, let x(t) = 0 identically, and 
k?(t) = 0 except at some one point. Then x(t + t) is stationary for any 
distribution of t, but a jump in F(t) will render i(t + T) nonstationary. 
A considerably more complicated example is required to show that the 
above theorem need not hold for (nonabsolutely) continuous F(T). 

REFERENCES 

1. TITCHMARCH, EC., “Theory of Functions,” 2nd ed., p. 419 ff. Oxford Univ. Press, 

1939. 
2. GNEDENKO, B.W., “Lehrbuch der Wahrscheiulichkeitsrechnung,” p. 212 ff. 

Akademie Verlag. Berlin, 1957. 
3. ACHIESER, N.L., AND GLASMAN, I.M., “Theorie der Linearen Operatoren im 

Hilbert Raum,” pp. 144-148. Akademie Verlag, Berlin, 1964. 


